1
|
Kepsha MA, Timofeeva AV, Chernyshev VS, Silachev DN, Mezhevitinova EA, Sukhikh GT. MicroRNA-Based Liquid Biopsy for Cervical Cancer Diagnostics and Treatment Monitoring. Int J Mol Sci 2024; 25:13271. [PMID: 39769036 PMCID: PMC11678179 DOI: 10.3390/ijms252413271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite prevention strategies, cervical cancer remains a significant public health issue. Human papillomavirus plays a critical role in its development, and early detection is vital to improve patient outcomes. The incidence of cervical cancer is projected to rise, necessitating better diagnostic tools. Traditional screening methods like the cytological examination and human papillomavirus testing have limitations in sensitivity and reproducibility. Liquid-based cytology offers some improvements, but the need for more reliable and sensitive techniques persists, particularly for detecting precancerous lesions. Liquid biopsy is a non-invasive method that analyzes cancer-derived products in biofluids like blood, offering potential for real-time monitoring of tumor progression, metastasis, and treatment response. It can be based on detection of circulating tumor cells (CTCs), circulating free DNA (cfDNA), and microRNAs (miRNAs). This review particularly underlines the potential of microRNAs, which are transported by extracellular vesicles. Overall, this article underscores the importance of continued research into non-invasive diagnostic methods like liquid biopsy to enhance cervical cancer screening and treatment monitoring.
Collapse
Affiliation(s)
| | | | - Vasiliy S. Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia (D.N.S.)
| | | | | | | |
Collapse
|
2
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Ssedyabane F, Obuku EA, Namisango E, Ngonzi J, Castro CM, Lee H, Randall TC, Ocan M, Apunyo R, Annet Kinengyere A, Kajabwangu R, Tahirah Kisawe A, Nambi Najjuma J, Tusubira D, Niyonzima N. The diagnostic accuracy of serum and plasma microRNAs in detection of cervical intraepithelial neoplasia and cervical cancer: A systematic review and meta-analysis. Gynecol Oncol Rep 2024; 54:101424. [PMID: 38939506 PMCID: PMC11208915 DOI: 10.1016/j.gore.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
Studies suggest a need for new diagnostic approaches for cervical cancer including microRNA technology. In this review, we assessed the diagnostic accuracy of microRNAs in detecting cervical cancer and Cervical Intraepithelial Neoplasia (CIN). We performed a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis guideline for protocols (PRISMA-P). We searched for all articles in online databases and grey literature from 01st January 2012 to 16th August 2022. We used the quality assessment of diagnostic accuracy studies tool (QUADAS-2) to assess the risk of bias of included studies and then conducted a Random Effects Meta-analysis. We identified 297 articles and eventually extracted data from 24 studies. Serum/plasma concentration miR-205, miR-21, miR-192, and miR-9 showed highest diagnostic accuracy (AUC of 0.750, 0.689, 0.980, and 0.900, respectively) for detecting CIN from healthy controls. MicroRNA panels (miR-21, miR-125b and miR-370) and (miR-9, miR-10a, miR-20a and miR-196a and miR-16-2) had AUC values of 0.897 and 0.886 respectively for detecting CIN from healthy controls. For detection of cervical cancer from healthy controls, the most promising microRNAs were miR-21, miR-205, miR-192 and miR-9 (AUC values of 0.723, 0.960, 1.00, and 0.99 respectively). We report higher diagnostic accuracy of upregulated microRNAs, especially miR-205, miR-9, miR-192, and miR-21. This highlights their potential as stand-alone screening or diagnostic tests, either with others, in a new algorithm, or together with other biomarkers for purposes of detecting cervical lesions. Future studies could standardize quantification methods, and also study microRNAs in higher prevalence populations like in sub-Saharan Africa and South Asia. Our review protocol was registered in PROSPERO (CRD42022313275).
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Ekwaro A. Obuku
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072 Kampala, Uganda
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, University of London, London, UK
| | - Eve Namisango
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Cesar M. Castro
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas C. Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Ocan
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Robert Apunyo
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Alison Annet Kinengyere
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Sir Albert Cook Medical Library, College of Health Sciences, Makerere University P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Rogers Kajabwangu
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Aziza Tahirah Kisawe
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Nixon Niyonzima
- Research and Training Directorate, Uganda Cancer Institute, P. O. Box 3935 Kampala, Uganda
| |
Collapse
|
4
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Muthamilselvan S, Palaniappan A. CESCProg: a compact prognostic model and nomogram for cervical cancer based on miRNA biomarkers. PeerJ 2023; 11:e15912. [PMID: 37786580 PMCID: PMC10541812 DOI: 10.7717/peerj.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical squamous cell carcinoma, more commonly cervical cancer, is the fourth common cancer among women worldwide with substantial burden of disease, and less-invasive, reliable and effective methods for its prognosis are necessary today. Micro-RNAs are increasingly recognized as viable alternative biomarkers for direct diagnosis and prognosis of disease conditions, including various cancers. In this work, we addressed the problem of systematically developing an miRNA-based nomogram for the reliable prognosis of cervical cancer. Towards this, we preprocessed public-domain miRNA -omics data from cervical cancer patients, and applied a cascade of filters in the following sequence: (i) differential expression criteria with respect to controls; (ii) significance with univariate survival analysis; (iii) passage through dimensionality reduction algorithms; and (iv) stepwise backward selection with multivariate Cox modeling. This workflow yielded a compact prognostic DEmiR signature of three miRNAs, namely hsa-miR-625-5p, hs-miR-95-3p, and hsa-miR-330-3p, which were used to construct a risk-score model for the classification of cervical cancer patients into high-risk and low-risk groups. The risk-score model was subjected to evaluation on an unseen test dataset, yielding a one-year AUROC of 0.84 and five-year AUROC of 0.71. The model was validated on an out-of-domain, external dataset yielding significantly worse prognosis for high-risk patients. The risk-score was combined with significant features of the clinical profile to establish a predictive prognostic nomogram. Both the miRNA-based risk score model and the integrated nomogram are freely available for academic and not-for-profit use at CESCProg, a web-app (https://apalania.shinyapps.io/cescprog).
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Abstract
miRNAs are a type of small endogenous noncoding RNA composed of 20-22 nucleotides that can regulate gene expression by targeting the 3' untranslated region of mRNA. Many investigations have discovered that miRNAs have a role in the development and progression of human cancer. Several aspects of tumor development are affected by miR-425, including growth, apoptosis, invasion, migration, epithelial-mesenchymal transition, and drug resistance. In this article, we discuss the properties and research development of miR-425, focusing on the regulation and function of miR-425 in various cancers. Furthermore, we discuss the clinical implications of miR-425. This review may broaden our horizon for better understanding the role of miR-425 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Sabeena S. Role of noncoding RNAs with emphasis on long noncoding RNAs as cervical cancer biomarkers. J Med Virol 2023; 95:e28525. [PMID: 36702772 DOI: 10.1002/jmv.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer is a significant public health problem in developing countries, as most cases present at an advanced stage. This review aimed to analyze the role of noncoding RNAs as diagnostic and prognostic biomarkers in cervical cancers. Published studies on specific microRNA signatures in body fluids and cervical cancer tissues are highly heterogeneous, and there are no validated assays. The precision of the various immune-associated long noncoding (lncRNA) signatures should be assessed in clinical samples. Even though lncRNAs are tissue and cancer-specific, safe and appropriate methods for delivery to tumor tissues, toxicities and side effects are to be explored. Few studies have evaluated deregulated lncRNA expression levels with clinicopathological factors in a limited number of clinical samples. Prospective studies assessing the diagnostic and prognostic roles of circulating lncRNAs and P-Element-induced wimpy testis interacting PIWI RNAs (Piwil RNAs) in cervical cancer cases are essential. For the clinical application of lnc-RNA-based biomarkers, comprehensive research is needed as the impact of noncoding transcripts on molecular pathways is complex. The standardization and validation of deregulated ncRNAs in noninvasive samples of cervical cancer cases are needed.
Collapse
|
8
|
Li F, Zhou C, Li S, Wang J, Li M, Mu H. Bioinformatic analysis of differentially expressed profiles of lncRNAs and miRNAs with their related ceRNA network in endometrial cancer. Medicine (Baltimore) 2023; 102:e32573. [PMID: 36701720 PMCID: PMC9857477 DOI: 10.1097/md.0000000000032573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence suggests that long non-coding riboneucleic acids (lncRNAs), as competing endogenous RNA (ceRNA), play a key role in the initiation, invasion, and metastasis of cancer. As a new hypothesis, the lncRNA-micro RNA (miRNA)-messenger RNA (mRNA), ceRNA regulatory network has been successfully constructed in a variety of cancers. However, lncRNA, which plays a ceRNA function in endometrial cancer (EC), is still poorly understood. In this study, we downloaded EC expression profiling from The Cancer Genome Atlas database and used the R software "edgeR" package to analyze the differentially expressed genes between EC and normal endometrium samples. Then, differentially expressed (DE) lncRNAs, miRNAs and mRNAs were selected to construct a lncRNA-miRNA-mRNA prognosis-related regulatory network based on interaction information. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed on the genes in the network to predict the potential underlying mechanisms and functions of lncRNAs in EC. Kaplan-Meier method and the log-rank test were used for survival analysis. Based on the "ceRNA hypothesis," we constructed a co-expression network of mRNA and lncRNA genes mediated by miRNA in the process of tumor genesis. Furthermore, we successfully constructed a dysregulated lncRNA-associated ceRNA network containing 96 DElncRNAs, 27 DEmiRNAs, and 74 DEmRNAs. Through Kaplan-Meier curve analysis, we found that 9 lncRNAs, 3 miRNAs, and 12 mRNAs were significantly correlated with the overall survival rate of patients among all lncRNAs, miRNAs, and mRNAs involved in ceRNA (P < .05). Our research provides a new perspective for the interaction among lncRNAs, miRNAs, and mRNA and lays the foundation for further research on the mechanism of lncRNAs in the occurrence of EC.
Collapse
Affiliation(s)
- Fengfan Li
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shuxuan Li
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jingyu Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Ming Li
- Department of Gynecology, Peking University Second Hospital, Beijing, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- * Correspondence: Hong Mu, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300190, China (e-mail: )
| |
Collapse
|
9
|
Systematic review of circulating MICRORNAS as biomarkers of cervical carcinogenesis. BMC Cancer 2022; 22:862. [PMID: 35933332 PMCID: PMC9357301 DOI: 10.1186/s12885-022-09936-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cervical cancer is a preventable disease, but it is a major public health problem despite having a good prognosis when diagnosed early. Although the Pap smear has led to huge drops in rates of cervical cancer and death from the disease, it has some limitations, making new approaches necessary for early diagnosis and biomarkers discovery. MiRNAs have been considered a new class of non-invasive biomarkers and may have great clinical value for screening early-stage cervical intraepithelial neoplasia. Well-designed studies have emerged as a necessary strategy for the identification of miRNAs that could be used safely and reliably for a differential diagnosis. This review aims to provide an up-to-date perspective on the assessment of circulating miRNA expression from precursor lesions to cervical cancer, identifying circulating miRNAs or specific miRNA signatures that can be used as potential biomarkers of different stages of cervical carcinogenesis. Methods A systematic review was performed and searches were conducted in the PubMed, LILACS, and Scopus electronic databases. Results Most studies involved Chinese ethnic women and searched for circulating miRNAs in serum samples. Thirty three microRNAs were evaluated in the eligible studies and 17 (miR-196a, miR-16-2, miR-497, miR-1290, miR-425-5p, hsa-miR- 92a, miR-1266, miR-9, miR-192, miR-205, miR-21, miR-152, miR-15b, miR-34a, miR-218, miR-199a-5p and miR-155-5p) showed up-regulation in women with precursor lesion and cervical cancer and 16 microRNAs showed decreased expression in these same groups of women compared to healthy controls (miR-195, miR-2861, miR-145, miR-214, miR-34a, miR-200a, let-7d-3p, miR-30d-5p, miR-638, miR-203a-3p, miR-1914-5p, miR-521, miR-125b, miR-370, miR-218 and miR-100). Conclusion Therefore, defining promising circulating miRNAs or specific miRNA signatures of biological fluid samples can be useful for the screening, diagnosis, prognosis and clinical monitoring of women undergoing cervical carcinogenesis, but greater standardization of studies seems to be necessary for greater consolidation of information.
Collapse
|
10
|
Diagnostic Value of Prostate-Specific Antigen Combined with Plasma miRNA-149 Expression in Patients with Prostate Cancer Based on Experimental Data and Bioinformatics. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6094409. [PMID: 35935308 PMCID: PMC9337946 DOI: 10.1155/2022/6094409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Purpose The aim of this study is to explore the diagnostic value of prostate-specific antigen (PSA) combined with serum miRNA-149 expression in prostate cancer (PCa) by conducting experiments and bioinformatics analysis. Patients and Methods. 50 PCa patients were enrolled on the experimental group from January 2020 to December 2021. 56 patients with benign prostatic hyperplasia (BPH) were selected as the control group at the same time. Real-time fluorescent quantitative PCR was applied to investigate the miRNA-149 expression. PSA was detected by using a chemiluminescence meter using Abbott i4000. Applying bioinformatics analysis, we explored the expression of hsa-miR-149 in PCa in The Cancer Genome Atlas (TCGA) database. Kaplan–Meier analyses were used to evaluate the prognostic value, and the ROC curve was applied. Results The expression level of miRNA-149 in the PCa group was significantly higher than that in the BPH group (P < 0.05). The PSA level in the PCa group was also significantly higher than that in the BPH group (P < 0.05). TCGA data analysis revealed that PCa tissues had significantly increased hsa-miR-149 expression. The results of survival analysis showed that patients with high expression of hsa-miR-149 had better prognosis. Additionally, the pathological N stage of PCa correlates with the hsa-miR-149 expression level (P = 0.002). According to ROC curve analysis, the region under the curve was 0.653, 95% CI: 0.576–0.730. Conclusion High expression of serum miRNA-149 is associated with PCa patients. Although combined PSA did not improve the diagnostic efficacy, miRNA-149 has high specificity in the diagnosis of PCa. miRNA-149 might be a novel marker for early diagnosis and prognosis assessment for PCa.
Collapse
|
11
|
Fu Y, Liu Y, Nasiroula A, Wang Q, Cao X. Long non‑coding RNA HCG22 inhibits the proliferation, invasion and migration of oral squamous cell carcinoma cells by downregulating miR‑425‑5p expression. Exp Ther Med 2022; 23:246. [PMID: 35222723 PMCID: PMC8815030 DOI: 10.3892/etm.2022.11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yating Fu
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Liu
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Aheli Nasiroula
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Qichao Wang
- Department of Oncology II, Dalian Fifth People's Hospital, Dalian, Liaoning 116021, P.R. China
| | - Xinhua Cao
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
12
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
13
|
Wu Z, Guo J, Zhang Y, Liu J, Ma H, Tang Y. MiR-425-5p accelerated the proliferation, migration, and invasion of ovarian cancer cells via targeting AFF4. J Ovarian Res 2021; 14:138. [PMID: 34686190 PMCID: PMC8539801 DOI: 10.1186/s13048-021-00894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating data have established that microRNAs (miRNAs) play significant regulatory roles in the carcinogenesis and progression of ovarian cancer (OC). MiR-425-5p was reported to function in various tumors. However, the roles and underlying mechanism of miR-425-5p involvement in OC development and progression are unclear. Methods A comprehensive strategy of data mining, computational biology, and real-time polymerase chain reaction was employed to identify the involvement of miR-425-5p in OC progression. The effect of miR-425-5p on the proliferation, migration, and invasion of OC cells was determined using Cell Counting Kit-8, wound-healing, and Matrigel invasion assays, respectively. Luciferase assay was performed to evaluate the interactions between miR-425-5p and MAGI2-AS3 or AFF4. Results miR-425-5p was significantly up-regulated in OC tissues and cells. The luciferase reporter assay revealed that miR-425-5p was negatively regulated by MAGI2-AS3. Silencing miR-425-5p inhibited the proliferation, migration, and invasion of OC cells in vitro. Bioinformatics analysis and luciferase reporter assay revealed that AFF4 was the target gene of miR-425-5p. Moreover, AFF4 expression was significantly decreased in OC and was closely related to the good prognosis of patients with OC. AFF4 overexpression inhibited the proliferation, migration, and invasion of OC cells in vitro. By contrast, silencing AFF4 promoted the proliferation, migration, and invasion of OC cells in vitro. Finally, AFF4 suppression rescued the inhibitory effect of silencing miR-425-5p on the proliferation, migration, and invasion of OC cells. Conclusion To the best our knowledge, this is the first study to demonstrate that miR-425-5p overexpression in OC is negatively regulated by MAGI2-AS3. Moreover, miR-425-5p promotes the proliferation, migration, and invasion of OC cells by targeting AFF4, suggesting that miR-425-5p/AFF4 signaling pathway represented a novel therapeutic target for patients with OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00894-x.
Collapse
Affiliation(s)
- Zhihui Wu
- Department of Clinical Laboratory, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jianlin Guo
- Department of Laboratory, Second People's Hospital, Kashgar Area, Xinjiang, 844000, China
| | - Ying Zhang
- Department of Clinical Laboratory, Tuoli County People's Hospital, Tacheng, Xinjiang, 834500, Uygur Autonomous Region, China
| | - Jianhua Liu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| | - Hongping Ma
- Department of Clinical Laboratory, Children's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China.
| | - Yurong Tang
- Laboratory Department of Shengli Oilfield Central Hospital, Dongying, 257100, China.
| |
Collapse
|
14
|
Liquid Biopsy in Cervical Cancer: Hopes and Pitfalls. Cancers (Basel) 2021; 13:cancers13163968. [PMID: 34439120 PMCID: PMC8394398 DOI: 10.3390/cancers13163968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cervical cancer is the fourth most common cancer in women worldwide, and its incidence is variably distributed between developed and less-resourced countries, in which socio-economic issues and religious beliefs often limit the widespread diffusion and the access to screening campaigns. In the “liquid biopsy” era, the application of non-invasive and repeatable techniques to the identification of diagnostic, prognostic, and predictive biomarkers might facilitate the management of this disease and, hopefully, improve its outcome. The purpose of this review is to explore the progress status of liquid biopsy in cervical cancer patients. Several methods are described, which include the analysis of circulating tumor cells, the search for pathogenic mutations on circulating tumor DNA, as well as the identification of circulating RNAs, focusing on their potential clinical applications and current limitations. Abstract Cervical cancer (CC) is the fourth most common cancer in women worldwide, with about 90% of cancer-related deaths occurring in developing countries. The geographical influence on disease evolution reflects differences in the prevalence of human papilloma virus (HPV) infection, which is the main cause of CC, as well as in the access and quality of services for CC prevention and diagnosis. At present, the most diffused screening and diagnostic tools for CC are Papanicolaou test and the more sensitive HPV-DNA test, even if both methods require gynecological practices whose acceptance relies on the woman’s cultural and religious background. An alternative (or complimentary) tool for CC screening, diagnosis, and follow-up might be represented by liquid biopsy. Here, we summarize the main methodologies developed in this context, including circulating tumor cell detection and isolation, cell tumor DNA sequencing, coding and non-coding RNA detection, and exosomal miRNA identification. Moreover, the pros and cons of each method are discussed, and their potential applications in diagnosis and prognosis of CC, as well as their role in treatment monitoring, are explored. In conclusion, it is evident that despite many advances obtained in this field, further effort is needed to validate and standardize the proposed methodologies before any clinical use.
Collapse
|
15
|
Malczewska A, Frampton AE, Mato Prado M, Ameri S, Dabrowska AF, Zagorac S, Clift AK, Kos-Kudła B, Faiz O, Stebbing J, Castellano L, Frilling A. Circulating MicroRNAs in Small-bowel Neuroendocrine Tumors: A Potential Tool for Diagnosis and Assessment of Effectiveness of Surgical Resection. Ann Surg 2021; 274:e1-e9. [PMID: 31373926 DOI: 10.1097/sla.0000000000003502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To discover serum-based microRNA (miRNA) biomarkers for small-bowel neuroendocrine tumors (SBNET) to help guide clinical decisions. BACKGROUND MiRNAs are small noncoding RNA molecules implicated in the initiation and progression of many cancers. MiRNAs are remarkably stable in bodily fluids, and can potentially be translated into clinically useful biomarkers. Novel biomarkers are needed in SBNET to determine disease aggressiveness, select patients for treatment, detect early recurrence, and monitor response. METHODS This study was performed in 3 stages (discovery, validation, and a prospective, longitudinal assessment). Discovery comprised of global profiling of 376 miRNA in sera from SBNET patients (n = 11) versus healthy controls (HCs; n = 3). Up-regulated miRNAs were subsequently validated in additional SBNET (n = 33) and HC sera (n = 14); and then longitudinally after SBNET resection (n = 12), with serial serum sampling (preoperatively day 0; postoperatively at 1 week, 1 month, and 12 months). RESULTS Four serum miRNAs (miR-125b-5p, -362-5p, -425-5p and -500a-5p) were significantly up-regulated in SBNET (P < 0.05; fold-change >2) based on multiple normalization strategies, and were validated by RT-qPCR. This combination was able to differentiate SBNET from HC with an area under the curve of 0.951. Longitudinal assessment revealed that miR-125b-5p returned towards HC levels at 1 month postoperatively in patients without disease, whereas remaining up-regulated in those with residual disease (RSD). This was also true at 12 months postoperatively. In addition, miR-362-5p appeared up-regulated at 12 months in RSD and recurrent disease (RCD). CONCLUSIONS Our study represents the largest global profiling of serum miRNAs in SBNET patients, and the first to evaluate ongoing serum miRNA expression changes after surgical resection. Serum miR-125b-5p and miR-362-5p have potential to be used to detect RSD/RCD.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Shima Ameri
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Aleksandra F Dabrowska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Sladjana Zagorac
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Ashley K Clift
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Omar Faiz
- St. Mark's Hospital, Harrow, Middlesex, UK
| | - Justin Stebbing
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Leandro Castellano
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- University of Sussex, School of Life Sciences, John Maynard Smith Building, Falmer, Brighton, UK
| | - Andrea Frilling
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| |
Collapse
|
16
|
Gu X, Ma S, Liang B, Ju S. Serum hsa_tsr016141 as a Kind of tRNA-Derived Fragments Is a Novel Biomarker in Gastric Cancer. Front Oncol 2021; 11:679366. [PMID: 34055648 PMCID: PMC8155501 DOI: 10.3389/fonc.2021.679366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors globally and the third leading cause of cancer-related death. Currently, the sensitivity and specificity of diagnostic markers for GC are low, so it is urgent to find new biomarkers with higher sensitivity and specificity. tRNA-derived small RNAs are a kind of small non-coding RNAs derived from tRNAs. It is abundant in cancer cells and body fluids. Our goal is to find the differentially expressed tRNA-derived small RNAs in GC to explore their potential as a GC biomarker. Methods Quantitative real-time PCR was used to detect the expression level of hsa_tsr016141. The molecular characteristics of hsa_tsr016141 were verified by agarose gel electrophoresis, Sanger sequencing, Actinomycin D Assay, and Nuclear and Cytoplasmic RNA Separation Assay. The diagnostic efficiency of hsa_tsr016141 was analyzed through receiver operating characteristic. Results The expression level of hsa_tsr016141 in GC tissues and serum was significantly increased. The serum expression level showed a gradient change between GC patients, gastritis patients, and healthy donors and was positively correlated with the degree of lymph node metastasis and tumor grade. ROC analysis showed that the serum expression level of hsa_tsr016141 could significantly distinguish GC patients from healthy donors or gastritis patients. Besides, the expression level of hsa_tsr016141 in GC patients decreased significantly after the operation (P<0.0001). Conclusions Serum hsa_tsr016141 has good stability and specificity and can be used for dynamic monitoring of GC patients, suggesting that serum hsa_tsr016141 can be a novel biomarker for GC diagnosis and postoperative monitoring.
Collapse
Affiliation(s)
- Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Bo Liang
- Department of Medical Ultrasonics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
17
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Cerebral ischemia-reperfusion (I/R) is a kind of neurovascular disease that causes serious cerebral damage. MicroRNAs (miRNAs) have been widely reported to participate in multiple diseases, including cerebral I/R injury. However, the exact mechanisms of miR-7-5p in cerebral I/R injury was not fully elucidated. In this study, we explored the biological role and regulatory mechanism of miR-7-5p in cerebral I/R injury. We established an in vivo model of cerebral I/R by middle cerebral artery occlusion and an in vitro cellular model of cerebral I/R injury through treating neurons (SH-SY5Y cells) with oxygen-glucose deprivation (OGD). In addition, miR-7-5p expression was confirmed to be upregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Moreover, miR-7-5p inhibition overtly suppressed cerebral injury, cerebral inflammation, and SH-SY5Y cells apoptosis. Sirtuin 1 (sirt1) is previously reported to alleviate I/R, and in this study, it was identified to be a target of miR-7-5p based on luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction revealed sirt1 expression was downregulated in the cerebral I/R rat model and OGD/R-treated SH-SY5Y cells. Besides, miR-7-5p negatively regulated sirt1. Finally, rescue assays delineated sirt1 overexpression recovered the miR-7-5p upregulation-induced promotion on cerebral I/R injury. In conclusion, miR-7-5p enhanced cerebral I/R injury by degrading sirt1, providing a new paradigm to investigate cerebral I/R injury.
Collapse
|
19
|
Sabeena S, Ravishankar N. Role of microRNAs in Predicting the Prognosis of Cervical Cancer Cases: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2021; 22:999-1006. [PMID: 33906290 PMCID: PMC8325113 DOI: 10.31557/apjcp.2021.22.4.999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2020] [Indexed: 12/02/2022] Open
Abstract
Aim: There is growing evidence for the possible use of microRNAs (miRNAs) in cancers as diagnostic as well as prognostic biomarkers in the present era of Personalized Medicine. The objective of the present systematic review and meta-analysis was to assess the prognostic role of microRNAs in uterine cervical cancers. Methods: A systematic review and meta-analysis was carried out searching electronic databases for published articles between January 2009 and August 2020 based on standard systematic review guidelines. Meta-analysis was performed by pooling the hazard ratio (HR) with 95% confidence interval (CI) to assess the prognostic value of deregulated miRNAs by the random-effects model. Results: In the present meta-analysis, the aberrant expression of 14 microRNAs in 1,526 uterine cervical cancer cases before definitive therapy from 14 case-control studies were assessed. The pooled HR of two miRNAs, miRNA-155 and miRNA-224 which were upregulated in cervical cancer tissues was 1.76 (95% CI 1.27-2.45) revealing significant association with overall poor survival. Meanwhile, the pooled HR was 1.53 (95% CI 0.94-2.94) when all the deregulated miRNAs in cervical cancer tissues were evaluated. The pooled HR of downregulated miRNAs was 1.46 (95% CI 0.81, 2.64). Meanwhile, the pooled HR of three upregulated miRNAs-425-5p, 196a, 205 in the serum sample was 1.37 (95% CI 0.45 -4.20). Conclusion: The downregulation of aberrant miRNAs was not associated with poor overall survival rates.
Collapse
Affiliation(s)
| | - Nagaraja Ravishankar
- Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Zou X, Xia T, Li M, Wang T, Liu P, Zhou X, Huang Z, Zhu W. MicroRNA profiling in serum: Potential signatures for breast cancer diagnosis. Cancer Biomark 2021; 30:41-53. [PMID: 32894240 DOI: 10.3233/cbm-201547] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circulating microRNAs (miRNAs) prove to be potential non-invasive indicators of cancers. The purpose of this study is to profile serum miRNA expression in breast cancer (BC) patients to find potential biomarkers for BC diagnosis. METHODS The miRNA expression patterns of serum samples from 216 BC patients and 214 normal control subjects were compared. A four-phase validation was conducted for biomarker identification. In the screening phase, the Exiqon miRNA qPCR panel was employed to select candidates, which were further analyzed by quantitative reverse transcriptase PCR in the following training, testing, and external validation phases. RESULTS A 12-miRNA (let-7b-5p, miR-106a-5p, miR-19a-3p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-425-5p, miR-451a, miR-92a-3p, miR-93-5p, and miR-16-5p) panel in serum was constructed. The diagnostic performance of the panel was assessed using ROC curve analyses. The area under the curves (AUCs) were 0.952, 0.956, 0.941 and 0.950 for the four separate phases, respectively. Additionally, the expression features of the 12 miRNAs were further explored in 32 pairs of BC tumor and para-tumor tissues, and 32 pairs of serum exosomes samples from patients and healthy subjects. miR-16-5p, miR-106a-5p, miR-25-3p, miR-425-5p, and miR-93-5p were highly overexpressed and let-7b-5p was conversely downregulated in tumor tissues. Excluding miR-20a-5p and miR-223-3p, the 10 other miRNAs were all significantly upregulated in BC serum-derived exosomes. CONCLUSION A signature consisting of 12 serum miRNAs was identified and showed potential for use in non-invasive diagnosis of BC.
Collapse
Affiliation(s)
- Xuan Zou
- First Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,First Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiansong Xia
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,First Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minghui Li
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,First Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zebo Huang
- Department of Oncology, Affiliated Hospital of Jiangnan University and the Fourth People's Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology and Radiotherapy, Nanjing Pukou Central Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Tian Y, Luo Y, Wang J. MicroRNA-425 induces apoptosis and suppresses migration and invasion of human cervical cancer cells by targeting RAB2B. Int J Immunopathol Pharmacol 2021; 35:20587384211016131. [PMID: 34024178 PMCID: PMC8150419 DOI: 10.1177/20587384211016131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2020] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of microRNA-425 (miR-425) has been reported in several human cancers. However, the role of miR-425 in human cervical cancer via modulation of RAB2B expression is still unclear. This study was therefore designed to examine the expression and decipher the role of miR-425 in cervical cancer. The qRT-PCR was used for expression analysis. MTT and EdU assays were used for the determination of cell viability and proliferation, respectively. Annexin V/PI staining was used to detect apoptosis. Wound healing and transwell assays were used to monitor cell migration and invasion. Western blotting was used for protein expression analysis. The in vivo study was performed in xenografted mice model. The results of the present study revealed miR-425 to be significantly (P = 0.032) down-regulated in cervical cancer tissues and cell lines. Additionally, low expression of miR-425 was associated with significantly (P = 0.035) lower survival rate of the cervical cancer patients. Overexpression of miR-425 resulted in significant (P = 0.024) decline of cervical cancer cell proliferation via induction of apoptosis. The induction of apoptosis was associated with up-regulation of Bax and down-regulation of Bcl-2. Besides, the migration and invasion of cancer cells significantly (P < 0.01) decreased under miR-425 overexpression. Additionally, miR-425 could inhibit the growth of xenografted tumors in vivo. In silico analysis and dual luciferase assay revealed RAB2B as the direct target of miR-425 in cervical cancer. RAB2B was found to be significantly (P < 0.05) up-regulated in cervical cancer tissues and cell lines and miR-425 overexpression suppressed the expression of RAB2B. Additionally, silencing of RAB2B could suppress the growth of cervical cancer cells but its overexpression could rescue the tumor-suppressive effects of miR-425. Taken together, the results revealed the tumor-suppressive roe of miR-425 and point towards its therapeutic potential in the management of cervical cancer.
Collapse
Affiliation(s)
- Yue Tian
- Delivery Room, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Ying Luo
- Delivery Room, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jing Wang
- Department of Obstetrics, Linyi Central Hospital, Shangdong Province, China
| |
Collapse
|
22
|
Identification and validation of a miRNA-based prognostic signature for cervical cancer through an integrated bioinformatics approach. Sci Rep 2020; 10:22270. [PMID: 33335254 PMCID: PMC7747620 DOI: 10.1038/s41598-020-79337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.
Collapse
|
23
|
He Y, Hu S, Zhong J, Cheng A, Shan N. Identification of significant genes signatures and prognostic biomarkers in cervical squamous carcinoma via bioinformatic data. PeerJ 2020; 8:e10386. [PMID: 33344075 PMCID: PMC7718800 DOI: 10.7717/peerj.10386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background Cervical squamous cancer (CESC) is an intractable gynecological malignancy because of its high mortality rate and difficulty in early diagnosis. Several biomarkers have been found to predict the prognose of CESC using bioinformatics methods, but they still lack clinical effectiveness. Most of the existing bioinformatic studies only focus on the changes of oncogenes but neglect the differences on the protein level and molecular biology validation are rarely conducted. Methods Gene set data from the NCBI-GEO database were used in this study to compare the differences of gene and protein levels between normal and cancer tissues through significant pathway selection and core gene signature analysis to screen potential clinical biomarkers of CESC. Subsequently, the molecular and protein levels of clinical samples were verified by quantitative transcription PCR, western blot and immunohistochemistry. Results Three differentially expressed genes (RFC4, MCM2, TOP2A) were found to have a significant survival (P < 0.05) and highly expressed in CESC tissues. Molecular biological verification using quantitative reverse transcribed PCR, western blotting and immunohistochemistry assays exhibited significant differences in the expression of RFC4 between CESC and para-cancerous tissues (P < 0.05). Conclusion This study identified three potential biomarkers (RFC4, MCM2, TOP2A) of CESC which may be useful to clarify the underlying mechanisms of CESC and predict the prognosis of CESC patients.
Collapse
Affiliation(s)
- Yunan He
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shunjie Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaojiao Zhong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anran Cheng
- Department of Gynecology Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Nianchun Shan
- Departmen of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
miR-425-5p Acts as a Molecular Marker and Promoted Proliferation, Migration by Targeting RNF11 in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6530973. [PMID: 33123581 PMCID: PMC7586158 DOI: 10.1155/2020/6530973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and dangerous malignant tumors in China, which causes a large number of deaths every year. MicroRNAs (miRNAs) dysfunction contributes to the malignant progression of tumors. The aim of our study was to investigate the relationship between the biological role of miR-425-5p and malignant progression of HCC. Our results showed that miR-425-5p expression was significantly upregulated in HCC tissues and closely related to the poor prognosis of HCC patients. The knockdown of miR-425-5p inhibited cell proliferation and migration. Further, we identified RNF11 as the downstream target gene of miR-425-5p. In addition, the rescue experiments showed that the upregulation of RNF11 could rescue the inhibitory effect of miR-425-5p on HCC. In general, miR-425-5p as an oncogene promotes the malignant development of HCC via RNF11 and serves as a molecular target for predicting the prognosis of HCC patients.
Collapse
|
25
|
de la Rocha AMA, González-Huarriz M, Guruceaga E, Mihelson N, Tejada-Solís S, Díez-Valle R, Martínez-Vélez N, Fueyo J, Gomez-Manzano C, Alonso MM, Laterra J, López-Bertoni H. miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. ACTA ACUST UNITED AC 2020; 4:221-238. [PMID: 32905473 PMCID: PMC7470213 DOI: 10.26502/acbr.50170100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults and prognosis is poor despite maximum therapeutic efforts. GBM is composed of heterogeneous cell populations, among which the glioma stem-like cells (GSCs) play an important role in tumor cell self-renewal and the ability to initiate and drive tumor growth and recurrence. The transcription factor SOX2 is enriched in GSCs where it controls the stem cell phenotype, invasion and maintenance of tumorigenicity. Therefore, understanding the molecular mechanisms governed by SOX2 in GSCs is crucial to developing targeted therapies against this resistant cell population. In this study, we identified and validated a miRNA profile regulated by SOX2 in GSCs. Among these miRNAs, miR-425-5p emerged as a significant robust candidate for further study. The expression of miR-425-5p was significantly enriched in clinical GBM specimens compared with a human brain reference sample and showed a positive correlation with SOX2 expression. Using a combination of in silico analyses and molecular approaches, we show that SOX2 binds to the promoter of miR-425-5p. Loss of function studies show that repressing miR-425-5p expression in multiple GSCs inhibited neurosphere renewal and induced cell death. More importantly, miR-425-5p inhibition extended survival in an orthotopic GBM mouse model. Finally, combining several bioinformatics platforms with biological endpoints in multiple GSC lines, we identified FOXJ3 and RAB31 as high confidence miR-425-5p target genes. Our findings show that miR-425-5p is a GBM stem cell survival factor and that miR-425-5p inhibition function is a potential strategy for treating GBM.
Collapse
Affiliation(s)
- Arlet María Acanda de la Rocha
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
- Department of Environmental Health Sciences. Robert Stempel College of Public Health & Social Work. Florida International University, USA
| | - Marisol González-Huarriz
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- The Health Research Institute of Navarra (IDISNA), Spain
- Bioinformatics Unit, Center for Applied Medical Research, Pamplona, Spain
| | - Nicole Mihelson
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Sonia Tejada-Solís
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Neurosurgery, University Hospital of Navarra, Pamplona, Spain
| | - Ricardo Díez-Valle
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Neurosurgery, University Hospital of Navarra, Pamplona, Spain
| | - Naiara Martínez-Vélez
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M. Alonso
- The Health Research Institute of Navarra (IDISNA), Spain
- Program in Solid Tumors and Biomarkers, Foundation for the Applied Medical Research, Spain
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain
| | - John Laterra
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hernando López-Bertoni
- Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
- Corresponding author: Hernando López-Bertoni, Hugo W Moser Research Institute at Kennedy Krieger, Baltimore, USA,
| |
Collapse
|
26
|
Guo L, Yang G, Kang Y, Li S, Duan R, Shen L, Jiang W, Qian B, Yin Z, Liang T. Construction and Analysis of a ceRNA Network Reveals Potential Prognostic Markers in Colorectal Cancer. Front Genet 2020; 11:418. [PMID: 32457800 PMCID: PMC7228005 DOI: 10.3389/fgene.2020.00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide and is derived from an accumulation of genetic and epigenetic changes. This study explored potential prognostic markers in CRC via the construction and in-depth analysis of a competing endogenous RNA (ceRNA) network, which was generated through a three-step process. First, we screened candidate hub genes in CRC as the primary gene markers to survey their related regulatory non-coding RNAs, miRNAs. Second, the interacting miRNAs were used to search for associated lncRNAs. Thus, candidate RNAs were first constructed into ceRNA networks based on close associations with miRNAs. Further analysis at the isomiR level was also performed for each miRNA locus to understand the detailed expression patterns of the multiple variants. Finally, RNAs were performed an in-depth analysis of expression correlations, which contributed to further screening and validation of potential RNAs with close correlations to each other. Using this approach, nine hub genes, 13 related miRNAs, and 29 candidate lncRNAs were collected and used to construct the ceRNA network. Further in-depth analysis identified the MFAP5-miR-200b-3p-AC005154.6 axis as a potential prognostic marker in CRC. MFAP5 and miR-200b-3p have previously been reported to play important roles in tumorigenesis. These RNAs showed potential prognostic values, and the combination of them may have more sensitivity than using them alone. In conclusion, MFAP5, miR-200b-3p, and AC005154.6 may have potential prognostic value in CRC and may provide a prognostic reference for this patient population.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Guowei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yihao Kang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Sunjing Li
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Rui Duan
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Lulu Shen
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Wenwen Jiang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bowen Qian
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Tingming Liang
- School of Life Science, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China.,Changzhou Institute of Innovation & Development, Nanjing Normal University, Nanjing, China
| |
Collapse
|
27
|
Zhang L, Zhang J, Zhou H, Dai T, Guo F, Xu S, Chen Y. MicroRNA‐425‐5p promotes breast cancer cell growth by inducing PI3K/AKT signaling. Kaohsiung J Med Sci 2020; 36:250-256. [PMID: 31688991 DOI: 10.1002/kjm2.12148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Li‐Feng Zhang
- Department of General SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Ji‐Gang Zhang
- Department of Emergency SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hao Zhou
- Department of General SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Tian‐Tian Dai
- Department of General SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Feng‐Bao Guo
- Department of Emergency SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Shao‐Yong Xu
- Department of General SurgeryPeople's Hospital of Shiqian County Tongren Guizhou China
| | - Yan Chen
- Department of General SurgeryThe First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
28
|
Lv Y, Sun D, Han Q, Yan H, Dai G. microRNA-425 promoted the proliferation and migration of colorectal cancer cells by targeting KLF3 through the PI3K/AKT pathway. Minerva Med 2020; 112:537-538. [PMID: 32030969 DOI: 10.23736/s0026-4806.19.06378-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Lv
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital and Chinese PLA Medical School, Beijing, China
| | - Decong Sun
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital and Chinese PLA Medical School, Beijing, China
| | - Quanli Han
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital and Chinese PLA Medical School, Beijing, China
| | - Huan Yan
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital and Chinese PLA Medical School, Beijing, China
| | - Guanghai Dai
- Department of Medical Oncology, Chinese People's Liberation Army (PLA) General Hospital and Chinese PLA Medical School, Beijing, China -
| |
Collapse
|
29
|
Yuan J, Wu Y, Li L, Liu C. MicroRNA-425-5p promotes tau phosphorylation and cell apoptosis in Alzheimer's disease by targeting heat shock protein B8. J Neural Transm (Vienna) 2020; 127:339-346. [PMID: 31919655 DOI: 10.1007/s00702-019-02134-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent and age-related dementia accompanied by neurodegenerative disorder, memory loss, and abnormal behaviors. Recent studies have shown an increasing interest in studying the role of microRNAs (miRNAs) and their potential values in the early diagnostics of AD. MiR-425-5p has extensively expression within various tissues and organs, acting as an important regulator in many pathological procedures. The functions of miR-425-5p involved in AD were investigated in the present study. The results showed that miR-425-5p was upregulated in patients with AD and HEK293/tau cells. Transfections with miR-425-5p overexpression vector significantly enhanced cell apoptosis, activated glycogen synthase kinase-3β (GSK-3β), and increased tau phosphorylation in HEK293/tau cells. Heat shock protein B8 (HSPB8) was directly targeted by miR-425-5p. Upregulation of miR-425-5p induced cell apoptosis and promoted tau phosphorylation partially via targeting HSPB8 in AD. Therefore, miR-425-5p might act as a new therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Jiao Yuan
- Qingdao Mental Health Center, No.299 Nanjing Road, Shibei District, 266000, Qingdao, Shandong Province, People's Republic of China
| | - Yanpeng Wu
- Qingdao Mental Health Center, No.299 Nanjing Road, Shibei District, 266000, Qingdao, Shandong Province, People's Republic of China
| | - Lu Li
- Qingdao Mental Health Center, No.299 Nanjing Road, Shibei District, 266000, Qingdao, Shandong Province, People's Republic of China
| | - Chuanqin Liu
- Qingdao Mental Health Center, No.299 Nanjing Road, Shibei District, 266000, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
30
|
From squamous intraepithelial lesions to cervical cancer: Circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1872:188306. [DOI: 10.1016/j.bbcan.2019.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
|
31
|
Jiang L, Ge W, Geng J. miR-425 regulates cell proliferation, migration and apoptosis by targeting AMPH-1 in non-small-cell lung cancer. Pathol Res Pract 2019; 215:152705. [PMID: 31685299 DOI: 10.1016/j.prp.2019.152705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/21/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been proved to act as vital roles on non-small-cell lung cancer (NSCLC), and miR-425 has been proven to serve an important function in several tumors. However, the functional role of miR-425 on NSCLC is still unclear. METHODS The mRNA and protein expression of miR-425 and AMPH-1 were determined by qRT-PCR and western blot analysis, respectively. NSCLC cells (SK-MES-1 and A549) proliferation and migration were measured by CCK-8 and transwell assay, respectively. Cell apoptosis was assessed by flow cytometry and western blotting, In addition, luciferase reporter assay was carried out to confirm the direct targeting of AMPH-1 by miR-425. Xenograft experiments were performed to observe the tumorigenesis of miR-425 in vivo. RESULTS The results showed that miR-425 was overexpressed and AMPH-1 expression was downregulated in SK-MES-1 and A549 cells. Silencing miR-425 inhibited proliferation, migration and promoted apoptosis of NSCLC cells. Moreover, we proved that miR-425 could target AMPH-1. The expression of AMPH-1was upregulated in A549 with miR-425 inhibitor. Moreover, miR-425 knockdown were less tumorigenic than the control in vivo. CONCLUSIONS Taken together, miR-425 could promote the proliferation, invasion and suppress apoptosis by targeting AMPH-1 in NSCLC cells. miR-425/AMPH-1 axis may represent a potential therapeutic strategy or novel prognostic biomarkers to NSCLC.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| | - Wenyu Ge
- Department of Stomatology, Hospital of Heilongjiang Province, Harbin 150036, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150040, China.
| |
Collapse
|
32
|
Causin RL, Pessôa-Pereira D, Souza KCB, Evangelista AF, Reis RMV, Fregnani JHTG, Marques MMC. Identification and performance evaluation of housekeeping genes for microRNA expression normalization by reverse transcription-quantitative PCR using liquid-based cervical cytology samples. Oncol Lett 2019; 18:4753-4761. [PMID: 31611985 PMCID: PMC6781752 DOI: 10.3892/ol.2019.10824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Screening for cervical cancer by cytology has been effective in reducing the worldwide incidence and mortality rates of this disease. However, a number of studies have demonstrated that the sensitivity of conventional cervical cytology may be too low for detection of cervical intraepithelial neoplasias (CIN). Therefore, it is important to incorporate more sensitive molecular diagnostic tests that could substantially improve the detection rates and accuracy for identifying CIN lesions. MicroRNAs (miRNAs) are a class of small non-coding RNAs with the potential to provide robust non-invasive cancer biomarkers for detecting CIN lesions in liquid-based cervical cytology (LBC) samples. At present, there is no consensus on which are the best housekeeping genes for miRNA normalization in LBC. The present study aimed to identify housekeeping genes with consistent and reproducible performance for normalization of reverse transcription-quantitative PCR (RT-qPCR) expression analysis of miRNA using LBC samples. The present study firstly selected six potential candidate housekeeping genes based on a systematic literature evaluation. Subsequently, the expression levels of microRNAs U6, RNU-44, RNU-47, RNU-48, RNU-49 and hsa-miR-16 were measured in 40 LBC samples using RT-qPCR. The stability of each potential housekeeping gene was assessed using the NormFinder algorithm. The results revealed that U6 and RNU-49 were the most stable genes among all candidates requiring fewer amplification cycles and smaller variation across the sample set. However, RNU-44, RNU-47, RNU-48 and hsa-miR-16 stability exceeded the recommended housekeeping value suitable for normalization. The findings revealed that U6 may be a reliable housekeeping gene for normalization of miRNA RT-qPCR expression analysis using LBC samples.
Collapse
Affiliation(s)
- Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | - Danielle Pessôa-Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | | | - Rui Manuel Vieira Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| |
Collapse
|
33
|
Liu S, Wang Q, Liu Y, Xia ZY. miR-425-5p suppresses tumorigenesis and DDP resistance in human-prostate cancer by targeting GSK3β and inactivating the Wnt/β-catenin signaling pathway. J Biosci 2019. [DOI: 10.1007/s12038-019-9920-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
|
34
|
Zhang H, Xue B, Wang S, Li X, Fan T. Long non‑coding RNA TP73 antisense RNA 1 facilitates the proliferation and migration of cervical cancer cells via regulating microRNA‑607/cyclin D2. Mol Med Rep 2019; 20:3371-3378. [PMID: 31432138 DOI: 10.3892/mmr.2019.10572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2019] [Accepted: 07/11/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the effect of the long non‑coding RNA TP73 antisense RNA 1 (TP73‑AS1) on cervical cancer progression. Cervical cancer and adjacent tissues were collected from 56 patients and assessed. In addition, HeLa and CaSki cells were transfected with various plasmids, inhibitors and corresponding controls, and then Cell Counting Kit‑8 and Transwell assays were used to detect the cell proliferation, migration and invasion abilities. Luciferase reporter gene assay was also performed in HeLa cells. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to investigate TP73‑AS1, microRNA‑607 (miR‑607) and cyclin D2 (CCND2) gene expression, while CCND2 protein expression was determined by western blot analysis. The results revealed that the TP73‑AS1 level was upregulated in cervical cancer tissues (P<0.05) and predicted a poor 5‑year overall survival (P<0.05). HeLa and CaSki cells transfected with siTP73‑AS1 exhibited reduced proliferation, migration and invasion abilities when compared with those in the siNC group (P<0.05). Furthermore, miR‑607 was found to be negatively regulated by TP73‑AS1, while CCND2 was negatively regulated by miR‑607. HeLa and CaSki cells transfected with siTP73‑AS1 exhibited lower CCND2 mRNA and protein expression levels compared with the siNC and siTP73‑AS1 + miR‑inhibitor groups (P<0.05). Compared with the siNC and siTP73‑AS1 + CCND2 overexpression groups, siTP73‑AS1‑transfected HeLa and CaSki cells had decreased proliferation, migration and invasion abilities (P<0.05). In conclusion, the findings suggested that upregulation of TP73‑AS1 promoted cervical cancer progression by promoting CCND2 via the suppression of miR‑607 expression.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bing Xue
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Shuyuan Wang
- Department of Gynecology, Tai'an Tumour Prevention and Treatment Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiaoxia Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Tingting Fan
- Department of Gynecology, People's Hospital of Chongqing Hechuan, Chongqing 401519, P.R. China
| |
Collapse
|
35
|
The diagnostic performance of PET/CT scans for the detection of para-aortic metastatic lymph nodes in patients with cervical cancer: A meta-analysis. PLoS One 2019; 14:e0220080. [PMID: 31318962 PMCID: PMC6638976 DOI: 10.1371/journal.pone.0220080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Accepted: 07/07/2019] [Indexed: 12/18/2022] Open
Abstract
Objective We performed a meta-analysis to evaluate the diagnostic value of positron emission tomography/computed tomography (PET/CT) in the detection of para-aortic lymph node metastasis in cervical cancer. Methods We searched the PubMed, Embase, Web of Science, Cochrane Library, Chinese Biological Medicine (CBM), Chinese National Knowledge Infrastructure (CNKI), Wanfang and VIP databases in all languages from their inception to September 2018. Stat15.0 software was used to obtain pooled estimates of sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) as well as a summary receiver operating characteristic (SROC) curves. Deek‘s funnel plot was used to assess publication bias. QUADAS-2 was used to evaluate the quality of the studies. The protocol for this meta-analysis is registered in PROSPERO (CRD42019115330). Results We obtained 14 studies, and the pooled estimates for sensitivity and specificity of PET/CT were 0.71 (95% confidence interval (CI) = 0.54–0.83) and 0.97 (95% CI = 0.93–0.98), respectively. Pooled PLR and NLR were 21.53 and 0.30, respectively. The diagnostic odds ratio (DOR) was70.59, and the area under the curve (AUC) was 0.95. Conclusion PET/CT is an effective and important imaging method for the diagnosis of para-aortic lymph node metastasis in early cervical cancer.
Collapse
|
36
|
Umeda S, Kanda M, Kodera Y. Recent advances in molecular biomarkers for patients with hepatocellular carcinoma. Expert Rev Mol Diagn 2019; 19:725-738. [PMID: 31248309 DOI: 10.1080/14737159.2019.1638254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide and recurrence rate after curative resection remains high. To improve HCC prognosis, novel sensitive biomarkers and targeted molecular therapies are needed. Accumulation of multiple genetic aberrations caused by pathologically derived liver damage results in HCC carcinogenesis. Elucidating the genes associated with tumorigenesis and progression of HCC may lead to the development of early detection and prognosis markers and to the identification of therapeutic targets. Areas covered: We review recently reported (January 2017-March 2019) HCC-associated molecules, including protein-coding genes, microRNAs, long non-coding RNAs, and methylated gene promoters. Expert opinion: The molecules reviewed have the potential to be clinical biomarkers and therapeutic targets for HCC. The accumulation and understanding of genetic and epigenetic data are essential to improve the management of HCC patients.
Collapse
Affiliation(s)
- Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
37
|
Wu H, Shang J, Zhan W, Liu J, Ning H, Chen N. miR‑425‑5p promotes cell proliferation, migration and invasion by directly targeting FOXD3 in hepatocellular carcinoma cells. Mol Med Rep 2019; 20:1883-1892. [PMID: 31257522 DOI: 10.3892/mmr.2019.10427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2018] [Accepted: 04/25/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRs) are important regulators of the tumorigenesis and metastasis of various cancers. In the present study, the roles and underlying mechanisms of miR‑425‑5p in the development of hepatocellular carcinoma (HCC) were investigated. RT‑qPCR analysis revealed that miR‑425‑5p was upregulated in HCC tissues and cell lines. A functional study in vitro using MTT assays, colony formation and Transwell assays demonstrated that overexpression of miR‑425‑5p promoted the proliferation, migration, and invasion of HCC cells, prevented cell apoptosis and accelerates the epithelial‑mesenchymal transition process, whereas miR‑425‑5p knockdown induced opposing effects. A further mechanistic study revealed that forkhead box D3 (FOXD3) was a direct target of miR‑425‑5p, and gain‑ and loss‑of‑function of FOXD3 studies demonstrated that FOXD3 suppressed HCC cell proliferation, migration, and invasion. Furthermore, rescue experiments revealed that overexpression of FOXD3 counteracted the positive effects of miR‑425‑5p on HCC malignant behaviors. Collectively, the present results demonstrated that miR‑425‑5p promoted HCC cell proliferation, migration, and invasion by suppressing FOXD3 expression, potentially providing a novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Hewen Wu
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jia Shang
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Weili Zhan
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Junping Liu
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Huibin Ning
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Ning Chen
- Department of Infectious Disease, Henan Key Laboratory for Liver Disease, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
38
|
Zhang J, Shi J, Zhang G, Zhang X, Yang X, Yang S, Wang J, Hu K, Ke X, Fu L. MicroRNA-425 upregulation indicates better prognosis in younger acute myeloid leukemia patients undergoing chemotherapy. Oncol Lett 2019; 17:5793-5802. [PMID: 31186806 DOI: 10.3892/ol.2019.10217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate whether the expression levels of microRNA-425 (miR-425) were associated with the prognosis of acute myeloid leukemia (AML) in patients treated with chemotherapy or allogeneic hematopoietic stem cell transplantation (allo-HSCT). A total of 162 AML patients were enrolled and divided into chemotherapy and allo-HSCT groups. Next, the overall survival (OS) and event-free survival (EFS) were compared between patients with high and low miR-425 expression in each of the treatment groups. In the chemotherapy group, high miR-425 expression was favorable for EFS (P=0.001) and OS (P=0.001) in younger patients (<60 years), whereas it had no effect on EFS and OS in older patients (≥60 years). In the allo-HSCT group, there was no association between miR-425 expression levels and clinical outcomes. Further analyses suggested that in the low miR-425 expression group, EFS and OS were longer in patients treated with allo-HSCT as compared with those treated with chemotherapy (both P<0.001), whereas no significant differences were observed in the high miR-425 expression group. In conclusion, the current data indicated that miR-425 is an independent favorable prognostic factor for younger AML patients undergoing chemotherapy, and its use may facilitate clinical decision-making in selecting treatment for AML patients. Patients with low miR-425 expression may benefit from allo-HSCT, whereas allo-HSCT did not appear to be beneficial in patients with high miR-425 expression.
Collapse
Affiliation(s)
- Jilei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
39
|
Yuan Z, Xiu C, Liu D, Zhou G, Yang H, Pei R, Ding C, Cui X, Sun J, Song K. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis. J Cell Physiol 2019; 234:23111-23122. [PMID: 31131448 DOI: 10.1002/jcp.28874] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Functional, noncoding RNA of about 200 nucleotides in length are known as long noncoding RNA (lncRNA). Advances in -omics have revolutionized the information with respect to the coding and noncoding regions of the genome. Several studies have illustrated the role of lncRNA in cell growth and cancer. Profiling and bioinformatic studies of laryngeal cancer has identified LINC-PINT as one of the lncRNA. However, the functional aspects of the deregulation have not been studied in laryngeal tumors. In this study, LINC-PINT expression in normal and tumor tissues were studied. Using a bioinformatic approach, microRNA (miRNA) targets of LINC-PINT and gene targets of the miRNA were determined. The impact of LINC-PINT on cell proliferation and chemoresistance was determined. Further through a set of silencing and re-expression studies phenotype rescue was studied. LINC-PINT expression was downregulated in laryngeal tumors. LINC-PINT targeted miR-425-5p by three sites. miR-425-5p also targeted PTCH1 a protein of the Hedgehog pathway. Downregulation of LINC-PINT was associated with increased cancer stemness and chemoresistance to cisplatin. Our results indicate a probable role of LINC-PINT in the pathology of laryngeal tumors. LINC-PINT re-expression in laryngeal tumors may be explored for reversion of cancer cell stemness and also for rescue of drug resistance phenotype.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Xiu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Daming Liu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangkai Zhou
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rong Pei
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Ding
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowei Cui
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ji Sun
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaibin Song
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
40
|
Shi C, Yang Y, Zhang L, Zhang T, Yu J, Qin S, Gao Y. Optimal subset of signature miRNAs consisting of 7 miRNAs that can serve as a novel diagnostic and prognostic predictor for the progression of cervical cancer. Oncol Rep 2019; 41:3167-3178. [PMID: 30942460 PMCID: PMC6489013 DOI: 10.3892/or.2019.7097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is the second most commonly diagnosed cancer in women. Novel prognostic biomarkers are required to predict the progression of cervical cancer. Cervical cancer expression data were obtained from The Cancer Genome Atlas (TCGA) database. MicroRNAs (miRNAs) significantly differentially expressed between early- and advanced-stage samples were identified by expression analysis. An optimal subset of signature miRNAs for pathologic stage prediction was delineated using the random forest algorithm and was used for the construction of a cervical cancer-specific support vector machine (SVM) classifier. The roles of signature miRNAs in cervical cancer were analyzed by functional annotation. In total, 44 significantly differentially expressed miRNAs were identified. An optimal subset of 7 signature miRNAs was identified, including hsa-miR-144, hsa-miR-147b, hsa-miR-218-2, hsa-miR-425, hsa-miR-451, hsa-miR-483 and hsa-miR-486. The signature miRNAs were used to construct an SVM classifier and exhibited a good performance in predicting pathologic stages of samples. SVM classification was found to be an independent prognostic factor. Functional enrichment analysis indicated that these signature miRNAs are involved in tumorigenesis. In conclusion, the subset of signature miRNAs could potentially serve as a novel diagnostic and prognostic predictor for cervical cancer.
Collapse
Affiliation(s)
- Can Shi
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Yijun Yang
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Ting Zhang
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Juanpeng Yu
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Shanshan Qin
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| | - Yingchun Gao
- Department of Obstetrics and Gynecology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaiyin, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
41
|
Zhang Y, Yang Y, Liu R, Meng Y, Tian G, Cao Q. Downregulation of microRNA-425-5p suppresses cervical cancer tumorigenesis by targeting AIFM1. Exp Ther Med 2019; 17:4032-4038. [PMID: 30988784 PMCID: PMC6447898 DOI: 10.3892/etm.2019.7408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
Although microRNA-425-5p (miR-425-5p) has been previously revealed to be upregulated in cervical cancer, the cellular function of miR-425-5p in cervical cancer remains unknown. The aim of the current study was to investigate the cellular function of miR-425-5p and its underlying mechanism in cervical cancer. Reverse transcription-quantitative polymerase chain reaction was used to measure miR-425-5p expression in several cervical cancer cell lines. TargetScan bioinformatics analysis was used to predict apoptosis-inducing factor mitochondria-associated 1 (AIFM1) as a novel target of miR-425-5p, and this was verified by dual-luciferase reporter assay. Furthermore, cell transfections were used to investigate the role of miR-425-5p in cervical cancer. The effect of miR-425-5p on cell viability and apoptosis in HeLa cells was detected by MTT assay and flow cytometry, respectively. The present study demonstrated that miR-425-5p was significantly upregulated in cervical cancer cell lines. In addition, AIFM1 was identified as a direct target of miR-425-5p and negatively regulated by miR-425-5p. Downregulation of miR-425-5p inhibited HeLa cell viability and induced cell apoptosis. Furthermore, downregulation of miR-425-5p significantly increased the protein and mRNA expression levels of cytochrome c, caspase-3, caspase-9 and DNA damage regulated autophagy modulator 1. The effects of miR-425-5p inhibition on HeLa cell viability and apoptosis were significantly reversed by AIFM1 knockdown. In conclusion, the present study demonstrated that miR-425-5p was upregulated in cervical cancer, and downregulation of miR-425-5p inhibited cervical cancer cell growth by targeting AIFM1.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuxiu Yang
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Rongxia Liu
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yucui Meng
- Department of Epidemiology, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Geng Tian
- Department of Reproductive Medicine, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Qinying Cao
- Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
42
|
Lu Y, Wu X, Wang J. Correlation of miR-425-5p and IL-23 with pancreatic cancer. Oncol Lett 2019; 17:4595-4599. [PMID: 30944648 PMCID: PMC6444423 DOI: 10.3892/ol.2019.10099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to detect the levels of miR-425-5p and IL-23 in tissues of pancreatic cancer patients and to explore their effects on pancreatic cancer. A retrospective analysis of 76 cases of pancreatic cancer tissue specimens and normal fresh tissue specimens at 50 mm adjacent to the corresponding cancer surgically resected in the first diagnosis was performed, in the Department of Radiotherapy of Traditional Chinese Medical Hospital of Huangdao District and Weifang Medical University Hospital from October 2015 to October 2016. RT-qPCR was used to detect miR-425-5p levels in pancreatic cancer and adjacent tissues, and ELISA to detect IL-23 levels in the tissues. The correlation of miR-425-5p and IL-23 in pancreatic cancer tissues with clinicopathological parameters was analyzed. The expression levels of miR-425-5p and IL-23 were significantly higher in pancreatic cancer tissues than those in adjacent tissues, with statistically significant difference (P<0.001). The expression level of miR-425-5p was positively correlated with IL-23 in pancreatic cancer tissues (r=0.432, P<0.001), and of miR-425-5p in tumor tissues of pancreatic cancer patients was correlated with lymph node metastasis, clinical stage and differentiation degree (P<0.001). That of IL-23 in tumor tissues of pancreatic cancer patients was correlated with clinical stage (P<0.001). The expression levels of miR-425-5p and IL-23 in tissues of pancreatic cancer patients are higher than those in adjacent tissues. The expression level of miR-425-5p is positively correlated with that of IL-23 in pancreatic cancer tissues, and that of miR-425-5p in tumor tissues of pancreatic cancer patients was correlated with lymph node metastasis, clinical stage and differentiation degree. IL-23 in tumor tissues of pancreatic cancer patients was correlated with clinical stage. miR-425-5p and IL-23 may be involved in the pathological development of pancreatic cancer.
Collapse
Affiliation(s)
- Yanmin Lu
- Department of Radiotherapy, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, Shandong 266555, P.R. China
| | - Xinqing Wu
- Department of Clinical Laboratory, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong 262700, P.R. China
| | - Jinxiang Wang
- Department of Radiotherapy, Weifang Medical University Hospital, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
43
|
Zhao L, Yang S, You X, He W, Xue J. Novel miRNA-based biomarker panel for detection β 2-agonists in goats. Food Chem 2019; 288:15-21. [PMID: 30902275 DOI: 10.1016/j.foodchem.2019.01.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
miRNA sequencing was applied in this work to screen miRNA biomarkers related to β2-agonists from the test and control goat samples. A total of 10 selected miRNAs were proven by qRT-PCR to be able to separate treatment cell groups from the control. With previously reported differentially expressed genes (DEGs), we used target gene prediction to build a miRNA-mRNA regulatory network related to β2-agonists, which validated the miRNA biomarkers and provided a reference for identifying the mechanism of β2-agonists. Our subsequent in vivo experiments revealed that the regulation trends of the miRNAs were the same as in vitro experiments. DD-SIMCA and heatmap analysis also indicated concordant separation effects with the 10 miRNAs, which could therefore be used as biomarkers to monitor illegal use of β2-agonists in goats.
Collapse
Affiliation(s)
- Luyao Zhao
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Shuming Yang
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| | - Xinyong You
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Wenjing He
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Jiali Xue
- Key Laboratory of Livestock-product Quality and Safety Research Division, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| |
Collapse
|
44
|
Ding A, Wang C, Zhang L. Effects of miR-101, miR-345 on HBV replication regulation and on the growth of liver cancer cells. Oncol Lett 2019; 17:1167-1171. [PMID: 30655879 PMCID: PMC6312945 DOI: 10.3892/ol.2018.9669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the study was to investigate the effects of miRNA-101 and miRNA-345 on HBV replication and liver cancer cell growth. qPCR was performed to detect the expression of miRNA-101 and miRNA-345. The expression of HBV RNA was detected by PCR. The expression of HbsAg was detected using ELISA. BEL-7404 cell line proliferation was detected by MTT assay. The expression levels of miR-101 and miR-345 in BEL-7404 pSUPER.neo-miR-101 group and BEL-7404 pSUPER.neo-miR-345 group were significantly higher than those in BEL-7404 pSUPER.neo group (P<0.05). The expression levels of miR-101 and miR-345 in MHCC97-L pSUPER.neo-miR-101 group and MHCC97-L pSUPER.neo-miR-345 group were significantly higher than those in MHCC97-L pSUPER.neo group (P<0.05). The expression of HBV DNA in MHCC97-L pSUPER.neo-miR-101 group was significantly lower than that in MHCC97-L pSUPER.neo group (P<0.05), and the expression of HBV DNA in MHCC97-L pSUPER.neo-miR-345 group was significantly higher than that in MHCC97-L pSUPER.neo group (P<0.05). The expression of HbsAg in MHCC97-L pSUPER.neo-miR-101 group was significantly lower than that in MHCC97-L pSUPER.neo group (P<0.05), and the expression of HbsAg in MHCC97-L pSUPER.neo-miR-345 group was significantly higher than that in MHCC97-L pSUPER.neo group (P<0.05). There was a significant difference in terms of HbsAg expression between the MHCC97-L pSUPER.neo-miR-101 and MHCC97-L pSUPER.neo-miR-345 groups (P<0.05). The proliferation of BEL-7404 cells in the BEL-7404 pSUPER.neo-miR-101 group was significantly lower than that in the BEL-7404 pSUPER.neo group (P<0.05). The proliferation of BEL-7404 cells in the BEL-7404 pSUPER.neo-miR-345 group was significantly higher than that in the BEL-7404 pSUPER.neo group (P<0.05). The proliferation of BEL-7404 cells in BEL-7404 pSUPER.neo-miR-101 group was different from that in BEL-7404 pSUPER.neo-miR-345 group (P<0.05). miR-101 reduced the level of HBV replication, and inhibited the proliferation of liver cancer cells. miR-345 also upregulated the level of HBV replication, and promoted the proliferation of liver cancer cells.
Collapse
Affiliation(s)
- Aikun Ding
- Department of Infectious Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Cuiyun Wang
- Department of Infectious Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| | - Lihua Zhang
- ICU, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
45
|
Angius A, Pira G, Scanu AM, Uva P, Sotgiu G, Saderi L, Manca A, Serra C, Uleri E, Piu C, Caocci M, Ibba G, Zinellu A, Cesaraccio MR, Sanges F, Muroni MR, Dolei A, Cossu-Rocca P, De Miglio MR. MicroRNA-425-5p Expression Affects BRAF/RAS/MAPK Pathways In Colorectal Cancers. Int J Med Sci 2019; 16:1480-1491. [PMID: 31673240 PMCID: PMC6818206 DOI: 10.7150/ijms.35269] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2019] [Accepted: 08/18/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide and about 20% is metastatic at diagnosis and untreatable. The anti-EGFR therapy in metastatic patients is led by the presence of KRAS-mutations in tumor tissue. KRAS-wild-type CRC patients showed a positive response rate of about 70% to cetuximab or panitumumab combined with chemotherapy. MiRNAs are promising markers in oncology and could improve our knowledge on pathogenesis and drug resistance in CRC patients. This class of molecules represents an opportunity for the development of miRNA-based strategies to overcome the ineffectiveness of anti-EGFR therapy. We performed an integrative analysis of miRNA expression profile between KRAS-mutated CRC and KRAS-wildtype CRC and paired normal colic tissue (NCT). We revealed an overexpression of miR-425-5p in KRAS-mutated CRC compared to KRAS-wild type CRC and NCT and demonstrated that miR-425-5p exerts regulatory effects on target genes involved in cellular proliferation, migration, invasion, apoptosis molecular networks. These epigenetic mechanisms could be responsible of the strong aggressiveness of KRAS-mutated CRC compared to KRAS-wildtype CRC. We proved that some miR-425-5p targeted genes are involved in EGFR tyrosine kinase inhibitor resistance pathway, suggesting that therapies based on miR-425-5p may have strong potential in targeting KRAS-driven CRC. Moreover, we demonstrated a role in the oncogenesis of miR-31-5p, miR-625-5p and miR-579 by comparing CRC versus NCT. Our results underlined that miR-425-5p might act as an oncogene to participate in the pathogenesis of KRAS-mutated CRC and contribute to increase the aggressiveness of this subcategory of CRC, controlling a complex molecular network.
Collapse
Affiliation(s)
- Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato (CA), Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010 Pula, CA, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Laura Saderi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Alessandra Manca
- Department of Pathology, AOU Sassari, Via Matteotti 60, 07100 Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Elena Uleri
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Claudia Piu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maurizio Caocci
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Gabriele Ibba
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maria Rosaria Cesaraccio
- Department of Prevention, Registro Tumori Provincia di Sassari, ASSL Sassari-ATS Sardegna, Via Rizzeddu 21, Sassari, Italy
| | - Francesca Sanges
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43-b, 07100 Sassari, Italy
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.,Department of Diagnostic Services, "Giovanni Paolo II" Hospital, ASSL Olbia-ATS Sardegna, Via Bazzoni-Sircana, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| |
Collapse
|
46
|
Zheng W, Zhao J, Tao Y, Guo M, Ya Z, Chen C, Qin N, Zheng J, Luo J, Xu L. MicroRNA-21: A promising biomarker for the prognosis and diagnosis of non-small cell lung cancer. Oncol Lett 2018; 16:2777-2782. [PMID: 30127862 DOI: 10.3892/ol.2018.8972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer worldwide. The high mortality rate of NSCLC is due to a limited number of diagnosis being made at an early stage of disease. Therefore, the development of a novel biological marker for the diagnosis and prognosis prediction of NSCLC remains urgent. Current literature shows that microRNA-21 (miRNA-21/miR-21), as an oncogenic miRNA, is involved in the growth, metastasis and apoptosis of NSCLC cells through its control of various target molecules and signaling pathways. Notably, a growing body of evidence further shows that miR-21 is closely associated with the prognosis prediction, recurrence and diagnosis of cancer patients, indicating that miR-21 may be a novel promising biomarker for the diagnosis and prognosis prediction of NSCLC. The present review aimed to provide a summary of recent findings on the associated progression toward finding a novel biomarker for NSCLC.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yijing Tao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhou Ya
- Department of Medical Physics, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jing Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
47
|
Quan J, Li Y, Pan X, Lai Y, He T, Lin C, Zhou L, Zhao L, Sun S, Ding Y, Tao L, Hu Y, Wu X, Chen Z, Zhang F, Ye J, Ni L, Lai Y. Oncogenic miR-425-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Oncol Lett 2018; 16:2175-2184. [PMID: 30008916 PMCID: PMC6036448 DOI: 10.3892/ol.2018.8948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
An increasing number of studies have demonstrated the function of microRNAs (miRNAs) in the initiation and development of various types of cancer. Among them, miR-425-5p is proven to serve an important function in several types of cancer, including gastric, cervical cancer, and hepatocellular carcinoma. However, the function of miR-425-5p in renal cell carcinoma (RCC) remains unclear. In the present study, it was demonstrated that the expression level of miR-425-5p was upregulated in RCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). Additionally, Cell Counting kit-8 and MTT assays were employed to assess cell viability and proliferation, whereas wound healing and Transwell assays were employed to examine migration and invasion. The results demonstrated that upregulation of miR-425-5p promoted cell viability and the invasion and migration of ACHN and 786O cells (P<0.05). Flow cytometric analysis confirmed that upregulation of miR-425-5p inhibited apoptosis of ACHN and 786O cells (P<0.05). Downregulation of miR-425-5p inhibited the viability and invasion and migration of ACHN and 786O cells (P<0.05). In the present study, upregulation of miR-425-5p inhibited apoptosis of ACHN and 786O cells whereas no differences in early apoptotic rate were observed between the inhibitor and inhibitor NC groups for 786O and ACHN cells. These results indicate that miR-425-5p may act as an oncogene in RCC.
Collapse
Affiliation(s)
- Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yawen Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yulin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liang Zhou
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Shuolei Sun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yu Ding
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Lingzhi Tao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yimin Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xionghui Wu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Zebo Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Fangting Zhang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Ye
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liangchao Ni
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.,The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
48
|
Nie X, Tian H. Correlation between miR-222 and uterine cancer and its prognostic value. Oncol Lett 2018; 16:1722-1726. [PMID: 30008859 PMCID: PMC6036468 DOI: 10.3892/ol.2018.8815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Relationship between the expression of miR-222 and uterine cancer was investigated to explore its prognostic value. A total of 66 patients with uterine cancer diagnosed by pathological examination in Dongying People's Hospital were enrolled from March 2014 to October 2016. Uterine cancer and adjacent tissues were collected, and the expression of miR-222 in the tissues was detected by stem-loop RT-PCR. The relationship between miR-222 expression and various clinicopathological features of uterine cancer was analyzed. All the patients were followed up to record the survival conditions. The results revealed that stem-loop RT-PCR method could specifically amplify miR-222. The expression of miR-222 in uterine cancer tissues was significantly upregulated compared with that in adjacent tissues (p<0.05). The expression level of miR-222 was significantly increased with the increase of degree of tumor differentiation (p<0.05). The expression of miR-222 in uterine cancer tissue was not significantly correlated with patients age, tumor size, gross tumor type, pathological type and FIGO stage (p>0.05). There was a significant negative correlation between the expression of miR-222 and the survival of patients with uterine cancer. In conclusion, the expression of miR-222 in uterine cancer tissues was significantly upregulated in uterine cancer and negatively correlated with prognosis. miR-222 may play a pivotal role in the development and progression of uterine cancer. It is expected that miR-222 will be an indicator and target for the treatment and prognosis of uterine cancer.
Collapse
Affiliation(s)
- Xiujuan Nie
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haili Tian
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
49
|
Zhu W, Ma Y, Zhuang X, Jin X. MicroRNA-425 is downregulated in nasopharyngeal carcinoma and regulates tumor cell viability and invasion by targeting hepatoma-derived growth factor. Oncol Lett 2018; 15:6345-6351. [PMID: 29616111 PMCID: PMC5876440 DOI: 10.3892/ol.2018.8128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC), which arises from the nasopharynx epithelium, is most common in Southeast Asia, particularly in Southern China. To date, a variety of microRNAs have been demonstrated to serve key functions in the progression and development of NPC. microRNA-425 (miR-425) has previously been reported to be frequently abnormally expressed in a number of different types of human cancer, including lung, gastric, cervical, breast and prostate cancer. However, to the best of our knowledge, the expression patterns, functions and underlying mechanisms of miR-425 in NPC remain largely unexplored. In the present study, the expression of miR-425 was revealed to be low in NPC tissues and cell line. Resumption of miR-425 expression suppressed cell viability and invasion in NPC. Hepatoma-derived growth factor (HDGF) was identified as a direct target gene of miR-425 in NPC. HDGF was highly expressed at mRNA and protein levels in NPC tissues. Additionally, HDGF mRNA was negatively correlated with miR-425 expression in NPC tissues. Furthermore, overexpression of HDGF almost completely rescued the tumor-suppressing effects of miR-425 on NPC cell viability and invasion. Taken together, these results demonstrated that miR-425 acted as a tumor suppressor in NPC by targeting HDGF, suggesting that it may be a novel therapeutic target for the treatments of patients with NPC.
Collapse
Affiliation(s)
- Wenyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Yongchi Ma
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xuqin Zhuang
- Department of Pharmacy, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xin Jin
- Department of Otolaryngology-Head and Neck Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
50
|
Huang Y, Jian W, Zhao J, Wang G. Overexpression of HDAC9 is associated with poor prognosis and tumor progression of breast cancer in Chinese females. Onco Targets Ther 2018; 11:2177-2184. [PMID: 29713186 PMCID: PMC5909784 DOI: 10.2147/ott.s164583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Breast cancer represents a serious health issue among females. HDAC9 has been identified as an oncogene in human cancers. This study sought to assess the prognostic value and the biologic function of HDAC9 in breast cancer patients. METHODS Expression of HDAC9 in breast cancer tissues and cells was evaluated by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis and Cox regression assay were conducted to explore the prognostic significance of HDAC9. Cell experiments were performed to investigate the effects of HDAC9 on the biologic behaviors of breast cancer cells. RESULTS Expression of HDAC9 was significantly upregulated in both cancerous tissues and cells compared with the normal controls (all P<0.05). Overexpression of HDAC9 was correlated with lymph node metastasis (P=0.021) and TNM stage (P=0.004). Patients with high HDAC9 had poor overall survival compared to those with low levels of HDAC9 (log-rank P<0.05). Elevated HDAC9 was found to be an independent prognostic factor for the patients (hazard ratio=2.996, 95% CI=1.611-5.572, P=0.001). According to the cell experiments, tumor cell proliferation, migration and invasion were suppressed by knockdown of HDAC9. CONCLUSION All data demonstrated that overexpression of HDAC9 serves as a prognostic biomarker and may be involved in the tumor progression of breast cancer.
Collapse
Affiliation(s)
- Yixiang Huang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wei Jian
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Junyong Zhao
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Gang Wang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|