1
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Bryson TD, Zurek M, Moore C, Taube D, Datta I, Levin A, Harding P. Prostaglandin E2 affects mitochondrial function in adult mouse cardiomyocytes and hearts. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102614. [PMID: 38471265 PMCID: PMC11180573 DOI: 10.1016/j.plefa.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Prostaglandin E2 (PGE2) signals differently through 4 receptor subtypes (EP1-EP4) to elicit diverse physiologic/pathologic effects. We previously reported that PGE2 via its EP3 receptor reduces cardiac contractility and male mice with cardiomyocyte-specific deletion of the EP4 receptor (EP4 KO) develop dilated cardiomyopathy. The aim of this study was to identify pathways responsible for this phenotype. We performed ingenuity pathway analysis (IPA) and found that genes differentiating WT mice and EP4 KO mice were significantly overrepresented in mitochondrial (adj. p value = 6.28 × 10-26) and oxidative phosphorylation (adj. p value = 1.58 × 10-27) pathways. Electron microscopy from the EP4 KO hearts show substantial mitochondrial disarray and disordered cristae. Not surprisingly, isolated adult mouse cardiomyocytes (AVM) from these mice have reduced ATP levels compared to their WT littermates and reduced expression of key genes involved in the electron transport chain (ETC) in older mice. Moreover, treatment of AVM from C57Bl/6 mice with PGE2 or the EP3 agonist sulprostone resulted in changes of various genes involved in the ETC, measured by the Mitochondrial Energy Metabolism RT2-profiler assay. Lastly, the EP4 KO mice have reduced expression of superoxide dismuatse-2 (SOD2), whereas treatment of AVM with PGE2 or sulprostone increase superoxide production, suggesting increased oxidative stress levels in these EP4 KO mice. Altogether the current study supports the premise that PGE2 acting via its EP4 receptor is protective, while signaling through its other receptors, likely EP3, is deleterious.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Dinoprostone/metabolism
- Mice
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Mice, Knockout
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Oxidative Phosphorylation/drug effects
- Mitochondria/metabolism
- Mitochondria/drug effects
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Matthew Zurek
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Carlin Moore
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - David Taube
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Albert Levin
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
Wang Y, Zhang X, Wang S, Li Z, Hu X, Yang X, Song Y, Jing Y, Hu Q, Ni Y. Identification of Metabolism-Associated Biomarkers for Early and Precise Diagnosis of Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12030400. [PMID: 35327590 PMCID: PMC8945702 DOI: 10.3390/biom12030400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
The 5-year survival rate for oral squamous cell carcinoma (OSCC), one of the most common head and neck cancers, has not improved in the last 20 years. Poor prognosis of OSCC is the result of failure in early and precise diagnosis. Metabolic reprogramming, including the alteration of the uptake and utilisation of glucose, amino acids and lipids, is an important feature of OSCC and can be used to identify its biomarkers for early and precise diagnosis. In this review, we summarise how recent findings of rewired metabolic networks in OSCC have facilitated early and precise diagnosis of OSCC.
Collapse
Affiliation(s)
- Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 210008, China;
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (Q.H.); (Y.N.)
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
- Correspondence: (Q.H.); (Y.N.)
| |
Collapse
|
4
|
Vahid F, Davoodi SH. Nutritional Factors Involved in the Etiology of Gastric Cancer: A Systematic Review. Nutr Cancer 2020; 73:376-390. [PMID: 32336147 DOI: 10.1080/01635581.2020.1756353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Since treatment options for GC are limited, the best and most effective way is to try to reduce the incidences and understanding prevention strategies. OBJECTIVE The success in prevention strategies depends on understanding etiologic mechanisms. Our goal is to identify the major nutritional risk factors for GC, and we will examine the controversial evidence. DATA SOURCES We used Pub Med, Google Scholar, Scopus, Science Direct, Elsevier, Springer, and MEDLINE databases for extracting articles. DATA EXTRACTION Human studies published in English from 1997to2018 were included. Two reviewers other than authors initially assessed abstract of 742 papers and 248papers were selected for future assessments. After full review and consideration of the inclusion and exclusion criteria, we used 85 articles. RESULTS Dietary salt is a strong independent risk for GC whereas alcohol is most likely a risk only in the presence of heavy alcohol consumption. Red meat and high-fat diet increase the risk of developing GC but fresh fruits, vegetables and certain micronutrients like selenium and vitamin C are protective. CONCLUSION Some nutrients such as selenium, vitamin C, folate, iron, and zinc are involved in the etiology of GC. On the other hand; salt, fats, alcohol, red meat, and pepper were reported to be risk factors for GC. Since the GC is a heterogeneous malignancy and multiple factors are involved in its genesis.
Collapse
Affiliation(s)
- Farhad Vahid
- Department of Nutritional Sciences, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sayed Hossein Davoodi
- Faculty of Nutrition Sciences and Food Technology, Department of Nutritional Sciences, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Association between plasma prostaglandin E2 level and colorectal cancer. Eur J Cancer Prev 2020; 30:59-68. [PMID: 33275396 DOI: 10.1097/cej.0000000000000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidences for the personalized use of nonsteroidal anti-inflammatory drugs (NSAIDs) in colorectal cancer (CRC) prevention and treatment that include consideration of prostaglandin E2 levels are necessary. This study was designed as a case-control study including 60 CRC patients and 120 cancer-free controls. A sensitive empirical method, precolumn derivatization HPLC, was used to determine plasma PGE2 levels. The TaqMan SNP Genotyping Assay was used for the genotyping of prostaglandin-endoperoxide synthase 2 (PTGS2) polymorphisms. Multivariate logistic regression analysis suggested that 1 log10(PGE2) increase would result in a 3.64-fold increase in the risk of CRC. Moreover, subjects with log10(PGE2) level in the 75th percentile had a significantly higher risk of CRC than those with log10(PGE2) levels in the 25th percentile [odds ratio (OR), 3.50; 95% confidence interval (CI), 1.35-9.05]. This association was more evident after adjustment for history of NSAIDs use (OR, 3.85; 95% CI, 1.46-10.16). Preliminarily, 260.02 and 414.95 pg/ml might be proposed as the preventive and warning cutoff values of plasma PGE2 for CRC. The preferred NSAIDs dose for patients with the AG+GG (rs689466) and CC+CT (rs5275) genotypes should be higher than that of patients carrying AA or TT genotypes, despite the presence of equal plasma PGE2 levels. We show for the first time that the plasma PGE2 level is associated with the risk of CRC. We provide a preliminary suggestion for NSAIDs doses adjustment according to PTGS2 genotypes after consideration of plasma PGE2 levels.
Collapse
|
6
|
Wang Y, Liu S, Li B, Jiang Y, Zhou X, Chen J, Li M, Ren B, Peng X, Zhou X, Cheng L. Staphylococcus aureus induces COX-2-dependent proliferation and malignant transformation in oral keratinocytes. J Oral Microbiol 2019; 11:1643205. [PMID: 31448061 PMCID: PMC6691923 DOI: 10.1080/20002297.2019.1643205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
The COX-2/PGE2 axis can play roles in mediating the progression of tumor. COX-2 induction was observed in oral cancer. In our previous study, we found Staphylococcus aureus, a pathogen prevalent in oral cancer, can activate the COX-2/PGE2 pathway in human oral keratinocyte (HOK) cells. Here, we investigated the proliferation of HOK cells affected by COX-2 induction and the role of COX-2 induction in the malignant transformation of HOK cells. We found S. aureus was able to facilitate HOK cell proliferation through upregulating COX-2 expression. With the induction of COX-2, expression of oral cancer-associated genes cyclin D1 was upregulated and p16 was downregulated. Transcriptome analysis showed that the “NF−kappa B signaling pathway” and “TNF signaling pathway” had the highest enrichment of differentially expressed genes (DEGs) with COX-2 over-expression. Seven upregulated genes (jun, tlr4, cxcl1, lif, cxcl3, tnfrsf1β, and il1β) in these two pathways were critical for the increased proliferation of HOK cells and might be associated with COX-2. Malignant transformation of cells was evaluated by soft agar colony formation assay and S. aureus infection promoted HOK cell colony formation. These results suggest the potential of S. aureus to induce the infection-associated malignant transformation of oral epitheliums through COX-2 activation.
Collapse
Affiliation(s)
- Yuxia Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Shiyu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sánchez-Romero C, Mosqueda-Taylor A, Delgado-Azañero W, Paes de Almedia O, Bologna-Molina R. Comparison of fatty acid synthase and cyclooxygenase-2 immunoexpression in embryonal, benign, and malignant odontogenic tissues. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 127:309-317. [PMID: 30692057 DOI: 10.1016/j.oooo.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to analyze the immunohistochemical expression of fatty acid synthase (FASN) and cyclooxygenase-2 (COX-2) in tooth germ (TG), ameloblastoma (AM), ameloblastic carcinoma (AC), ameloblastic fibroma (AF), and ameloblastic fibrosarcoma (AFS). STUDY DESIGN Immunohistochemistry for FASN and COX-2 was performed in 10 TG, 44 AM, 10 AC, 9 AF, and 5 AFS specimens. The results were analyzed by using the immunoreactive score (IRS) and Kruskal-Wallis test followed by Dunn's post-test. RESULTS Most TG specimens were strongly positive for FASN, whereas COX-2 was weak or negative. All AM and AC specimens expressed both proteins. In AF specimens, FASN and COX-2 were variably expressed in the epithelium and negative in the mesenchyme. In AFS specimens, FASN was strongly positive in the malignant mesenchyme and variable in the epithelium; COX-2 was focal or weak in both components. FASN expression showed significant differences in the following comparisons: TG vs AC, AM vs AC, and AF vs AFS. Differences in COX-2 were significant when comparing TG specimens with AM, AC, and AF specimens. CONCLUSIONS The results suggest that FASN and COX-2 overexpression may have a role in the pathogenesis of AM and AC, whereas in AFS, FASN seems to be mainly involved. Further studies are necessary to clarify these mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Celeste Sánchez-Romero
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil.
| | | | - Wilson Delgado-Azañero
- Department of Oral Pathology, Oral Medicine and Oral Surgery, Facultyof Dentistry, Universidad Peruana Ceyetano Heredia, Lima, Peru
| | - Oslei Paes de Almedia
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, Universidad de La Republica (UDELAR), Montevideo, Uruguay
| |
Collapse
|
8
|
Nasry WHS, Rodriguez-Lecompte JC, Martin CK. Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers (Basel) 2018; 10:cancers10100348. [PMID: 30248985 PMCID: PMC6211032 DOI: 10.3390/cancers10100348] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/16/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
A significant amount of research indicates that the cyclooxygenase/prostaglandin E2 (PGE2) pathway of inflammation contributes to the development and progression of a variety of cancers, including squamous cell carcinoma of the oral cavity and oropharynx (OSCC). Although there have been promising results from studies examining the utility of anti-inflammatory drugs in the treatment of OSCC, this strategy has been met with only variable success and these drugs are also associated with toxicities that make them inappropriate for some OSCC patients. Improved inflammation-targeting therapies require continued study of the mechanisms linking inflammation and progression of OSCC. In this review, a synopsis of OSCC biology will be provided, and recent insights into inflammation related mechanisms of OSCC pathobiology will be discussed. The roles of prostaglandin E2 and cluster of differentiation factor 147 (CD147) will be presented, and evidence for their interactions in OSCC will be explored. Through continued investigation into the protumourigenic pathways of OSCC, more treatment modalities targeting inflammation-related pathways can be designed with the hope of slowing tumour progression and improving patient prognosis in patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
9
|
Ramu A, Kathiresan S, Ramadoss H, Nallu A, Kaliyan R, Azamuthu T. Gramine attenuates EGFR-mediated inflammation and cell proliferation in oral carcinogenesis via regulation of NF-κB and STAT3 signaling. Biomed Pharmacother 2018; 98:523-530. [DOI: 10.1016/j.biopha.2017.12.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
|
10
|
Lin KH, Shibu MA, Kuo YH, Chen YC, Hsu HH, Bau DT, Chen MC, Tu CC, Viswanadha VP, Huang CY. Taiwanin C selectively inhibits arecoline and 4-NQO-induced oral cancer cell proliferation via ERK1/2 inactivation. ENVIRONMENTAL TOXICOLOGY 2017; 32:62-69. [PMID: 26537528 DOI: 10.1002/tox.22212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Arecoline, the most abundant alkaloid in betel nut is known to promote abnormal proliferation of epithelial cells by enhancing epidermal growth factor receptor (EGFR) activation and cyclooxygenase-2 (COX2) expression. Taiwanin C, a naturally occurring lignan extracted from Taiwania cryptomerioides, has been found to be a potential inhibitor of COX2 expression. Based on the MTT assay results, taiwanin C was found to be effective in inhibiting the tumorous T28 cell than the non-tumorous N28 cells. The modulations in the expression of relevant proteins were determined to understand the mechanism induced by taiwanin C to inhibit T28 cell proliferation. The levels of activated EGFR and COX2 were found to be abnormally high in the T28 oral cancer cells. However, taiwanin C was found to inhibit the activation of EGFR and regulated other related downstream proteins and thereby inhibited the T28 cell proliferation. In conclusion the results indicate that taiwanin C suppresses COX2-EGFR and enhances P27 pathways to suppress arecoline induced oral cancer cell proliferation via ERK1/2 inactivation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 62-69, 2017.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Emergency Department, China Medical University Hospital, Taichung, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yueh-Chiu Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Chang LY, Wan HC, Lai YL, Chou IC, Chen YT, Hung SL. Areca nut extracts increased the expression of cyclooxygenase-2, prostaglandin E2 and interleukin-1α in human immune cells via oxidative stress. Arch Oral Biol 2013; 58:1523-31. [DOI: 10.1016/j.archoralbio.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/23/2012] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
|
12
|
Dai J, Shen J, Pan W, Shen S, Das UN. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis 2013; 12:71. [PMID: 23663688 PMCID: PMC3689620 DOI: 10.1186/1476-511x-12-71] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 12/24/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have tumoricidal action, though the exact mechanism of their action is not clear. The results of the present study showed that of all the fatty acids tested, linoleic acid (LA) and α-linolenic acid (ALA) were the most effective in suppressing the growth of normal gastric cells (GES1) at 180 and 200 μM, while gastric carcinoma cells (MGC and SGC) were inhibited at 200 μM. Arachidonic acid (AA) suppressed the growth of GES1, MGC and SGC cells and lower concentrations (120 and 160 μM) of AA were more effective against gastric carcinoma (MGC and SGC) cells compared to normal gastric cells (GES1). Paradoxically, both eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids though are more unsaturated than AA, were less effective compared with LA, ALA and AA in suppressing the growth of both normal and cancer cells. At the concentration used, methotrexate showed much less growth suppressive action compared to all the fatty acids tested. PUFAs-treated cells showed accumulation of lipid droplets. A close association was noted between apoptosis and lipid peroxides formed compared to the ability of normal and tumor cells to generate ROS (reactive oxygen species) and induce SOD (superoxide dismutase activity) in response to fatty acids tested and methotrexate. Both normal and tumor cells generated lipoxin A4 (LXA4) in response to supplementation of fatty acids and methotrexate though no significant correlation was noted between their ability to induce apoptosis and LXA4 formed. These results suggest that PUFAs induced apoptosis of normal gastric and gastric carcinoma cells could, partly, be attributed to lipid peroxidation process.
Collapse
|
13
|
Davoine F, Sim A, Tang C, Fisher S, Ethier C, Puttagunta L, Wu Y, McGaw WT, Yu D, Cameron L, Adamko DJ, Moqbel R. Eosinophils in human oral squamous carcinoma; role of prostaglandin D2. JOURNAL OF INFLAMMATION-LONDON 2013; 10:4. [PMID: 23369060 PMCID: PMC3637094 DOI: 10.1186/1476-9255-10-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 01/28/2013] [Indexed: 01/21/2023]
Abstract
Eosinophils are often predominant inflammatory leukocytes infiltrating oral squamous carcinoma (OSC) sites. Prostaglandins are secreted by oral carcinomas and may be involved in eosinophil infiltration. The objective of this study was to determine the factors contributing to eosinophil migration and potential anti-neoplastic effects on OSC. Eosinophil degranulation was evaluated by measuring release of eosinophil peroxidase (EPO). Eosinophil chemotaxis towards OSC cells was assessed using artificial basement membrane. Eosinophil infiltration was prominent within the tissue surrounding the OSC tumor mass. We observed growth inhibition of the OSC cell line, SCC-9, during co-culture with human eosinophils, in vitro, which correlated with EPO activity that possesses growth inhibitory activity. The PGD2 synthase inhibitor, HQL-79, abrogated migration towards SCC-9. Our data suggest that OSC-derived PGD2 may play an important role via CRTH2 (the PGD2 receptor on eosinophils) in eosinophil recruitment and subsequent anti-tumor activity through the action of eosinophil cationic proteins.
Collapse
Affiliation(s)
- Francis Davoine
- Pulmonary Research Group, University of Alberta, 559 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mishra R. Biomarkers of oral premalignant epithelial lesions for clinical application. Oral Oncol 2012; 48:578-84. [PMID: 22342569 DOI: 10.1016/j.oraloncology.2012.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 12/15/2022]
Abstract
Oral cancer is the sixth most common form of cancer worldwide, and the majority of cases occur in India and Southeast Asia. Its major risk factors in the western world include smoking and drinking alcohol, whereas in Asia, it is primarily caused by tobacco/areca nut/betel leaf chewing and/or human papillomavirus (HPV) infections. Little is known about this type of cancer despite recent advances in cancer biology. The generally asymptomatic nature of the early oral lesions causes them to remain undetected in many cases. Thus, the disease progresses substantially before the patients seek treatment and is a major contributing factor to the severity of this disease. Therefore, there is a great need to create awareness for its prevention and early diagnosis. The application of advanced molecular biological and biochemical methodologies to elucidate its biomarkers may aid in early detection; however, much more work must be done for this information to be effectively applied in the clinical setting. This review focuses on the need for systematic diagnoses in the early detection of oral cancer using molecular and biochemical approaches, thereby reducing the number of advanced cases in the chewing tobacco-dominated oral cancer population.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Jharkhand, India.
| |
Collapse
|
15
|
Brusevold IJ, Husvik C, Schreurs O, Schenck K, Bryne M, Søland TM. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci 2010; 118:168-76. [PMID: 20487006 DOI: 10.1111/j.1600-0722.2010.00720.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Invasion is a hallmark of malignancy. The aim of this study was to develop an in vitro model that can be used for experimental studies of cancer cell invasion. The organotypic oral cancer model was constructed by growing oral squamous cell carcinoma (OSCC) cells on a collagen matrix in which normal human fibroblasts were incorporated. Immunohistochemical staining of the model showed that the expression of invasion-related molecules such as phosphorylated extracellular signal-regulated kinases 1 and 2 (p-ERK1/2), cyclooxygenase-2 (COX-2), p75(NTR), and hepatocyte growth factor receptor (Met) was similar to that seen in OSCC. Treatment of the model with cobalt chloride (CoCl(2)) to mimic hypoxic conditions increased cancer cell invasion, defined as the appearance of cancer cell islands protruding into the matrix. Models treated with CoCl(2) showed increased expression of p75(NTR) and laminin-5 in the cancer cells, and a more pronounced fragmentation of collagen IV in the basal membrane area, in contrast to models that were left untreated. The results indicate that the present model is well suited for studies on cancer cell invasion in the matrix and that the addition of CoCl(2) on day 3 of the experiment is indicated because it markedly increases the invasion and improves the model.
Collapse
Affiliation(s)
- Ingvild J Brusevold
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Husvik C, Bryne M, Halstensen TS. Epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines is mediated through extracellular signal-regulated kinase 1/2 and p38 but is Src and nuclear factor-kappa B independent. Eur J Oral Sci 2009; 117:528-35. [PMID: 19758248 DOI: 10.1111/j.1600-0722.2009.00669.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular signalling cascade(s) mediating epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression is poorly defined in oral carcinomas. Investigation of two different oral squamous cell carcinoma (OSCC) cell lines with high EGF-induced COX-2 expression revealed, however, that this expression was dependent on two mitogen-activated protein kinase (MAPK) pathways [extracellular signal-regulated kinase 1/2 (ERK1/2) and p38] because combined inhibition of these pathways was needed to abolish EGF-induced COX-2 expression. Surprisingly, inhibition of phosphoinositide-3 kinase (PI3K) increased EGF-induced COX-2 expression in the basaloid OSCC cell line (C12), suggesting a PI3K-controlled, inhibitory COX-2-regulating pathway. Neither the transcription factor nuclear factor-kappaB (NF-kappaB), nor Src, was involved in EGF-induced COX-2 expression. The results suggest that EGF-induced COX-2 expression is regulated by several pathways, and emphasizes that individual tumors use different strategies for intracellular signalling.
Collapse
Affiliation(s)
- Camilla Husvik
- Laboratory for mucosal immunology (LMI), Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
17
|
Husvik C, Bryne M, Halstensen TS. c-Jun N-terminal kinase negatively regulates epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines. Eur J Oral Sci 2009; 117:663-8. [DOI: 10.1111/j.1600-0722.2009.00682.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Elevated aromatase expression correlates with cervical carcinoma progression. Gynecol Oncol 2009; 114:496-500. [PMID: 19555998 DOI: 10.1016/j.ygyno.2009.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We have previously demonstrated that aromatase mRNA is induced in cervical carcinomas compared to normal tissue, suggesting that in situ aromatase expression leading to elevated local estrogen production may contribute to cervical carcinogensis. Our objectives are to examine 1) whether aromatase protein and activity are induced in cervical carcinomas, 2) aromatase expression correlates with disease stage, and 3) inflammatory cytokines (e.g., IL-6 and TNFalpha) may correlate with aromatase expression. METHODS RNA and protein were isolated from human cervical carcinomas and normal cervical biopsies to examine aromatase expression, using real-time RT-PCR, Western blot analysis, and immunohistochemistry. Aromatase activity in tissue was measured using the tritiated water release method. IL-6 and TNFalpha expression was also examined. RESULTS Aromatase protein and activity levels were increased in cervical carcinomas compared to normal tissue. RNA levels correlated significantly with disease progression, with highest aromatase expression detected in stage IV tumors (p<0.001, R(2)=0.77). Aromatase promoters 1.3 and 1.4 were elevated in cervical carcinomas and in cervical cancer cells. The expression of inflammatory cytokines IL-6 and TNFalpha, known to induce aromatase, significantly correlated with aromatase expression (R(2)>0.9). TNFalpha treatment induced aromatase expression in cervical cancer cells. CONCLUSION Increased aromatase protein and activity in cervical carcinomas and the correlation of its expression with disease stage implicates it in cervical carcinogenesis. The correlation of IL-6 and TNFalpha expression with aromatase suggests that these inflammatory cytokines may induce aromatase expression, which is confirmed by induction of aromatase expression due to TNFalpha treatment of cervical cancer cells.
Collapse
|