1
|
Kuc AE, Kulgawczyk M, Sulewska ME, Kuc N, Kawala B, Lis J, Sarul M, Kotuła J. The Effect of Corticotomy-Assisted Orthodontic Therapy (CAOT) or Periodontally Accelerated Osteogenic Orthodontics (PAOO) on Bone Remodeling and the Health of Periodontium: A Systematic Review of Systematic Reviews. J Clin Med 2024; 13:5726. [PMID: 39407786 PMCID: PMC11477216 DOI: 10.3390/jcm13195726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Orthodontic treatment involves moving teeth within the alveolar ridge. Bone remodeling is associated with the activity of osteoblasts and osteoclasts. Procedures such as corticotomy-assisted orthodontic therapy (CAOT) or periodontally accelerated osteogenic orthodontics (PAOO) are intended to reduce bone density and negative stress on the grip side and therefore limit bone resorption during orthodontic movement or add bone substitute material so that the tooth does not cross the vestibular plate. Methods: The study was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The study design was defined in the PICO format-Population (P): patients with full permanent dentition, both adolescents and adults; Intervention (I): orthodontic treatment with fixed appliances using additional supportive treatments such as CAOT or PAOO; Comparison (C): assessment of the impact of additional treatments during orthodontic treatment on the remodeling of the alveolar bone and the condition of the periodontium; Result (O): statistically significant/non-significant differences in the condition of the alveolar bone before and after orthodontic treatment. Search filters include the time of publication of the article, systematic reviews from the last five years, and publications that appeared in English. The information provided in the abstracts of systematic reviews that describe the effects of additional procedures during orthodontic treatment such as CAOT or PAOO on the health of periodontium was analyzed. Articles unrelated to the subject of the planned study and those in which tooth movement acceleration was analyzed were excluded. Results: Eight articles were selected in which a total number of 835 subjects took part. The changes in bone density and effects on periodontium were different after CAOT and PAOO. Conclusions: The validity of CAOT and PAOO procedures remains controversial. Better results are obtained when combined with tissue augmentation or thickening of the gingival phenotype rather than as stand-alone procedures, as their uses to protect periodontal tissues are limited.
Collapse
Affiliation(s)
- Anna Ewa Kuc
- Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (B.K.); (J.L.); (J.K.)
| | - Maria Kulgawczyk
- Dental Star Specialist Center for Aesthetic Dentistry, ul. Konopnicka 1c/ U3, 15-215 Bialystok, Poland;
| | - Magdalena Ewa Sulewska
- Department of Periodontal and Oral Mucosa Diseases, ul. Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Natalia Kuc
- Faculty of Medicine, Medical University in Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland;
| | - Beata Kawala
- Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (B.K.); (J.L.); (J.K.)
| | - Joanna Lis
- Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (B.K.); (J.L.); (J.K.)
| | - Michał Sarul
- Department of Integrated Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Jacek Kotuła
- Department of Dentofacial Orthopaedics and Orthodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (B.K.); (J.L.); (J.K.)
| |
Collapse
|
2
|
Wang J, Huang Y, Chen F, Li W. The age-related effects on orthodontic tooth movement and the surrounding periodontal environment. Front Physiol 2024; 15:1460168. [PMID: 39308977 PMCID: PMC11412856 DOI: 10.3389/fphys.2024.1460168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Orthodontic treatment in adults is often related to longer treatment time as well as higher periodontal risks compared to adolescents. The aim of this review is to explore the influence of age-related chages on orthodontic tooth movement (OTM) from macro and micro perspectives. Adults tend to show slower tooth movement speed compared to adolescence, especially during the early phase. Under orthodontic forces, the biological responses of the periodontal ligament (PDL) and alveolar bone is different between adult and adolescents. The adult PDL shows extended disorganization time, increased cell senescence, less cell signaling and a more inflammatory microenvironment than the adolescent PDL. In addition, the blood vessel surface area is reduced during the late movement phase, and fiber elasticity decreases. At the same time, adult alveolar bone shows a higher density, as well as a reduced osteoblast and osteoclast activation, under orthodontic forces. The local cytokine expression also differs between adults and adolescents. Side-effects, such as excessive root resorption, greater orthodontic pain, and reduced pulpal blood flow, also occur more frequently in adults than in adolescents.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feng Chen
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
- Central laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
3
|
Yang L, Chen H, Yang C, Hu Z, Jiang Z, Meng S, Liu R, Huang L, Yang K. Research progress on the regulatory mechanism of integrin-mediated mechanical stress in cells involved in bone metabolism. J Cell Mol Med 2024; 28:e18183. [PMID: 38506078 PMCID: PMC10951882 DOI: 10.1111/jcmm.18183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Li Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Hong Chen
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Chanchan Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhengqi Hu
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Shengzi Meng
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | | - Lan Huang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | |
Collapse
|
4
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Bakhshandeh B, Sorboni SG, Ranjbar N, Deyhimfar R, Abtahi MS, Izady M, Kazemi N, Noori A, Pennisi CP. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp Cell Res 2023; 431:113766. [PMID: 37678504 DOI: 10.1016/j.yexcr.2023.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Stem cells in their natural microenvironment are exposed to biochemical and biophysical cues emerging from the extracellular matrix (ECM) and neighboring cells. In particular, biomechanical forces modulate stem cell behavior, biological fate, and early developmental processes by sensing, interpreting, and responding through a series of biological processes known as mechanotransduction. Local structural changes in the ECM and mechanics are driven by reciprocal activation of the cell and the ECM itself, as the initial deposition of matrix proteins sequentially affects neighboring cells. Recent studies on stem cell mechanoregulation have provided insight into the importance of biomechanical signals on proper tissue regeneration and function and have shown that precise spatiotemporal control of these signals exists in stem cell niches. Against this background, the aim of this work is to review the current understanding of the molecular basis of mechanotransduction by analyzing how biomechanical forces are converted into biological responses via cellular signaling pathways. In addition, this work provides an overview of advanced strategies using stem cells and biomaterial scaffolds that enable precise spatial and temporal control of mechanical signals and offer great potential for the fields of tissue engineering and regenerative medicine will be presented.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Nika Ranjbar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Roham Deyhimfar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sadat Abtahi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrnaz Izady
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Navid Kazemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Atefeh Noori
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
6
|
Maltha JC, Kuijpers-Jagtman AM. Mechanobiology of orthodontic tooth movement: An update. J World Fed Orthod 2023; 12:156-160. [PMID: 37349154 DOI: 10.1016/j.ejwf.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023]
Abstract
The purpose of this review is to provide an update on the changes at the cellular and tissue level occurring during orthodontic force application. For the understanding of this process, knowledge of the mechanobiology of the periodontal ligament and the alveolar bone are essential. The periodontal ligament and alveolar bone make up a functional unit that undergoes robust changes during orthodontic tooth movement. Complex molecular signaling is responsible for converting mechanical stresses into biochemical events with a net result of bone apposition and/or bone resorption. Despite an improved understanding of mechanical and biochemical signaling mechanisms, it is largely unknown how mechanical stresses regulate the differentiation of stem/progenitor cells into osteoblast and osteoclast lineages. To advance orthodontics, it is crucial to gain a better understanding of osteoblast differentiation from mesenchymal stem/progenitor cells and osteoclastogenesis from the hematopoietic/monocyte lineage.
Collapse
Affiliation(s)
- Jaap C Maltha
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine/Medical Faculty, University of Bern, Bern, Switzerland; Faculty of Dentistry, Universitas Indonesia, Campus Salemba, Jakarta, Indonesia.
| |
Collapse
|
7
|
Ren J, Fok MR, Zhang Y, Han B, Lin Y. The role of non-steroidal anti-inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration. J Transl Med 2023; 21:149. [PMID: 36829232 PMCID: PMC9960225 DOI: 10.1186/s12967-023-03990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Periodontitis is the sixth most prevalent chronic disease globally and places significant burdens on societies and economies worldwide. Behavioral modification, risk factor control, coupled with cause-related therapy have been the "gold standard" treatment for managing periodontitis. Given that host inflammatory and immunological responses play critical roles in the pathogenesis of periodontitis and impact treatment responses, several adjunctive strategies aimed at modulating host responses and improving the results of periodontal therapy and maintenance have been proposed. Of the many pharmacological host modulators, we focused on non-steroidal anti-inflammatory drugs (NSAIDs), due to their long history and extensive use in relieving inflammation and pain and reducing platelet aggregation. NSAIDs have been routinely indicated for treating rheumatic fever and osteoarthritis and utilized for the prevention of cardiovascular events. Although several efforts have been made to incorporate NSAIDs into the treatment of periodontitis, their effects on periodontal health remain poorly characterized, and concerns over the risk-benefit ratio were also raised. Moreover, there is emerging evidence highlighting the potential of NSAIDs, especially aspirin, for use in periodontal regeneration. This review summarizes and discusses the use of NSAIDs in various aspects of periodontal therapy and regeneration, demonstrating that the benefits of NSAIDs as adjuncts to conventional periodontal therapy remain controversial. More recent evidence suggests a promising role for NSAIDs in periodontal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jianhan Ren
- grid.194645.b0000000121742757Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Melissa Rachel Fok
- grid.194645.b0000000121742757Division of Periodontology and Implant Dentistry, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yunfan Zhang
- grid.11135.370000 0001 2256 9319Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Zhang Y, Zhang T, Zhang Z, Su J, Wu X, Chen L, Ge X, Wang X, Jiang N. Periodontal ligament cells derived small extracellular vesicles are involved in orthodontic tooth movement. Eur J Orthod 2022; 44:690-697. [PMID: 35980351 DOI: 10.1093/ejo/cjac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Small extracellular vesicles (EVs) from human periodontal ligament cells (hPDLCs) are closely associated with periodontal homeostasis. Far less is known about EVs association with orthodontic tooth movement (OTM). This study aimed to explore the role of small EVs originated from hPDLCs during OTM. MATERIALS AND METHODS Adult C57BL/6 mice were used. Springs were bonded to the upper first molars of mice for 7 days to induce OTM in vivo. To block small EVs release, GW4869 was intraperitoneally injected and the efficacy of small EVs inhibition in periodontal ligament was verified by transmission electron microscope (TEM). Tooth movement distance and osteoclastic activity were studied. In vitro, hPDLCs were isolated and administered compressive force in the EV-free culture media. The cell morphologies and CD63 expression of hPDLCs were studied. Small EVs were purified and characterized using a scanning electron microscope, TEM, western blot, and nanoparticle tracking analysis. The expression of proteins in the small EVs was further processed and validated using a human immuno-regulated cytokines array and an enzyme-linked immunosorbent assay (ELISA). RESULTS The small EV depletion significantly decreased the distance and osteoclastic activity of OTM in the mice. The hPDLCs displayed different morphologies under force compression and CD63 expression level decreased verified by western blot and immunofluorescence staining. Small EVs purified from supernatants of the hPDLCs showed features with <200 nm diameter, the positive EVs marker CD63, and the negative Golgi body marker GM130. The number of small EVs particles increased in hPDLCs suffering force stimuli. According to the proteome array, the level of soluble intercellular adhesion molecule-1 (sICAM-1) displayed the most significant fold change in small EVs under compressive force and this was further confirmed using an ELISA. LIMITATIONS Further mechanism studies are warranted to validate the hPDLC-originated small EVs function in OTM through proteins delivery. CONCLUSIONS The notable decrease in the OTM distance after small EV blocking and the significant alteration of the sICAM-1 level in the hPDLC-originated small EVs under compression provide a new vista into small EV-related OTM biology.
Collapse
Affiliation(s)
- Yimei Zhang
- First Clinic Division, Peking University Hospital of Stomatology, Beijing, PR China
| | - Ting Zhang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Ziqian Zhang
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Junxiang Su
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Xiaowen Wu
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xuejun Ge
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, PR China
| | - Xiujing Wang
- First Clinic Division, Peking University Hospital of Stomatology, Beijing, PR China
| | - Nan Jiang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| |
Collapse
|
9
|
Agarwal S, Chaubey KK, Chaubey A, Agarwal RR. Perio-ortho interdisciplinary approach in a 50-year-old patient: A case report with 5-year follow-up. J Indian Soc Periodontol 2021; 25:549-552. [PMID: 34898923 PMCID: PMC8603789 DOI: 10.4103/jisp.jisp_651_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 01/31/2021] [Indexed: 11/22/2022] Open
Abstract
Esthetic demands for correction of irregularities of dentition are becoming a prime concern even in patients above the age of 40 years. Severe periodontitis, being insidious, if present simultaneously, complicates the situation. Periodontally compromised adult patients requiring the treatment for malaligned teeth are encountered very frequently in daily practice, and the correction of these requires a combined perio-ortho interdisciplinary approach. The present case report deals with a 5-year follow-up of a case whose prime concern was rotated anterior teeth in the maxillary arch. However, along with this, severe periodontitis was also present. Open flap debridement along with osseous grafting was done wherever required, followed by fixed adjunctive orthodontic treatment. After the completion of orthodontic treatment, a fixed retainer in the form of splinting was given and the entire treatment met the esthetic along with functional demands of the patient. Early 6 months followed by yearly follow-ups reflected clinical and radiographic improvements in the dentition.
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Periodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Krishna Kumar Chaubey
- Department of Periodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Abhinav Chaubey
- Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Raghu Raghav Agarwal
- Department of Periodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Knaup I, Symmank J, Bastian A, Neuss S, Pufe T, Jacobs C, Wolf M. Impact of FGF1 on human periodontal ligament fibroblast growth, osteogenic differentiation and inflammatory reaction in vitro. J Orofac Orthop 2021; 83:42-55. [PMID: 34874457 DOI: 10.1007/s00056-021-00363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate in vitro the impact of fibroblast growth factor 1 (FGF1) in comparison to ascorbic acid (AscA) on human periodontal ligament fibroblast (HPdLF) growth, their osteogenic differentiation, and modulation of their inflammatory reaction to mechanical stress. METHODS The influence of different concentrations of FGF1 (12.5-200 ng/mL) on growth and proliferation of HPdLF cells was analyzed over 20 days by counting cell numbers and the percentage of Ki67-positive cells. Quantitative expression analysis of genes encoding the osteogenic markers alkaline phosphatase (ALPL), Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OSP), as well as the fibroblast markers vimentin (VIM) and fibroblast-specific protein 1 (FSP1), was performed after 2 and 20 days of cultivation. Metabolic activity was determined by MTT assay. For comparison with AscA, 50 ng/mL FGF1 was used for stimulation for 2 and 20 days. Cell number, percentage of Ki67-positive cells, and expression of osteoblast- and fibroblast-specific genes were examined. Alkaline phosphatase activity was visualized by NBT/BCIP and calcium deposits were stained with alizarin red. Cytokine (IL‑6, IL‑8, COX2/PGE2) expression and secretion were analyzed by qPCR and ELISA in 6 h mechanically compressed HPdLF cultured for 2 days with FGF1 or ascorbic acid. RESULTS Higher concentrations of FGF1 promoted cell proliferation upon short-term stimulation, whereas prolonged treatment induced the expression of osteogenic markers even with low concentrations. AscA promotes cell growth more markedly than FGF1 in short-term cultures, whereas FGF1 induced osteogenic cell fate more strongly in long-term culture. Both factors induced an increased inflammatory response of HPdLF to mechanical compression. CONCLUSION Our data suggest that FGF1 promotes an osteogenic phenotype of HPdLF and limits inflammatory response to mechanical forces compared to AscA.
Collapse
Affiliation(s)
- Isabel Knaup
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Judit Symmank
- Department of Orthodontics, Jena University Hospital, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Wendlingweg 2, 52074, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, Jena University Hospital, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
11
|
Malone ET, Ganther S, Mena N, Radaic A, Shariati K, Kindberg A, Tafolla C, Kamarajan P, Fenno JC, Zhan L, Kapila YL. Treponema denticola-Induced RASA4 Upregulation Mediates Cytoskeletal Dysfunction and MMP-2 Activity in Periodontal Fibroblasts. Front Cell Infect Microbiol 2021; 11:671968. [PMID: 34094999 PMCID: PMC8171266 DOI: 10.3389/fcimb.2021.671968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
The periodontal complex consists of the periodontal ligament (PDL), alveolar bone, and cementum, which work together to turn mechanical load into biological responses that are responsible for maintaining a homeostatic environment. However oral microbes, under conditions of dysbiosis, may challenge the actin dynamic properties of the PDL in the context of periodontal disease. To study this process, we examined host-microbial interactions in the context of the periodontium via molecular and functional cell assays and showed that human PDL cell interactions with Treponema denticola induce actin depolymerization through a novel actin reorganization signaling mechanism. This actin reorganization mechanism and loss of cell adhesion is a pathological response characterized by an initial upregulation of RASA4 mRNA expression resulting in an increase in matrix metalloproteinase-2 activity. This mechanism is specific to the T. denticola effector protein, dentilisin, thereby uncovering a novel effect for Treponema denticola-mediated RASA4 transcriptional activation and actin depolymerization in primary human PDL cells.
Collapse
Affiliation(s)
- Erin Trent Malone
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Sean Ganther
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Nevina Mena
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Allan Radaic
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Keemia Shariati
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Abigail Kindberg
- Bush Laboratory, Department of Cell and Tissue Biology, Biomedical Sciences Graduate, University of California San Francisco, San Francisco, CA, United States
| | - Christian Tafolla
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Pachiyappan Kamarajan
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - J. Christopher Fenno
- Fenno Laboratory, Department of Biological and Material Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ling Zhan
- Zhan Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| | - Yvonne L. Kapila
- Kapila Laboratory, Department of Orofacial Sciences, School of Dentistry San Francisco, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
12
|
Jeon HH, Teixeira H, Tsai A. Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. J Clin Med 2021; 10:jcm10081733. [PMID: 33923725 PMCID: PMC8072633 DOI: 10.3390/jcm10081733] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Alveolar bone remodeling in orthodontic tooth movement (OTM) is a highly regulated process that coordinates bone resorption by osteoclasts and new bone formation by osteoblasts. Mechanisms involved in OTM include mechano-sensing, sterile inflammation-mediated osteoclastogenesis on the compression side and tensile force-induced osteogenesis on the tension side. Several intracellular signaling pathways and mechanosensors including the cilia and ion channels transduce mechanical force into biochemical signals that stimulate formation of osteoclasts or osteoblasts. To date, many studies were performed in vitro or using human gingival crevicular fluid samples. Thus, the use of transgenic animals is very helpful in examining a cause and effect relationship. Key cell types that participate in mediating the response to OTM include periodontal ligament fibroblasts, mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Intercellular signals that stimulate cellular processes needed for orthodontic tooth movement include receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α (TNF-α), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), sclerostin, transforming growth factor beta (TGF-β), and bone morphogenetic proteins (BMPs). In this review, we critically summarize the current OTM studies using transgenic animal models in order to provide mechanistic insight into the cellular events and the molecular regulation of OTM.
Collapse
|
13
|
Pouraghaei Sevari S, Ansari S, Chen C, Moshaverinia A. Harnessing Dental Stem Cell Immunoregulation Using Cell-Laden Biomaterials. J Dent Res 2021; 100:568-575. [PMID: 33478322 DOI: 10.1177/0022034520985820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Successful tissue engineering therapies rely on the appropriate selection of the cell source, biomaterial, and regulatory factors. To be applied in a wide range of clinical applications, the ideal cell source needs to be easily accessible and abundant. Human orofacial tissues and teeth harbor several populations of mesenchymal stem cells (MSCs) with self-renewal and multilineage differentiation capabilities. The ease of access, relative abundance, and minimally invasive isolation procedures needed to harvest most types of the dental-derived MSCs render them a promising cell source for tissue engineering applications. A growing body of evidence has reported the profound immunoregulatory potential of dental-derived MSCs as compared with their bone marrow counterparts. Biomaterials can act as a physical barrier protecting the MSCs from the invasion of the immune system by hindering penetration of proinflammatory cells/cytokines, leading to higher viability of the encapsulated MSCs and improved tissue regeneration. Besides their protective capabilities, biomaterials can actively contribute to the immunoregulatory potential of the MSCs through their physical and chemical properties, including porosity and elasticity. However, despite recent advancement, the therapeutic capability of biomaterials to regulate the MSC-host immune system crosstalk and the mechanism underlying this immunoregulation has been poorly understood. It has been reported that biomaterials can regulate the viability and determine the fate of the encapsulated MSCs through modulation of the NF-kB pathway and the caspase-3 and caspase-8 proapoptotic cascades. Additionally, the physiomechanical properties of the encapsulating biomaterial have been shown to modulate clustering of TNF-α receptors on the encapsulated MSCs while regulating the production of anti-inflammatory factors such as indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2) through activation of the P38 MAPK pathway. In the current review, we sought to provide a thorough overview of the immunomodulatory functions of dental-derived MSCs and the role of biomaterials in their interplay with the host immune system.
Collapse
Affiliation(s)
- S Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - S Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - A Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Perillo L, d’Apuzzo F, Illario M, Laino L, Di Spigna G, Lepore M, Camerlingo C. Monitoring Biochemical and Structural Changes in Human Periodontal Ligaments during Orthodontic Treatment by Means of Micro-Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E497. [PMID: 31952367 PMCID: PMC7014419 DOI: 10.3390/s20020497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of the study was to examine the biochemical and structural changes occurring in the periodontal ligament (PDL) during orthodontic-force application using micro-Raman spectroscopy ( μ -RS). Adolescent and young patients who needed orthodontic treatment with first premolar extractions were recruited. Before extractions, orthodontic forces were applied using a closed-coil spring that was positioned between the molar and premolar. Patients were randomly divided into three groups, whose extractions were performed after 2, 7, and 14 days of force application. From the extracted premolars, PDL samples were obtained, and a fixation procedure with paraformaldehyde was adopted. Raman spectra were acquired for each PDL sample in the range of 1000-3200 cm - 1 and the more relevant vibrational modes of proteins (Amide I and Amide III bands) and CH 2 and CH 3 modes were shown. Analysis indicated that the protein structure in the PDL samples after different time points of orthodontic-force application was modified. In addition, changes were observed in the CH 2 and CH 3 high wavenumber region due to local hypoxia and mechanical force transduction. The reported results indicated that μ -RS provides a valuable tool for investigating molecular interchain interactions and conformational modifications in periodontal fibers after orthodontic tooth movement, providing quantitative insight of time occurring for PDL molecular readjustment.
Collapse
Affiliation(s)
- Letizia Perillo
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy (F.d.)
| | - Fabrizia d’Apuzzo
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy (F.d.)
| | - Maddalena Illario
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Luigi Laino
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy (F.d.)
| | - Gaetano Di Spigna
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Carlo Camerlingo
- CNR-SPIN, Istituto Superconduttori, Materiali Innovativi e Dispositivi, 80078 Pozzuoli, Italy;
| |
Collapse
|
16
|
Jamali S, Khosravi S, Shadmanpour M, Gharibpour F, Payahoo S, Darvish M. Hyalinization and Molecular Pathways Involved in Orthodontic Tooth Movement: A Systematic Review and Meta-Analysis. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Janjic Rankovic M, Docheva D, Wichelhaus A, Baumert U. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Investig 2019; 24:2497-2511. [PMID: 31728735 DOI: 10.1007/s00784-019-03113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.
Collapse
Affiliation(s)
- Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| |
Collapse
|
18
|
Manokawinchoke J, Pavasant P, Sawangmake C, Limjeerajarus N, Limjeerajarus CN, Egusa H, Osathanon T. Intermittent compressive force promotes osteogenic differentiation in human periodontal ligament cells by regulating the transforming growth factor-β pathway. Cell Death Dis 2019; 10:761. [PMID: 31591384 PMCID: PMC6779887 DOI: 10.1038/s41419-019-1992-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Mechanical force regulates periodontal ligament cell (PDL) behavior. However, different force types lead to distinct PDL responses. Here, we report that pretreatment with an intermittent compressive force (ICF), but not a continuous compressive force (CCF), promoted human PDL (hPDL) osteogenic differentiation as determined by osteogenic marker gene expression and mineral deposition in vitro. ICF-induced osterix (OSX) expression was inhibited by cycloheximide and monensin. Although CCF and ICF significantly increased extracellular adenosine triphosphate (ATP) levels, pretreatment with exogenous ATP did not affect hPDL osteogenic differentiation. Gene-expression profiling of hPDLs subjected to CCF or ICF revealed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and transforming growth factor beta (TGF-β) signaling pathway genes were commonly upregulated, while calcium signaling pathway genes were downregulated in both CCF- and ICF-treated hPDLs. The TGFB1 mRNA level was significantly increased, while those of TGFB2 and TGFB3 were decreased by ICF treatment. In contrast, CCF did not modify TGFB1 expression. Inhibiting TGF-β receptor type I or adding a TGF-β1 neutralizing antibody attenuated the ICF-induced OSX expression. Exogenous TGF-β1 pretreatment promoted hPDL osteogenic marker gene expression and mineral deposition. Additionally, pretreatment with ICF in the presence of TGF-β receptor type I inhibitor attenuated the ICF-induced mineralization. In conclusion, this study reveals the effects of ICF on osteogenic differentiation in hPDLs and implicates TGF-β signaling as one of its regulatory mechanisms.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chenphop Sawangmake
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttapol Limjeerajarus
- Research Center for Advanced Energy Technology, Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, 10250, Thailand
| | - Chalida N Limjeerajarus
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Li T, Ma H, Ma H, Ma Z, Qiang L, Yang Z, Yang X, Zhou X, Dai K, Wang J. Mussel-Inspired Nanostructures Potentiate the Immunomodulatory Properties and Angiogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17134-17146. [PMID: 31008578 DOI: 10.1021/acsami.8b22017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The therapeutic effects of mesenchymal stem cells (MSCs)-material constructs mainly come from the secretion of trophic factors from MSCs, especially the immunomodulatory and angiogenic cytokines. Recent findings indicate the significance of topographical cues from these materials in modulating paracrine functions of MSCs. Here, we developed functionalized three-dimensional-printed bioceramic (BC) scaffolds with a mussel-inspired surface coating in order to regulate the paracrine function of adipose-derived MSCs (Ad-MSCs). We found that Ad-MSCs cultured on polydopamine-modified BC scaffolds (DOPA-BC) significantly produced more immunomodulatory and pro-angiogenic factors when compared with those cultured on BC scaffolds or microplates. Functional assays, such as endothelial progenitor cells migration, tube formation, and macrophage polarization, were performed to confirm the enhanced paracrine functions of the secreted trophic factors from Ad-MSCs cultured on DOPA-BC scaffolds. Further investigation identified that both focal adhesion kinase- and extracellular signal-related kinase signaling were the required mechano-transduction pathways through which the mussel-inspired surface stimulated the paracrine effect of Ad-MSCs. In a diabetic skin-defect-healing model in rats, conditioned medium received from the Ad-MSCs cultured on DOPA-BC sped wound closure, enhanced vascularization, and promoted macrophage switching from a proinflammatory M1 to a pro-healing and anti-inflammatory M2 phenotype in the wound bed. These results demonstrate that a bio-inspired coating with polydopamine represents an effective method to enhance the paracrine function of MSCs. Our findings illustrate a novel strategy to accelerate tissue regeneration by guiding the paracrine-signaling network.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Hongshi Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Hongzhi Ma
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine , Central South University , Changsha 410006 , Hunan , China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Lei Qiang
- Southwest Jiaotong University College of Medicine , No. 111, North Section, 2nd Ring Road , Chengdu 610031 , Sichuan , China
| | - Zezheng Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Xiaoxiao Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Xiaojun Zhou
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| |
Collapse
|
20
|
Benjakul S, Jitpukdeebodintra S, Leethanakul C. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod 2019; 40:356-363. [PMID: 29016746 DOI: 10.1093/ejo/cjx062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective Vibration can be used to accelerate tooth movement, though the exact mechanisms remain unclear. This study aimed to investigate the effects of low magnitude high frequency (LMHF) vibration combined with compressive force on periodontal ligament (PDL) cells in vitro. Materials and methods Human PDL cells were isolated from extracted premolar teeth of four individuals. To determine the optimal frequency for later used in combination with compressive force, three cycles of low-magnitude (0.3 g) vibrations at various frequencies (30, 60, or 90 Hz) were applied to PDL cells for 20 min every 24 h. To investigate the effects of vibration combined with compressive force, PDL cells were subjected to three cycles of optimal vibration frequency (V) or 1.5 g/cm2 compressive force for 48 h (C) or vibration combined with compressive force (VC). Cell viability was assessed using MTT assay. PGE2, soluble RANKL (sRANKL), and OPG production were quantified by ELISA. RANKL, OPG, and Runx2 expression were determined using real-time PCR. Results Cell viability was decreased in groups C and VC. PGE2 and RANKL, but not OPG, were increased in groups V, C, and VC, thus increasing the RANKL/OPG ratio. The highest level was observed in group VC. sRANKL was increased in groups V, C, and VC; however, no significant different between the experimental groups. Runx2 expression was reduced in groups C and VC. Conclusions Vibration increased PGE2, RANKL, and sRANKL, but not OPG and Runx2. Vibration had the additive effects on PGE2 and RANKL, but not sRANKL in compressed PDL cells.
Collapse
Affiliation(s)
- Sutiwa Benjakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suwanna Jitpukdeebodintra
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
21
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
22
|
In Vitro Weight-Loaded Cell Models for Understanding Mechanodependent Molecular Pathways Involved in Orthodontic Tooth Movement: A Systematic Review. Stem Cells Int 2018; 2018:3208285. [PMID: 30154862 PMCID: PMC6091372 DOI: 10.1155/2018/3208285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
Cells from the mesenchymal lineage in the dental area, including but not limited to PDL fibroblasts, osteoblasts, and dental stem cells, are exposed to mechanical stress in physiological (e.g., chewing) and nonphysiological/therapeutic (e.g., orthodontic tooth movement) situations. Close and complex interaction of these different cell types results in the physiological and nonphysiological adaptation of these tissues to mechanical stress. Currently, different in vitro loading models are used to investigate the effect of different types of mechanical loading on the stress adaptation of these cell types. We performed a systematic review according to the PRISMA guidelines to identify all studies in the field of dentistry with focus on mechanobiology using in vitro loading models applying uniaxial static compressive force. Only studies reporting on cells from the mesenchymal lineage were considered for inclusion. The results are summarized regarding gene expression in relation to force duration and magnitude, and the most significant signaling pathways they take part in are identified using protein-protein interaction networks.
Collapse
|
23
|
Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018; 171:107-117. [DOI: 10.1016/j.biomaterials.2018.04.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/14/2023]
|
24
|
Karamesinis K, Basdra EK. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1675-1683. [PMID: 29454076 DOI: 10.1016/j.bbadis.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
25
|
Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cell Signal 2017. [PMID: 28647573 DOI: 10.1016/j.cellsig.2017.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mesenchymal stromal cells (MSCs) have tremendous potential for use in regenerative medicine due to their multipotency and immune cell regulatory functions. Biomimetic physical forces have been shown to direct differentiation and maturation of MSCs in tissue engineering applications; however, the effect of force on immunomodulatory activity of MSCs has been largely overlooked. Here we show in human bone marrow-derived MSCs that wall shear stress (WSS) equivalent to the fluid frictional force present in the adult arterial vasculature significantly enhances expression of four genes that mediate MSC immune regulatory function, PTGS2, HMOX1, IL1RN, and TNFAIP6. Several mechanotransduction pathways are stimulated by WSS, including calcium ion (Ca2+) flux and activation of Akt, MAPK, and focal adhesion kinase (FAK). Inhibition of PI3K-Akt by LY294002 or Ca2+ signaling with chelators, ion channel inhibitors, or Ca2+ free culture conditions failed to attenuate WSS-induced COX2 expression. In contrast, the FAK inhibitor PF-562271 blocked COX2 induction, implicating focal adhesions as critical sensory components upstream of this key immunomodulatory factor. In co-culture assays, WSS preconditioning stimulates MSC anti-inflammatory activity to more potently suppress TNF-α production by activated immune cells, and this improved potency depended upon the ability of FAK to stimulate COX2 induction. Taken together, our data demonstrate that biomechanical force potentiates the reparative and regenerative properties of MSCs through a FAK signaling cascade and highlights the potential for innovative force-based approaches for enhancement in MSC therapeutic efficacy.
Collapse
|
26
|
Piancino MG, Isola G, Cannavale R, Cutroneo G, Vermiglio G, Bracco P, Anastasi GP. From periodontal mechanoreceptors to chewing motor control: A systematic review. Arch Oral Biol 2017; 78:109-121. [PMID: 28226300 DOI: 10.1016/j.archoralbio.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE This critical review summarizes the current knowledge of the structural and functional characteristics of periodontal mechanoreceptors, and understands their role in the signal pathways and functional motor control. METHOD A systematic review of the literature was conducted. Original articles were searched through Pubmed, Cochrane Central database and Embase until january 2016. RESULT 1466 articles were identified through database searching and screened by reviewing the abstracts. 160 full-text were assessed for eligibility, and after 109 exclusion, 51 articles were included in the review process. Studies selected by the review process were mainly divided in studies on animal and studies on humans. Morphological, histological, molecular and electrophysiological studies investigating the periodontal mechanoreceptors in animals and in humans were included, evaluated and described. CONCLUSION Our knowledge of the periodontal mechanoreceptors, let us conclude that they are very refined neural receptors, deeply involved in the activation and coordination of the masticatory muscles during function. Strictly linked to the rigid structure of the teeth, they determine all the functional physiological and pathological processes of the stomatognathic system. The knowledge of their complex features is fundamental for all dental professionists. Further investigations are of utmost importance for guiding the technological advances in the respect of the neural control in the dental field.
Collapse
Affiliation(s)
- Maria Grazia Piancino
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy.
| | - Gaetano Isola
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Rosangela Cannavale
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Giovanna Vermiglio
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| | - Pietro Bracco
- Department of Orthodontics and Gnathology-Masticatory Function, Turin University, Italy
| | - Giuseppe Pio Anastasi
- Department of Biomedical Sciences and Morphological and Functional Images, Messina University, Italy
| |
Collapse
|
27
|
Lee S, Yoo H, Kim S. CCR5-CCL Axis in PDL during Orthodontic Biophysical Force Application. J Dent Res 2015; 94:1715-23. [DOI: 10.1177/0022034515603926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tooth movement by application of orthodontic biophysical force primarily reflects the role of soluble molecules released from the periodontal ligament (PDL). Thus far, many factors have been reported to be involved in orthodontic tooth movement (OTM), but key molecules that orchestrate responses of periodontal tissues to biophysical force are still enigmatic. In this in vivo study, in which the upper first molars in rats were moved, differential display–polymerase chain reaction revealed that CC chemokine receptor 5 (CCR5) level was differentially increased during OTM. Strong immunoreactivity for CCR5 was found in the PDL undergoing force application. Moreover, the in vitro compression or tension force application to primary cultured human PDL cells increased the expression of CCR5 and CCR5 ligands. In vitro tension force on human PDL cells did not induce RANKL, an osteoclastogenesis-inducing factor, but did induce the upregulation of IL12, an osteoclast inhibitory factor, and osteoblast differentiation factors, including Runx2, which was attenuated under tension by CCR5 gene silencing whereas augmented with CCR5 ligands. In contrast, in vitro compression force did not induce the expression of osteoprotegerin, a decoy receptor for RANKL and Runx2, but did induce the upregulation of RANKL, which was attenuated under compression by CCR5 gene silencing. These results suggest that the CCR5–CCR5 ligands axis in PDL cells may play a crucial role in the remodeling of periodontal tissues and can be a therapeutic target for achieving efficient OTM.
Collapse
Affiliation(s)
- S.Y. Lee
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - H.I. Yoo
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S.H. Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
28
|
Li M, Yi J, Yang Y, Zheng W, Li Y, Zhao Z. Investigation of optimal orthodontic force at the cellular level through three-dimensionally cultured periodontal ligament cells. Eur J Orthod 2015. [DOI: 10.1093/ejo/cjv052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Romero A, Cáceres M, Arancibia R, Silva D, Couve E, Martínez C, Martínez J, Smith PC. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res 2015; 50:371-9. [PMID: 25073540 DOI: 10.1111/jre.12216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. MATERIAL AND METHODS We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. RESULTS CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CONCLUSIONS CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers.
Collapse
Affiliation(s)
- A Romero
- Dentistry Academic Unit, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang L, Yang Y, Wang S, Li Y, Zhao Z. In vitro mechanical loading models for periodontal ligament cells: From two-dimensional to three-dimensional models. Arch Oral Biol 2015; 60:416-24. [DOI: 10.1016/j.archoralbio.2014.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
|
31
|
Cao H, Kou X, Yang R, Liu D, Wang X, Song Y, Feng L, He D, Gan Y, Zhou Y. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. J Dent Res 2014; 93:1163-9. [PMID: 25252876 DOI: 10.1177/0022034514551769] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates bone resorption through β-2 adrenergic receptor (Adrb2). In orthodontic tooth movement (OTM), mechanical force induces and regulates alveolar bone remodeling. Compressive force-associated osteoclast differentiation and alveolar bone resorption are the rate-limiting steps of tooth movement. However, whether mechanical force can activate Adrb2 and thus contribute to OTM remains unknown. In this study, orthodontic nickel-titanium springs were applied to the upper first molars of rats and Adrb1/2(-/-) mice to confirm the role of SNS and Adrb2 in OTM. The results showed that blockage of SNS activity in the jawbones of rats by means of superior cervical ganglion ectomy reduced OTM distance from 860 to 540 μm after 14 d of force application. In addition, the injection of nonselective Adrb2 agonist isoproterenol activated the downstream signaling of SNS to accelerate OTM from 300 to 540 μm after 7 d of force application. Adrb1/2(-/-) mice showed significantly reduced OTM distance (19.5 μm) compared with the wild-type mice (107.6 μm) after 7 d of force application. Histopathologic analysis showed that the number of Adrb2-positive cells increased in the compressive region of periodontal ligament after orthodontic force was applied on rats. Mechanistically, mechanical compressive force upregulated Adrb2 expression in primary-cultured human periodontal ligament cells (PDLCs) through the elevation of intracellular Ca(2+) concentration. Activation of Adrb2 in PDLCs increased the RANKL/OPG ratio and promoted the peripheral blood mononuclear cell differentiation to osteoclasts in the cocultured system. Upregulation of Adrb2 in PDLCs promoted osteoclastogenesis, which accelerated OTM through Adrb2-enhanced bone resorption. In summary, this study suggests that mechanical force-induced Adrb2 activation in PDLCs contributes to SNS-regulated OTM.
Collapse
Affiliation(s)
- H Cao
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - X Kou
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - R Yang
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - D Liu
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - X Wang
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - Y Song
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - L Feng
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - D He
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| | - Y Gan
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Zhou
- Department of Orthodontics Center for Craniofacial Stem Cell Research and Regeneration
| |
Collapse
|
32
|
Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells. J Orofac Orthop 2014; 75:191-202. [DOI: 10.1007/s00056-014-0212-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/04/2013] [Indexed: 01/06/2023]
|
33
|
Suzuki R, Nemoto E, Shimauchi H. Cyclic tensile force up-regulates BMP-2 expression through MAP kinase and COX-2/PGE2 signaling pathways in human periodontal ligament cells. Exp Cell Res 2014; 323:232-241. [PMID: 24561081 DOI: 10.1016/j.yexcr.2014.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Periodontal ligament cells play important roles in the homeostasis of periodontal tissue by mechanical stress derived from mastication, such as tension, compression, fluid shear, and hydrostatic force. In the present study, we showed that cyclic tensile force increased the gene expression level of bone morphogenetic protein (BMP)-2, a crucial regulator of mineralization, in human periodontal ligament cells using real-time PCR. Signaling inhibitors, PD98059/U0126 (extracellular signal-regulated kinase (ERK) inhibitors) and SB203580/SB202190 (p38 inhibitors), revealed that tensile force-mediated BMP-2 expression was dependent on activation of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways. Cyclic tensile force also induced cyclooxygenase-2 (COX-2) gene expression in a manner dependent on ERK1/2 and p38 MAP kinase pathways, and induced prostaglandin E2 (PGE2) biosynthesis. NS-398, a COX-2 inhibitor, significantly reduced tensile force-mediated BMP-2 expression, indicating that PGE2 synthesized by COX-2 may be involved in the BMP-2 induction. The inhibitory effect of NS-398 was completely restored by the addition of exogenous PGE2. However, stimulation with PGE2 alone in the absence of tensile force had no effect on the BMP-2 induction, indicating that some critical molecule(s) other than COX-2/PGE2 may be required for cyclic tensile force-mediated BMP-2 induction. Collectively, the results indicate that cyclic tensile force activates ERK1/2 and p38 MAP kinase signaling pathways, and induces COX-2 expression, which is responsible for the sequential PGE2 biosynthesis and release, and furthermore, mediates the increase in BMP-2 expression at the transcriptional level.
Collapse
Affiliation(s)
- Risako Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Hidetoshi Shimauchi
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
34
|
Premaraj S, Souza I, Premaraj T. Focal adhesion kinase mediates β-catenin signaling in periodontal ligament cells. Biochem Biophys Res Commun 2013; 439:487-92. [DOI: 10.1016/j.bbrc.2013.08.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 01/04/2023]
|
35
|
Tsutsumi T, Kajiya H, Fukawa T, Sasaki M, Nemoto T, Tsuzuki T, Takahashi Y, Fujii S, Maeda H, Okabe K. The potential role of transient receptor potential type A1 as a mechanoreceptor in human periodontal ligament cells. Eur J Oral Sci 2013; 121:538-44. [DOI: 10.1111/eos.12083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Tsutsumi
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
- Department of Oral Rehabilitation; Fukuoka Dental College; Fukuoka Japan
| | - Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
| | - Teruhisa Fukawa
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
| | - Mina Sasaki
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
| | - Tetsuomi Nemoto
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
- Department of Oral Rehabilitation; Fukuoka Dental College; Fukuoka Japan
| | - Takashi Tsuzuki
- Department of Oral Rehabilitation; Fukuoka Dental College; Fukuoka Japan
| | - Yutaka Takahashi
- Department of Oral Rehabilitation; Fukuoka Dental College; Fukuoka Japan
| | - Shinsuke Fujii
- Department of Endodontology and Operative Dentistry; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology; Fukuoka Dental College; Fukuoka Japan
| |
Collapse
|
36
|
Ito M, Arakawa T, Okayama M, Shitara A, Mizoguchi I, Takuma T. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells. ACTA ACUST UNITED AC 2013; 5:266-74. [PMID: 23798356 DOI: 10.1111/jicd.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/23/2013] [Indexed: 01/24/2023]
Abstract
AIM The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. METHODS Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. RESULTS Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. CONCLUSION Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kim SJ, Park KH, Park YG, Lee SW, Kang YG. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol 2013; 58:707-16. [DOI: 10.1016/j.archoralbio.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/20/2012] [Accepted: 11/04/2012] [Indexed: 01/08/2023]
|
38
|
Sarrafpour B, Swain M, Li Q, Zoellner H. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis. PLoS One 2013; 8:e58803. [PMID: 23554928 PMCID: PMC3598949 DOI: 10.1371/journal.pone.0058803] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true 'eruptive force' is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, 'biological response units' in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.
Collapse
Affiliation(s)
- Babak Sarrafpour
- The Cellular and Molecular Pathology Research Unit, Department of Oral Pathology and Oral Medicine, Faculty of Dentistry, The University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia.
| | | | | | | |
Collapse
|
39
|
Kang KL, Lee SW, Ahn YS, Kim SH, Kang YG. Bioinformatic analysis of responsive genes in two-dimension and three-dimension cultured human periodontal ligament cells subjected to compressive stress. J Periodontal Res 2012; 48:87-97. [DOI: 10.1111/j.1600-0765.2012.01507.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
D'Angelo F, Tiribuzi R, Armentano I, Kenny JM, Martino S, Orlacchio A. Mechanotransduction: tuning stem cells fate. J Funct Biomater 2011; 2:67-87. [PMID: 24956164 PMCID: PMC4030896 DOI: 10.3390/jfb2020067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/07/2011] [Accepted: 06/17/2011] [Indexed: 01/10/2023] Open
Abstract
It is a general concern that the success of regenerative medicine-based applications is based on the ability to recapitulate the molecular events that allow stem cells to repair the damaged tissue/organ. To this end biomaterials are designed to display properties that, in a precise and physiological-like fashion, could drive stem cell fate both in vitro and in vivo. The rationale is that stem cells are highly sensitive to forces and that they may convert mechanical stimuli into a chemical response. In this review, we describe novelties on stem cells and biomaterials interactions with more focus on the implication of the mechanical stimulation named mechanotransduction.
Collapse
Affiliation(s)
- Francesco D'Angelo
- Department of Experimental Medicine and Biochemical Science, Section of Biochemistry and Molecular Biology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Roberto Tiribuzi
- Department of Experimental Medicine and Biochemical Science, Section of Biochemistry and Molecular Biology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy.
| | - Josè Maria Kenny
- Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy.
| | - Sabata Martino
- Department of Experimental Medicine and Biochemical Science, Section of Biochemistry and Molecular Biology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Aldo Orlacchio
- Department of Experimental Medicine and Biochemical Science, Section of Biochemistry and Molecular Biology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|