1
|
Zhang M, Wu L, Zhang S, Li Y, Chen J. Non-coding RNA alterations in occlusal disharmony-induced anxiety-like behaviour. J Oral Rehabil 2024; 51:2248-2260. [PMID: 39049786 DOI: 10.1111/joor.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Occlusal disharmony (OD) may induce anxiety-like behaviours; however, the underlying mechanism remains unclear. Herein, we explored the expression profiles of non-coding RNAs (ncRNAs), along with their biological function and regulatory network, in anxiety-like behaviour induced by OD. MATERIALS AND METHODS Occlusal disharmony was produced by anterior crossbite of C57BL/6 mice. Behavioural tests, corticosterone (CORT) and serotonin (5-HT) levels were used to measure anxiety. In addition, RNA sequencing was used to screen all differentially expressed (DE) ncRNAs. Moreover, the RNA-binding proteins interacting with ncRNAs were predicted by the ENCORI database and confirmed using western blots. RESULTS The significant differences in behavioural tests and CORT suggested the successful induction of anxiety-like behaviour by OD. In OD mice, ncRNAs were significantly dysregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the DE ncRNAs were enriched in anxiety-related pathways. CircRNA10039 was upregulated, and PTBP1 was predicted to interact with circRNA10039. In addition, KEGG pathway analysis showed that PTBP1 may be associated with messenger RNA biogenesis and spliceosomes. CONCLUSION OD induced by anterior crossbite can lead to the anxiety-like behaviours. During this process, ncRNA also changes. CircRNA10039 and PTBP1 may play a role in OD-induced anxiety-like behaviours.
Collapse
Affiliation(s)
- Mi Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sihui Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuxuan Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Wu L, Zhang S, Zhang M, Ou Y, Chen J. Occlusal disharmony promotes anxiety-like behaviours by suppressing Sirt1. Clin Oral Investig 2024; 28:526. [PMID: 39276172 DOI: 10.1007/s00784-024-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/08/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Previous studies have indicated that occlusal disharmony (OD) can promote anxiety-like behaviours. However, the specific molecules involved in the development of anxiety-like behaviours and their underlying mechanisms remain unknown. METHODS OD was produced by anterior crossbite of female mice. We measured the anxiety levels of mice in each group and screened the hippocampal mRNA expression profiles of mice in the control group and OD group. The role of target mRNA in OD-induced anxiety-like behaviours was evaluated and we preliminarily explored the possible downstream pathways. RESULTS The results suggested that OD can induce and promote anxiety-like behaviours with/without chronic unpredictable mild stress. We found that Sirt1 was significantly downregulated within the hippocampus in OD mice. In addition, the downregulation of Sirt1 within the hippocampus in OD and control mice promoted anxiety-like behaviours, increased acetylated histone H3 expression and decreased Dnah12 transcription levels. In contrast, in OD mice subjected to an injection of resveratrol, there was a remission of anxiety-like behaviours and an upregulation of Sirt1 in the hippocampus, the effects of which were accompanied by decreased acetylated histone H3 expression and increased Dnah12 transcription levels. CONCLUSIONS OD leads to increased sensitivity to chronic stress in mice, resulting in anxiety-like behaviours. During this process, Sirt1 acts as an effective factor in the regulation of OD-induced anxiety-like behaviours. CLINICAL RELEVANCE OD, as a stressor, could induce anxiety-like behaviours. It investigates the impact of OD (a stressor) on the molecular genetic of the pathophysiology of major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sihui Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Mi Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yanjing Ou
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Zhong Road, Fuzhou, China.
| |
Collapse
|
3
|
Ito A, Ohnuki Y, Suita K, Matsuo I, Ishikawa M, Mitsubayashi T, Mototani Y, Kiyomoto K, Tsunoda M, Morii A, Nariyama M, Hayakawa Y, Tomonari H, Okumura S. Effects of the angiotensin-converting enzyme inhibitor captopril on occlusal-disharmony-induced cardiac dysfunction in mice. Sci Rep 2023; 13:19927. [PMID: 37968296 PMCID: PMC10651878 DOI: 10.1038/s41598-023-43099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/19/2023] [Indexed: 11/17/2023] Open
Abstract
Occlusal disharmony is known to affect not only the oral cavity environment, but also the autonomic nervous system in the heart. Since the renin-angiotensin system (RAS) inhibitor captopril (Cap) is one of the first-line drugs for preventing cardiac remodeling in patients with heart failure, we hypothesized that Cap might prevent cardiac dysfunction induced by occlusal disharmony. Here, to test this idea, we used our bite-opening (BO) mouse model, which was developed by cementing a suitable appliance onto the mandibular incisor. Mice were divided into four groups: (1) Control, (2) BO, (3) Cap, and (4) BO + Cap. After 2 weeks, we evaluated cardiac function by echocardiography and confirmed that cardiac function was significantly decreased in the BO group compared to the control, while Cap ameliorated the dysfunction. Cardiac fibrosis, myocyte apoptosis and oxidative stress-induced myocardial damage in the BO group were significantly increased versus the control, and these increases were suppressed by Cap. Cardiac dysfunction induced by BO was associated with dual phosphorylation on PKCδ (Tyr-311/Thr-505), leading to activation of CaMKII with increased phosphorylation of RyR2 and phospholamban. Our results suggest that the RAS might play an important role in the development of cardiac diseases induced by occlusal anomalies.
Collapse
Affiliation(s)
- Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Ichiro Matsuo
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Takao Mitsubayashi
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Yoshio Hayakawa
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
4
|
Wu L, Zhang S, Zhang M, Wang X, Li S, Rausch-Fan X, Chen J. The effect of occlusal disharmony on a chronic stress-induced animal model of gut microbiota dysbiosis. J Oral Rehabil 2023; 50:223-233. [PMID: 36482049 DOI: 10.1111/joor.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 10/19/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Chronic stress (CS) is closely related to intestinal health. Occlusal disharmony (OD) is a risk factor for hypersensitivity to novel stress, and the relationship between OD and the intestinal system with or without other chronic stresses remains unclear. Therefore, the purpose of this study was to investigate whether OD affects the gut microbiota and the intestinal barrier in a CS-exposed animal model. METHODS OD was induced by making a 0.5-mm-thick incision on the right maxillary molar. CS involved exposure to one stressor per day for 35 days. Sprague-Dawley rats were randomly divided into an untreated control group and OD-, CS- and OD + CS-treated groups. The behavioural tests, serum corticosterone level, gut microbiota composition and tight junction protein expression in colon tissue were measured on the 56th day to elucidate the effect of OD on animals under CS. RESULTS Significant differences in performance on behavioural tests and serum corticosterone concentrations were observed on day 56 in the OD + CS group compared with the control group. Exposure to occlusal disharmony or chronic stress resulted in a change in the composition of the gut microbiota of rats. Differences in the expression of the tight junction proteins zonula occludens-1 and junctional adhesion molecule-A were observed in colon tissue from the OD + CS group compared with the control group. CONCLUSIONS We concluded that the significant changes in performance on behavioural tests, serum corticosterone concentrations and microbiota dysbiosis and tight junction protein levels induced by OD with CS may indicate that OD is a potential factor promoting gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Ling Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Sihui Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Mi Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xudong Wang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuxian Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
The Impact of Increase in the Vertical Dimension of Occlusion on Nociception in Rats - A Preliminary Report. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Since the change in vertical dimension of occlusion (VDO) is extremely important in prosthetic dentistry, the aim of the study was to examine the effect of VDO increase on nociception parameters in rodent experimental model. The study was performed on seven experimental groups (6 animals per group) on male Wistaralbino rats: sham; 0.6/3, 0.9/3, and 1.2/3 groups where VDO was increased by 0.6, 0.9, and 1.2 mm (respectively), for three days; 0.6/20, 0.9/20, and 1.2/20 groups where VDO was increased by 0.6, 0.9, and 1.2 mm (respectively), for twenty days. The VDO raising protocols were performed as follows: on a day 1, following anaesthesia, a two-phase impression was taken with addition silicones; on a day 3, the cementing process for both maxillary incisors and inside crowns preparation was performed, and cementing zirconium crowns, manufactured using CAD-CAM technology, were applied. The behavioural testing (the tail flick and hot plate test) was performed on day 3 and 20. The results obtained in the tail flick test suggest that the raise in VDO in the early phase induced increased sensitivity to pain in a stepwise manner, while this hyperalgesic effect was diminished in a timedependent manner. The stepwise increase in VDO also resulted in significant decline in the pain tolerance with the higher VDO (0.9 and 1.2 mm) in the hot plate test that persisted after twenty days in 1.2/20 group. It seems that VDO elevation is sufficient to produce hyperalgesic effect in this experimental model, which may be attenuated in time-dependent manner.
Collapse
|
6
|
de Siqueira Mendes FDCC, de Almeida MNF, Falsoni M, Andrade MLF, Felício APG, da Paixão LTVB, Júnior FLDA, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. The Sedentary Lifestyle and Masticatory Dysfunction: Time to Review the Contribution to Age-Associated Cognitive Decline and Astrocyte Morphotypes in the Dentate Gyrus. Int J Mol Sci 2022; 23:ijms23116342. [PMID: 35683023 PMCID: PMC9180988 DOI: 10.3390/ijms23116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As aging and cognitive decline progresses, the impact of a sedentary lifestyle on the appearance of environment-dependent cellular morphologies in the brain becomes more apparent. Sedentary living is also associated with poor oral health, which is known to correlate with the rate of cognitive decline. Here, we will review the evidence for the interplay between mastication and environmental enrichment and assess the impact of each on the structure of the brain. In previous studies, we explored the relationship between behavior and the morphological features of dentate gyrus glial fibrillary acidic protein (GFAP)-positive astrocytes during aging in contrasting environments and in the context of induced masticatory dysfunction. Hierarchical cluster and discriminant analysis of GFAP-positive astrocytes from the dentate gyrus molecular layer revealed that the proportion of AST1 (astrocyte arbors with greater complexity phenotype) and AST2 (lower complexity) are differentially affected by environment, aging and masticatory dysfunction, but the relationship is not straightforward. Here we re-evaluated our previous reconstructions by comparing dorsal and ventral astrocyte morphologies in the dentate gyrus, and we found that morphological complexity was the variable that contributed most to cluster formation across the experimental groups. In general, reducing masticatory activity increases astrocyte morphological complexity, and the effect is most marked in the ventral dentate gyrus, whereas the effect of environment was more marked in the dorsal dentate gyrus. All morphotypes retained their basic structural organization in intact tissue, suggesting that they are subtypes with a non-proliferative astrocyte profile. In summary, the increased complexity of astrocytes in situations where neuronal loss and behavioral deficits are present is counterintuitive, but highlights the need to better understand the role of the astrocyte in these conditions.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | - Marina Negrão Frota de Almeida
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Manoela Falsoni
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Lorena Ferreira Andrade
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - André Pinheiro Gurgel Felício
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Luisa Taynah Vasconcelos Barbosa da Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Fábio Leite do Amaral Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Correspondence:
| |
Collapse
|
7
|
Effects of occlusal disharmony on susceptibility to atrial fibrillation in mice. Sci Rep 2020; 10:13765. [PMID: 32792672 PMCID: PMC7426945 DOI: 10.1038/s41598-020-70791-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth loss or incorrect positioning causes occlusal disharmony. Furthermore, tooth loss and atrial fibrillation (AF) are both risk factors for ischemic stroke and coronary heart disease. Therefore, we hypothesized that occlusal disharmony-induced stress increases susceptibility to AF, and we designed the present study to test this idea in mice. Bite-opening (BO) was done by cementing a suitable appliance onto the mandibular incisor to cause occlusal disharmony by increasing the vertical height of occlusion by 0.7 mm for a period of 2 weeks. AF susceptibility, evaluated in terms of the duration of AF induced by transesophageal burst pacing, was significantly increased concomitantly with atrial remodeling, including fibrosis, myocyte apoptosis and oxidative DNA damage, in BO mice. The BO-induced atrial remodeling was associated with increased calmodulin kinase II-mediated ryanodine receptor 2 phosphorylation on serine 2814, as well as inhibition of Akt phosphorylation. However, co-treatment with propranolol, a non-selective β-blocker, ameliorated these changes in BO mice. These data suggest that improvement of occlusal disharmony by means of orthodontic treatment might be helpful in the treatment or prevention of AF.
Collapse
|
8
|
Yagisawa Y, Suita K, Ohnuki Y, Ishikawa M, Mototani Y, Ito A, Matsuo I, Hayakawa Y, Nariyama M, Umeki D, Saeki Y, Amitani Y, Nakamura Y, Tomonari H, Okumura S. Effects of occlusal disharmony on cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage in mice. PLoS One 2020; 15:e0236547. [PMID: 32716920 PMCID: PMC7384634 DOI: 10.1371/journal.pone.0236547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/08/2020] [Indexed: 12/05/2022] Open
Abstract
Occlusal disharmony leads to morphological changes in the hippocampus and osteopenia of the lumbar vertebra and long bones in mice, and causes stress. Various types of stress are associated with increased incidence of cardiovascular disease, but the relationship between occlusal disharmony and cardiovascular disease remain poorly understood. Therefore, in this work, we examined the effects of occlusal disharmony on cardiac homeostasis in bite-opening (BO) mice, in which a 0.7 mm space was introduced by cementing a suitable applicance onto the mandibular incisior. We first examined the effects of BO on the level of serum corticosterone, a key biomarker for stress, and on heart rate variability at 14 days after BO treatment, compared with baseline. BO treatment increased serum corticosterone levels by approximately 3.6-fold and the low frequency/high frequency ratio, an index of sympathetic nervous activity, was significantly increased by approximately 4-fold by the BO treatment. We then examined the effects of BO treatment on cardiac homeostasis in mice treated or not treated with the non-selective β-blocker propranolol for 2 weeks. Cardiac function was significantly decreased in the BO group compared to the control group, but propranolol ameliorated the dysfunction. Cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage were significantly increased in the BO group, but propranolol blocked these changes. The BO-induced cardiac dysfunction was associated with increased phospholamban phosphorylation at threonine-17 and serine-16, as well as inhibition of Akt/mTOR signaling and autophagic flux. These data suggest that occlusal disharmony might affect cardiac homeostasis via alteration of the autonomic nervous system.
Collapse
Affiliation(s)
- Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasuharu Amitani
- Department of Mathematics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Piancino MG, Tortarolo A, Polimeni A, Cannavale R, Tonni I, Deregibus A. Adverse effects of the bite-raised condition in animal studies: A systematic review. Arch Oral Biol 2019; 107:104516. [PMID: 31408810 DOI: 10.1016/j.archoralbio.2019.104516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To provide a systematic review of the effects of the bite-raised condition in animal models, a widespread technique in modern orthodontics. DESIGN A systematic review of the literature was conducted. Original articles were searched through Pubmed, Cochrane Central database and Embase until December 2018. RESULTS 242 articles were identified through database searching. After removing the duplicates, 198 articles were screened by reviewing the abstracts. 27 full text articles were assessed for eligibility and, after 7 exclusions, 20 articles were included in the review process. Studies selected by the review process concerned animal models. Histological, molecular, biochemical and electromyographical studies were evaluated. The results, with a high level of agreement in different animals, showed that the bite-raised condition is a source of stress, inducing increased plasma corticosterone, urinary cortisol and HPA axis alterations; it predisposes the organism to react to subsequent stressful stimulation with a significantly greater incretion of glucocorticoids, thus inducing hypersensitivity to novel forms of stress; it affects the structure of the hippocampus, reducing the number of neurons, increasing the number of glial cells and worsening memory and spatial orientation; it alters the electromyographical activity of masticatory muscles. CONCLUSIONS The results of research conducted on animal models do not necessarily apply directly to human beings. More clinical research, with special attention to adolescent patients, is necessary to clarify whether, in humans, the bite-raised condition is accompanied by adverse effects comparable to those observed in animals.
Collapse
Affiliation(s)
| | - Alessandro Tortarolo
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Science, Sapienza University of Rome, Italy
| | - Rosangela Cannavale
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Italy
| | - Ingrid Tonni
- Department of Radiological Sciences and Public Health, Dental School, University of Brescia, Italy
| | - Andrea Deregibus
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Italy
| |
Collapse
|
10
|
Occlusal disharmony-induced stress causes osteopenia of the lumbar vertebrae and long bones in mice. Sci Rep 2018; 8:173. [PMID: 29317698 PMCID: PMC5760568 DOI: 10.1038/s41598-017-18037-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023] Open
Abstract
Excessive exposure to glucocorticoids causes osteoporosis in children and adults. Occlusal disharmony is known to induce an increase in serum corticosteroid levels in murine models, but the influence of occlusal disharmony-induced stress on the bone mass during the growth period has not yet been clarified. The purpose of this study was to investigate whether occlusal disharmony-induced stress decreases bone mass. Five-week-old C57BL/6J male mice were used. A 0.5-mm increase in the vertical height of occlusion was used to induce occlusal disharmony for a period of 7 days. Serum corticosterone levels were significantly higher on post-induction day 7, with radiological evidence of osteopenia of the third lumbar vertebra and long bones of the hind limbs. Osteopenia was associated with a reduction of the mechanical properties of the tibia and femur, with significant suppression of bone formation parameters and an increase in bone resorption parameters, as evaluated by bone histomorphometric analysis of the tibial/femur metaphysis. Our findings at the level of bones were supported by our assessment of serum markers of systemic metabolism. Therefore, occlusal disharmony-induced stress may lead to osteopenia and reduce the mechanical strength of bone through an increase in serum glucocorticoid levels in mice.
Collapse
|
11
|
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18081687. [PMID: 28771175 PMCID: PMC5578077 DOI: 10.3390/ijms18081687] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.
Collapse
|
12
|
Tang X, Li J, Jiang T, Han SH, Yao DY. Experimental occlusal disharmony - A promoting factor for anxiety in rats under chronic psychological stress. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:165-175. [PMID: 28185964 DOI: 10.1016/j.pnpbp.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Clinically, patients under chronic psychological stress (PS) appear to be more susceptible to occlusal disharmony (OD) compared with those without PS. OD was proved to introduce anxiety-like stress. Therefore, the purpose of the study was to investigate whether OD would affect psychological stress-induced anxiety and its underlying mechanisms. METHODS Chronic PS was induced by a communication box, and OD was produced by bonding a 0.3mm-thick crown on the right maxillary first molar of male Sprague-Dawley rats. Sixty-seven rats were randomly divided into 8 groups: (A) chronic PS plus OD group (n=6); (B) chronic PS plus sham OD group (n=6); (C) chronic PS only group (n=6); (D) OD group (n=6); (E) sham OD group (n=6); (F) control group (n=6); (G) naive group (n=6); (H) foot-shock group (n=25). Open-field test (OFT) and elevated plus maze test (EPM) were conducted on the 7th, 21th, 35th day to measure the anxiety level of each group except naive and foot-shock group. In addition, corticosterone (CORT) level in serum, 5-hydroxytryptamine (5-HT) and 5-HT2A receptor (5-HT2AR) expressions in prefrontal cortex (PFC), hippocampal CA1 and dentate gyrus (DG) areas were measured on the 35th day to elucidate the mechanism(s) by which the exacerbation occurred. RESULTS The significant differences in OFT and EPM tests on day 21 or day 35 between groups (p<0.01) indicated the successful establishment of animal model of PS or OD. And there was a significant increase in CORT concentration in serum (p<0.01), 5-HT expressions in PFC, hippocampal DG areas and 5-HT2AR expressions in PFC, hippocampal CA1 areas (p<0.05) in group A, B, C, D compared with group F. Similar results were also found in group A, B, C, D when compared with group G (p<0.05) except 5-HT expression in DG area in group C and D (p>0.05), together with a gradual decrease in values of all the parameters mentioned above from group A to group G. CONCLUSION The significant changes in exploratory behaviors, serum CORT concentration, 5-HT and 5-HT2AR expressions induced by OD in rats with or without chronic PS, and more obvious alterations in rats with chronic PS, may indicate that OD may be a promoting factor for anxiety through both peripheral and central pathways via the hypothalamus-pituitary-adrenal (HPA) axis and 5-HT system.
Collapse
Affiliation(s)
- Xuan Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Jian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| | - Ting Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| | - Shu-Hui Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Dong-Yuan Yao
- Jiangxi Mental Hospital and School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
13
|
Greven M, Landry A, Carmignani A. Comprehensive dental diagnosis and treatment planning for occlusal rehabilitation: a perspective. Cranio 2016; 34:215-7. [DOI: 10.1080/08869634.2016.1186880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Miyake H, Mori D, Katayama T, Fujiwara S, Sato Y, Azuma K, Kubo KY. Novel stress increases hypothalamic-pituitary-adrenal activity in mice with a raised bite. Arch Oral Biol 2016; 68:55-60. [PMID: 27082875 DOI: 10.1016/j.archoralbio.2016.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In humans, occlusal disharmony may cause various physical complaints, including head and neck ache, stiffness in the shoulder and neck, and arthrosis of the temporomandibular joints. Occlusal disharmony induced by raising the bite in rodents, increases plasma corticosterone levels, which leads to morphologic changes in the hippocampus and altered hippocampus-related behavior. The paraventricular nucleus (PVN) of the hypothalamus regulates the hypothalamic-pituitary-adrenal system. Chronically stressed animals exposed to a novel stress exhibit higher adrenocorticotropic hormone levels than naive control animals. We hypothesized that there would be different response of the corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP) to a novel acute stress with occlusal disharmony. DESIGN In order to investigate how exposure of mice with occlusal disharmony to a novel acute stress (restraint stress) affects the PVN, we induced occlusal disharmony by raising the vertical dimension of the bite (bite-raised condition) and examined the expression of corticotrophin releasing hormone (CRH) mRNA and arginine vasopressin (AVP) mRNA in mouse PVN. RESULTS CRH mRNA expression was increased in the PVN of the bite-raised group 90min after the bite-raising procedure, but the expression was recovered to the control level at 14days. AVP mRNA expression in the PVN was normal at 90min, and increased significantly 14days after the bite-raising procedure. Exposure to restraint stress in the bite-raised mice induced a significant increase in CRH mRNA expression in the PVN. CONCLUSIONS The bite-raising procedure induced a rapid CRH mRNA response and a slower AVP mRNA response in the parvocellular PVN of the hypothalamus. Exposure to a novel stress following the bite-raising procedure further reinforced the CRH stress response. Thus, occlusal disharmony, such as that induced by raising the bite, may be a risk factor for hypersensitivity to a novel stress.
Collapse
Affiliation(s)
- Hidekazu Miyake
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Daisuke Mori
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Tasuku Katayama
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Shuu Fujiwara
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Science, Kitasato 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kin-Ya Kubo
- Seijoh University Graduate School of Health Care Studies, 2-172, Fukinodai, Tokai, Aichi, 476-8588, Japan.
| |
Collapse
|
15
|
Effects of mandibular retrusive deviation on prefrontal cortex activation: a functional near-infrared spectroscopy study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:373769. [PMID: 26075235 PMCID: PMC4449876 DOI: 10.1155/2015/373769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022]
Abstract
The objective of this study was to evaluate occlusal condition by assessing brain activity in the prefrontal cortex, which is associated with emotion. Functional near-infrared spectroscopy (fNIRS) was used to detect changes in cerebral blood flow in the prefrontal cortex of 12 healthy volunteers. The malocclusion model was a custom-made splint that forced the mandible into retrusion. A splint with no modification was used as a control. The cortical activation during clenching was compared between the retrusive position condition and the control condition. A visual analog scale score for discomfort was also obtained during clenching and used to evaluate the interaction between fNIRS data and psychiatric changes. Activation of the prefrontal cortex was significantly greater during clenching in the mandibular retrusive condition than during clenching in the control condition. Furthermore, Spearman rank-correlation coefficient revealed a parallel relation between prefrontal cortex activation and visual analog scale score for discomfort. These results indicate that fNIRS can be used to objectively evaluate the occlusal condition by evaluating activity in the prefrontal cortex.
Collapse
|
16
|
Jiao K, Niu L, Xu X, Liu Y, Li X, Tay FR, Wang M. Norepinephrine Regulates Condylar Bone Loss via Comorbid Factors. J Dent Res 2015; 94:813-20. [PMID: 25818584 DOI: 10.1177/0022034515577677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Degenerative changes of condylar subchondral bone occur frequently in temporomandibular disorders. Although psychologic stresses and occlusal abnormalities have been implicated in temporomandibular disorder, it is not known if these risks represent synergistic comorbid factors that are involved in condylar subchondral bone degradation that is regulated by the sympathetic nervous system. In the present study, chronic immobilization stress (CIS), chemical sympathectomy, and unilateral anterior crossbite (UAC) were sequentially applied in a murine model. Norepinephrine contents in the subjects' serum and condylar subchondral bone were detected by ELISA; bone and cartilage remodeling parameters and related gene expression in the subchondral bone were examined. Subchondral bone loss and increased subchondral bone norepinephrine level were observed in the CIS and UAC groups. These groups exhibited decreased bone mineral density, volume fraction, and bone formation rate; decreased expressions of osterix, collagen I, and osteocalcin; but increased trabecular separation, osteoclast number and surface, and RANKL expression. Combined CIS + UAC produced more severe subchondral bone loss, higher bone norepinephrine level, and decreased chondrocyte density and cartilage thickness when compared to CIS or UAC alone. Sympathectomy simultaneously prevented subchondral bone loss and decreased bone norepinephrine level in all experimental subgroups when compared to the vehicle-treated counterparts. Norepinephrine also decreased mRNA expression of osterix, collagen I, and osteocalcin by mesenchymal stem cells at 7 and 14 d of stimulation and increased the expression of RANKL and RANKL/OPG ratio by mesenchymal stem cells at 2 h. In conclusion, CIS and UAC synergistically promote condylar subchondral bone loss and cartilage degradation; such processes are partially regulated by norepinephrine within subchondral bone.
Collapse
Affiliation(s)
- K Jiao
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - L Niu
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Xu
- Undergraduate Department of Oral Science, Fourth Military Medical University, Xi'an, China
| | - Y Liu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - X Li
- Undergraduate Department of Oral Science, Fourth Military Medical University, Xi'an, China
| | - F R Tay
- College of Dental Medicine, Georgia Reagents University, Augusta, GA, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
He Y, Zhu J, Huang F, Qin L, Fan W, He H. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage. Neural Regen Res 2015; 9:1985-94. [PMID: 25598781 PMCID: PMC4283282 DOI: 10.4103/1673-5374.145380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 11/04/2022] Open
Abstract
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.
Collapse
Affiliation(s)
- Yifan He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
| | - Jihong Zhu
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China ; Huaihe Hospital, Henan University, Kaifeng, Henan Province, China
| | - Fang Huang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
| | - Liu Qin
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
| | - Hongwen He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Ekuni D, Yoneda T, Endo Y, Kasuyama K, Irie K, Mizutani S, Azuma T, Tomofuji T, Morita M. Occlusal disharmony accelerates the initiation of atherosclerosis in apoE knockout rats. Lipids Health Dis 2014; 13:144. [PMID: 25189624 PMCID: PMC4174667 DOI: 10.1186/1476-511x-13-144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022] Open
Abstract
Background Psychosocial stress is one of the risk factors for atherosclerosis. As occlusal disharmony induces psychological stress, we hypothesized that psychological stress by occlusal disharmony accelerates atherosclerosis. The aim of this study was to investigate the effects of occlusal disharmony on the initiation of atherosclerosis in apolipoprotein E (apoE) knockout rats. Methods Fourteen male apoE-knockout rats (age; 8 weeks) (Sprague–Dawley strain background) were divided into two groups of seven rats: the occlusal disharmony group and the no treatment (control) group. In the occlusal disharmony group, the maxillary molar cusps were cut off for the 8-week experimental period. Results In the occlusal disharmony group, the percentages of the area of total aortic lumen occupied by plaques and lipid were significantly higher than those in the control group (p < 0.05, t-test). The occlusal disharmony group also showed significantly higher serum levels of very low-density lipoprotein-cholesterol (VLDL) and low-density lipoprotein-cholesterol (LDL), plasma levels of corticosterone (1.9, 1.3 and 1.3 times, respectively), higher aortic protein expression levels of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1) (1.5 and 1.4 times, respectively), and higher aortic gene expression of levels of VCAM1 and Toll-like receptor 4 (TLR4) (1.9 and 4.3 times, respectively), as compared to the control group (p < 0.05). However, there were no significant differences in serum levels of oxidized LDL, reactive oxygen metabolites and C-reactive protein between the two groups. Conclusion In apoE knockout rats, occlusal disharmony may induce VCAM1, ICAM1 and TLR4 expression and accelerate the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Otsuka T, Watanabe K, Hirano Y, Kubo K, Miyake S, Sato S, Sasaguri K. Effects of Mandibular Deviation on Brain Activation During Clenching: An fMRI Preliminary Study. Cranio 2014; 27:88-93. [DOI: 10.1179/crn.2009.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Teixeira FB, Pereira Fernandes LDM, Noronha PAT, dos Santos MAR, Gomes-Leal W, Ferraz Maia CDS, Lima RR. Masticatory deficiency as a risk factor for cognitive dysfunction. Int J Med Sci 2014; 11:209-14. [PMID: 24465167 PMCID: PMC3894406 DOI: 10.7150/ijms.6801] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated that chewing helps to maintain cognitive functions in brain regions including the hippocampus, a central nervous system (CNS) region vital for memory and learning. Epidemiological studies suggest that masticatory deficiency is associated with development of dementia, which is related to spatial memory deficits especially in older animals. The purpose of this paper is to review recent work on the effects of masticatory impairment on cognitive functions both in experimental animals and humans. We show that several mechanisms may be involved in the cognitive deficits associated with masticatory deficiency. The epidemiological data suggest a positive correlation between masticatory deficit and Alzheimer's disease. It may be concluded that chewing has important implications for the mechanisms underlying certain cognitive abilities.
Collapse
Affiliation(s)
- Francisco Bruno Teixeira
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Luanna de Melo Pereira Fernandes
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil; ; 2. Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Patrycy Assis Tavares Noronha
- 3. Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Marcio Antonio Raiol dos Santos
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Walace Gomes-Leal
- 3. Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Cristiane do Socorro Ferraz Maia
- 2. Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Rafael Rodrigues Lima
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| |
Collapse
|
21
|
Katayama T, Mori D, Miyake H, Fujiwara S, Ono Y, Takahashi T, Onozuka M, Kubo KY. Effect of bite-raised condition on the hippocampal cholinergic system of aged SAMP8 mice. Neurosci Lett 2012; 520:77-81. [PMID: 22640898 DOI: 10.1016/j.neulet.2012.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/09/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Occlusal disharmony induces chronic stress, which results in learning deficits in association with the morphologic changes in the hippocampus, e.g., neuronal degeneration and increased hypertrophied glial fibrillary acidic protein-positive cells. To investigate the mechanisms underlying impaired hippocampal function resulting from occlusal disharmony, we examined the effects of the bite-raised condition on the septohippocampal cholinergic system by assessing acetylcholine release in the hippocampus and choline acetyltransferase immunoreactivity in the medial septal nucleus in aged SAMP8 mice that underwent the bite raising procedure. Aged bite-raised mice showed decreased acetylcholine release in the hippocampus and a reduced number of choline acetyltransferase-immunopositive neurons in the medial septal nucleus compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice enhances the age-related decline in the septohippocampal cholinergic system, leading to impaired learning.
Collapse
Affiliation(s)
- Tasuku Katayama
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Greven M, Otsuka T, Zutz L, Weber B, Elger C, Sato S. The amount of TMJ displacement correlates with brain activity. Cranio 2011; 29:291-6. [PMID: 22128669 DOI: 10.1179/crn.2011.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the correlation between the severity of malocclusion and brain activation. The fMRI was used to measure blood-oxygenation- level-dependent (BOLD) signals of twelve healthy human subjects while they clenched in two different ways to simulate two types of malocclusion. In each malocclusion model, a custom-made splint forced the mandible to each of two retrusive positions (0.5 mm, 0.7 mm). A no-modification splint provided the control. We compared the BOLD signals measured at each clenching position with those measured during the corresponding resting conditions. The BOLD signals were significantly stronger in the amygdala and the prefrontal area (PFA) when subjects clenched in the two retrusive positions compared during clenching in the control position. In addition, the BOLD signal in the PFA increased as the simulated malocclusion became more severe. These results indicate that we may be able to objectively assess the severity of malocclusion via focus on the brain activity.
Collapse
Affiliation(s)
- Markus Greven
- Department of Craniofacial Growth and Development Dentistry, Kanagawa Dental College
| | | | | | | | | | | |
Collapse
|
23
|
Yoshihara T, Yawaka Y. Lesions of the ventral ascending noradrenergic bundles decrease the stress response to occlusal disharmony in rats. Neurosci Lett 2011; 503:43-7. [PMID: 21864649 DOI: 10.1016/j.neulet.2011.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/15/2011] [Accepted: 08/02/2011] [Indexed: 11/15/2022]
Abstract
Occlusal disharmony induced by placing an acryl cap on the lower incisors of rats is perceived as chronic stress. This chronic stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN), resulting in stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. The ventral ascending noradrenergic bundles (V-NAB) from the brainstem innervate the PVN. To investigate the relationship between the response of the HPA axis and the V-NAB, we examined changes in extracellular noradrenaline (NA) in the PVN and plasma corticosterone, the final output of the HPA axis, following occlusal disharmony in rats injected with 6-hydroxydopamine (6-OHDA), a specific catecholamine neurotoxin. 6-OHDA microinjection into the V-NAB reduced the magnitude of the responses of extracellular NA in the PVN and the plasma corticosterone to occlusal disharmony. Our results suggest that V-NAB to the PVN are involved in occlusal disharmony-induced activation of the HPA axis.
Collapse
Affiliation(s)
- Toshihiro Yoshihara
- Division of Pediatric Dentistry, Department of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, North 13, West 7, Kita-ku, Sapporo 060-8586, Japan.
| | | |
Collapse
|
24
|
Occlusal disharmony increases amyloid-β in the rat hippocampus. Neuromolecular Med 2011; 13:197-203. [PMID: 21751079 DOI: 10.1007/s12017-011-8151-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/25/2011] [Indexed: 12/20/2022]
Abstract
Amyloid-β plays a causative role in Alzheimer's disease. Occlusal disharmony causes chronic psychological stress, and psychological stress increases amyloid-β accumulation. The purpose of the present study was to investigate whether occlusal disharmony-induced psychological stress affects the accumulation of amyloid-β and its related gene expressions in the rat hippocampus. Eight-week-old male Wistar rats (n = 18) were divided into three groups of six rats each: (1) a control group that received no treatment for 8 weeks; (2) an occlusal disharmony group that underwent cutoff maxillary molar cusps for 8 weeks; and (3) a recovered group that underwent cutoff maxillary molar cusps for 4 weeks followed by recovery for 4 weeks. Occlusal disharmony increased plasma corticosterone levels in a time-dependent manner. Levels of amyloid-β 40 and 42, glucocorticoid receptor (Gr) protein, and cleaved caspase 3 (Casp3) as well as gene expressions of amyloid precursor protein, beta-secretase, Casp3, and Gr in the hippocampus in the occlusal disharmony group were significantly higher than those in the control group (P < 0.016). These findings were significantly improved by recovery of occlusion (P < 0.016). These results indicate that psychological stress induced by occlusal disharmony reversibly induces amyloid-β 40 and 42 in the rat hippocampus through the glucocorticoid signal.
Collapse
|
25
|
Ekuni D, Furuta M, Irie K, Azuma T, Tomofuji T, Murakami T, Yamashiro T, Ogura T, Morita M. Relationship between impacts attributed to malocclusion and psychological stress in young Japanese adults. Eur J Orthod 2011; 33:558-63. [PMID: 21307159 DOI: 10.1093/ejo/cjq121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identifying risk factors is important to prevent a wide range of health-damaging behaviours and to improve the quality of life of young people. The aim of this study was to investigate the relationship between impacts on daily performance attributed to malocclusion and psychological stress in healthy young Japanese adults. Medical and oral health data were collected during a cross-sectional examination conducted by the Health Service Center of Okayama University. Systemically healthy non-smoking students aged 18 and 19 years (n = 641; 329 males and 312 females) were included. Malocclusion was defined using a modified version of the Index of Orthodontic Treatment Need (IOTN). The impacts on daily performance attributed to malocclusion and psychological stress were assessed using self-reported questionnaires, the condition-specific oral impacts on daily performances (CS-OIDP), and the Hopkins Symptoms Checklist. Mann-Whitney U- and chi-square tests and structural equation modelling (SEM) were used for statistical analysis. Forty per cent of subjects had a malocclusion (n = 255). Subjects with impacts on daily performance had a significantly higher prevalence of malocclusion than those without impacts (P < 0.001). SEM showed that psychological stress, especially interpersonal sensitivity and depression, was significantly correlated with CS-OIDP and malocclusion. Negative impacts on daily performance attributed to malocclusion may contribute to psychological stress in young Japanese adults.
Collapse
Affiliation(s)
- Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Occlusal disharmony induces BDNF level in rat submandibular gland. Arch Oral Biol 2011; 56:35-40. [DOI: 10.1016/j.archoralbio.2010.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/19/2010] [Accepted: 09/06/2010] [Indexed: 11/17/2022]
|
27
|
Kubo KY, Ichihashi Y, Kurata C, Iinuma M, Mori D, Katayama T, Miyake H, Fujiwara S, Tamura Y. Masticatory function and cognitive function. Okajimas Folia Anat Jpn 2010; 87:135-140. [PMID: 21174943 DOI: 10.2535/ofaj.87.135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recent studies have suggest that masticatory (chewing) function is useful for maintaining neurocognitive function in the elderly. For example, a reduced ability to masticate, such as that resulting from toothlessness or soft-diet feeding, causes learning and memory deficits in aged animals and pathologic changes in the hippocampus. In addition, occlusal disharmony impairs hippocampal memory processes via chronic stress, and induces similar hippocampal pathology. Chewing, however, rescues stress-induced suppression of long-term potentiation in the hippocampus and the stress-induced impairment of hippocampal-dependent learning. These findings strongly suggest a link between mastication and neurocognitive function.
Collapse
Affiliation(s)
- Kin-Ya Kubo
- Seijoh University Graduate School of Health Care Studies, 2-172 Fukinodai, Tokai, Aichi 476-8588, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Occlusal disharmony suppresses long-term potentiation in the rat hippocampal CA1 region. INTERNATIONAL JOURNAL OF STOMATOLOGY & OCCLUSION MEDICINE 2010. [DOI: 10.1007/s12548-010-0047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Vandevska-Radunovic V, Murison R. Emotional stress and orthodontic tooth movement: effects on apical root resorption, tooth movement, and dental tissue expression of interleukin-1 alpha and calcitonin gene-related peptide immunoreactive nerve fibres in rats. Eur J Orthod 2010; 32:329-335. [DOI: 10.1093/ejo/cjp106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
30
|
Shibazaki T, Yozgatian JH, Zeredo JL, Gonzales C, Hotokezaka H, Koga Y, Yoshida N. Effect of celecoxib on emotional stress and pain-related behaviors evoked by experimental tooth movement in the rat. Angle Orthod 2010; 79:1169-74. [PMID: 19852611 DOI: 10.2319/121108-629r.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To test the efficacy of an animal model of pain and stress and evaluate the effects of celecoxib administered when orthodontic force is applied. MATERIALS AND METHODS A 20-g reciprocal force was applied via an orthodontic appliance to the maxillary left first and second molars of 7-week-old male Sprague-Dawley rats. Rat behavior was evaluated at 5, 24, and 48 hours after the appliance was set. Behavior was assessed in a test field by the number of lines crossed in the first 30 seconds and 5 minutes following force application; number of lines crossed to the center; rearing time; and facial grooming time. Experimental group 1 received intraperitoneal administration of 30 mg/kg celecoxib before every behavioral test. Experimental group 2 received 90 mg/kg before the first behavioral test, and physiologic saline was administered before the remaining behavioral tests. Control groups received saline before every behavioral test and were given passive (passive control group) and active (active control group) appliances, respectively. RESULTS Parameters related to pain increased in the active controls, whereas the parameters in the experimental groups decreased to the level seen in the passive controls. Statistically significant differences in pain-related behavior between control and experimental groups were found at 5 and 24 hours after placing the appliance. Stress-related behavior was significantly less in the experimental groups compared to the active control group during experimental periods. CONCLUSIONS The administration of celecoxib relieves pain- and stress-related behavior evoked by orthodontic tooth movement in the rat. This model might be a useful tool for the evaluation of pain and stress.
Collapse
Affiliation(s)
- Tatsunori Shibazaki
- Department of Orthodontics and Dentofacial Orthopedics, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ono Y, Yamamoto T, Kubo KY, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil 2010; 37:624-40. [PMID: 20236235 DOI: 10.1111/j.1365-2842.2010.02079.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in animals and humans has shown that mastication maintains cognitive function in the hippocampus, a brain area important for learning and memory. Reduced mastication, an epidemiological risk factor for the development of dementia in humans, attenuates spatial memory and causes hippocampal neurons to deteriorate morphologically and functionally, especially in aged animals. Active mastication rescues the stress-attenuated hippocampal memory process in animals and attenuates the perception of stress in humans by suppressing endocrinological and autonomic stress responses. Active mastication further improves the performance of sustained cognitive tasks by increasing the activation of the hippocampus and the prefrontal cortex, the brain regions that are essential for cognitive processing. Abnormal mastication caused by experimental occlusal disharmony in animals produces chronic stress, which in turn suppresses spatial learning ability. The negative correlation between mastication and corticosteroids has raised the hypothesis that the suppression of the hypothalamic-pituitary-adrenal (HPA) axis by masticatory stimulation contributes, in part, to preserving cognitive functions associated with mastication. In the present review, we examine research pertaining to the mastication-induced amelioration of deficits in cognitive function, its possible relationship with the HPA axis, and the neuronal mechanisms that may be involved in this process in the hippocampus.
Collapse
Affiliation(s)
- Y Ono
- Department of Physiology and Neuroscience, Kanagawa Dental College, Yokosuka, Japan.
| | | | | | | |
Collapse
|
32
|
Kojo A, Yamada K, Kubo KY, Yamashita A, Yamamoto T. Occlusal Disharmony in Mice Transiently Activates Microglia in Hippocampal CA1 Region but Not in Dentate Gyrus. TOHOKU J EXP MED 2010; 221:237-43. [DOI: 10.1620/tjem.221.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Akiko Kojo
- Department of Physiology and Neuroscience, Kanagawa Dental College
- Research Center of Brain and Oral Science, Kanagawa Dental College
| | - Kentaro Yamada
- Department of Physiology and Neuroscience, Kanagawa Dental College
- Research Center of Brain and Oral Science, Kanagawa Dental College
| | - Kin-Ya Kubo
- Department of Oral Anatomy, Division of Oral Structure, Function and Development, Asahi University School of Dentistry
| | - Anzu Yamashita
- Research Center of Brain and Oral Science, Kanagawa Dental College
- Department of Human Biology, Kanagawa Dental College
| | - Toshiharu Yamamoto
- Research Center of Brain and Oral Science, Kanagawa Dental College
- Department of Human Biology, Kanagawa Dental College
| |
Collapse
|
33
|
Douglas CR, Avoglio JLV, de Oliveira H. Stomatognathic adaptive motor syndrome is the correct diagnosis for temporomandibular disorders. Med Hypotheses 2009; 74:710-8. [PMID: 19910127 DOI: 10.1016/j.mehy.2009.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/18/2022]
Abstract
Temporomandibular disorder is a generic and inadequate conception to be used as a diagnosis. It fails to express the etiology or the pathophysiology and it is mainly associated with the anatomical site. Moreover, the clinical condition presents a mandibular motor problem and not a joint problem. The hypothesis presents the new diagnosis stomatognathic motor adaptive syndrome, which comprehend a motor response and the adaptive processes it induces. Inadequate occlusal contacts cause the mandible to shift in order to reach an ideal intercuspal position. The condylar displacements are proportional to such movements. Temporomandibular joint (TMJ) receptors respond to the capsular mechanical stress and the information reaches the trigeminal sensory nuclei. The mandibular modified position seems to be relevant information and may interfere with catecholaminergic neurotransmission in basal ganglia. The main motor responses comprise increased jaw muscle tone, decreased velocity of movements and incoordination. The overload of muscle function will produce adaptive responses on many stomatognathic structures. The muscle adaptive responses are hypertonia, pain, fatigue and weakness. Temporomandibular joint presents tissue modification, disc alteration and cracking noise. Periodontium show increased periodontal membrane, bone height loss and gingival recession. Teeth manifest increased wear facets, abfraction and non-accidental fractures. The periodontal and teeth adaptive processes are usually identified as occlusal trauma. The altered stomatognathic functions will show loss of velocity during mastication and speech. Fatigue, weakness in jaw muscle and difficulties to chew hard food are related to hypertonia. Incoordination between stomatognathic muscles groups is found, causing involuntary tongue/cheek biting and lateral jaw movements on speech. Otologic complaints, as aural fullness and tinnitus, are related to the tensor tympani muscle, innervated by the trigeminal nerve.
Collapse
|
34
|
Yoshihara T, Taneichi R, Yawaka Y. Occlusal disharmony increases stress response in rats. Neurosci Lett 2009; 452:181-4. [PMID: 19383435 DOI: 10.1016/j.neulet.2009.01.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/09/2009] [Accepted: 01/23/2009] [Indexed: 11/24/2022]
Abstract
Repeated or chronic stress is known to produce structural and functional changes in the rat brain, and in particular, alter the response of the hypothalamic -- pituitary -- adrenal (HPA) axis to subsequent new stress. Occlusal disharmony via placement of acryl cap on the lower incisors of rats is perceived as chronic stress. To determine the response of the HPA axis to subsequent new stress in rats with occlusal disharmony, we measured plasma corticosterone levels in these rats after subjecting them to new stress. Plasma corticosterone levels in rats with and without incisal cap increased and reached a peak 30 min after exposure to the new stress. However, a later decrease in plasma corticosterone levels from peak levels was found in rats with incisal cap compared with rats without incisal cap. This finding suggests that occlusal disharmony alters the response of the HPA axis to subsequent new stress.
Collapse
Affiliation(s)
- Toshihiro Yoshihara
- Division of Pediatric Dentistry, Department of Oral Functional Science, Hokkaido University Graduate School of Dental Medicine, North 13, West 7, Kita-ku, Sapporo 060-8586, Japan.
| | | | | |
Collapse
|
35
|
Yozgatian JH, Zeredo JL, Hotokezaka H, Koga Y, Toda K, Yoshida N. Emotional stress- and pain-related behaviors evoked by experimental tooth movement. Angle Orthod 2008; 78:487-94. [PMID: 18416621 DOI: 10.2319/040207-165.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 06/01/2007] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate by behavioral methods the relationship between emotional stress and pain during experimental tooth movement in rats. MATERIALS AND METHODS Sixteen male Sprague-Dawley rats (210 to 250 g) were divided into two groups. The experimental group was treated with an active Ti-Ni appliance, and the control group received a passive appliance. A force of 20 gf was delivered by the active appliance between the maxillary first and second molars for 3 days. During this period the rat's behavior was evaluated eight times by means of open-field test and resistance-to-capture test. The specific parameters of animal activity were facial grooming, rearing, and locomotor activity, movement into the center of the open field, and response to capture. RESULTS Parameters related to stress and pain were higher in the group carrying active appliance, compared to the group with a passive appliance. Statistically significant differences in stress-related behavior between control and experimental groups were found 8 hours after placing the appliance and were most evident on the second day. Pain-related behavior was significantly greater in the experimental group than in the control group at 24 hours. CONCLUSIONS The increase in emotional stress evoked by orthodontic tooth movement may precede the appearance of periodontal pain.
Collapse
Affiliation(s)
- Joseph H Yozgatian
- Division of Orthodontics and Dentofacial Orthopedics and Division of Integrative Sensory Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Ichihashi Y, Saito N, Arakawa Y, Kurata C, Iinuma M, Tamura Y, Iwaku F, Kubo KY. The bite-raised condition in aged SAMP8 mice reduces the expression of glucocorticoid receptors in the dorsal and ventral hippocampus. Okajimas Folia Anat Jpn 2008; 84:137-42. [PMID: 18464530 DOI: 10.2535/ofaj.84.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we examined whether the effects induced by the bite-raised condition on glucocorticoid receptor (GR) expression differ between the dorsal and ventral hippocampus in SAMP8 mice. In the bite-raised condition, the number of GR-immunoreactive cells was significantly decreased in both the dorsal and ventral CA1 and dentate gyrus (DG) subfields of the hippocampus compared to control mice, as revealed by immunohistochemical analysis. The decrease in the number of GR-immunoreactive cells tended to be greater in the dorsal hippocampus than in the ventral hippocampus. Only in the DG subfield was there a significant difference in the number of GR-immunoreactive cells between the dorsal and ventral hippocampus. These findings suggest that in aged SAMP8 mice, the bite-raised condition decreases the number of GR-immunoreactive cells in both the dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Yukiko Ichihashi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Iinuma M, Ichihashi Y, Hioki Y, Kurata C, Tamura Y, Kubo KY. Malocclusion induces chronic stress. Okajimas Folia Anat Jpn 2008; 85:35-42. [PMID: 18833910 DOI: 10.2535/ofaj.85.35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, spatial learning in the water maze, fos induction, hippocampal neuron number, expression of glucocorticoid receptors (GR) and glucocorticoid receptor messenger ribonucleic acid (GRmRNA) in hippocampus and inhibitor of glucocorticoid (metyrapone). Bite-raised aged mice had significantly greater plasma corticosterone levels than age-matched control mice as well as impaired spatial memory and decreased Fos induction and a number of neurons in hippocampus. GR and GRmRNA expressions were significantly decreased in aged bite-raised mice compared with age-matched control mice. Pretreatment with metyrapone inhibited not only the bite-raised induced increase in plasma corticosterone levels, but also the reduction in the number of hippocampal neurons and impaired spatial learning. These datas suggest that the bite-raised condition may enhance the aging process in hippocampus, thereby leading to impairment of spatial memory by stress.
Collapse
Affiliation(s)
- Mitsuo Iinuma
- Department of Pediatric Dentistry, Division of Oral Structure, Function and Development, Mizuho, Gifu 501-0296, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Arakawa Y, Ichihashi Y, Iinuma M, Tamura Y, Iwaku F, Kubo KY. Duration-dependent effects of the bite-raised condition on hippocampal function in SAMP8 mice. Okajimas Folia Anat Jpn 2007; 84:115-119. [PMID: 18186225 DOI: 10.2535/ofaj.84.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We evaluated the effect of the duration of occlusal disharmony induced chronic stress on hippocampal function by examining spatial memory in the Morris water maze and on the number of hippocampal neurons in aged senescence-accelerated prone (SAMP8) mice. The bite of SAMP8 mice was raised 0.1 mm using dental adhesive. Groups of mice were tested in the Morris water maze 8, 11, or 22 d after raising the bite. The results indicated that the longer the duration of the bite-raised condition, the greater the impairment in spatial learning ability and the greater the decrease in the number of neurons in the hippocampal CA3 subfield. Thus, behavioral and morphologic deficits induced by the bite-raised condition in aged SAMP8 mice are influenced by the duration of the occlusal disharmony.
Collapse
Affiliation(s)
- Yoko Arakawa
- Department of Pediatric Dentistry, 1851-1 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Ichihashi Y, Arakawa Y, Iinuma M, Tamura Y, Kubo KY, Iwaku F, Sato Y, Onozuka M. Occlusal disharmony attenuates glucocorticoid negative feedback in aged SAMP8 mice. Neurosci Lett 2007; 427:71-6. [PMID: 17928141 DOI: 10.1016/j.neulet.2007.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/04/2007] [Accepted: 09/12/2007] [Indexed: 11/25/2022]
Abstract
To evaluate the mechanism underlying impaired cognitive function due to occlusal disharmony, we examined the effect of the bite-raised condition on spatial performance and hippocampal expression of glucocorticoid receptors (GR) and glucocorticoid receptor messenger ribonucleic acid (GRmRNA) using behavioral, immunohistochemical, and in situ hybridization techniques. Learning ability in the water maze test was significantly impaired in aged bite-raised mice compared with age-matched control mice. There was no difference between control and bite-raised young and middle-aged mice. Also, immunohistochemical and in situ hybridization analysis showed that the bite-raised condition enhanced the age-related decrease in GR and GRmRNA expression in the hippocampus. In particular, GR and GRmRNA expressions were significantly decreased in aged bite-raised mice compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice decreases GR and GRmRNA, which impairs the hypothalamic-pituitary-adrenal feedback inhibition, thereby leading to memory deficits.
Collapse
Affiliation(s)
- Yukiko Ichihashi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kubo KY, Yamada Y, Iinuma M, Iwaku F, Tamura Y, Watanabe K, Nakamura H, Onozuka M. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neurosci Lett 2006; 414:188-91. [PMID: 17207572 DOI: 10.1016/j.neulet.2006.12.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/24/2022]
Abstract
We examined the effect of occlusal disharmony in senescence-accelerated (SAMP8) mice on plasma corticosterone levels, hippocampal neuron number, and spatial performance in the water maze. The bite-raised condition was associated with an accelerated age-related decline in spatial memory, increased plasma corticosterone levels, and a decreased number of neurons in the hippocampal CA3 region. The findings suggest that the bite-raised condition in aged SAMP8 mice induces hippocampal neuron loss, thereby leading to senile memory deficits.
Collapse
Affiliation(s)
- Kin-ya Kubo
- Department of Oral Anatomy, Division of Oral Structure, Function and Development, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The two clinical cases reported demonstrate that traumatic occlusion can play a role in the initiation and progression of pulp and periradicular inflammation. The symptom of persistent pain did not subside after the commencement of endodontic treatment. Traumatic occlusion was identified in both cases to be the main cause and hence occlusal adjustment was performed. This resulted in the gradual resolution of the symptoms. The findings suggest that occlusal trauma is often overlooked in the diagnosis and management of endodontic diseases.
Collapse
Affiliation(s)
- Christine Y Yu
- Postgraduate Endodontics, School of Dentistry, The University of Western Australia.
| |
Collapse
|