1
|
Tuygunov N, Khairunnisa Z, Yahya NA, Aziz AA, Zakaria MN, Israilova NA, Cahyanto A. Bioactivity and remineralization potential of modified glass ionomer cement: A systematic review of the impact of calcium and phosphate ion release. Dent Mater J 2024; 43:1-10. [PMID: 38220163 DOI: 10.4012/dmj.2023-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This systematic review investigates the effectiveness of calcium and phosphate ions release on the bioactivity and remineralization potential of glass ionomer cement (GIC). Electronic databases, including PubMed-MEDLINE, Scopus, and Web of Science, were systematically searched according to PRISMA guidelines. This review was registered in the PROSPERO database. Five eligible studies on modifying GIC with calcium and phosphate ions were included. The risk of bias was assessed using the RoBDEMAT tool. The incorporation of these ions into GIC enhanced its bioactivity and remineralization properties. It promoted hydroxyapatite formation, which is crucial for remineralization, increased pH and inhibited cariogenic bacteria growth. This finding has implications for the development of more effective dental materials. This can contribute to improved oral health outcomes and the management of dental caries, addressing a prevalent and costly oral health issue. Nevertheless, comprehensive longitudinal investigations are needed to evaluate the clinical efficacy of this GIC's modification.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Zahra Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | | | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| |
Collapse
|
2
|
Washio J, Abiko Y, Sato T, Takahashi N. Lactic Acid Bacteria in the Human Oral Cavity: Assessing Metabolic Functions Relevant to Oral Health and Disease. Methods Mol Biol 2024; 2851:151-172. [PMID: 39210180 DOI: 10.1007/978-1-0716-4096-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Many perceive lactic acid bacteria as beneficial for health. They are recognized for preventing abnormal fermentation and spoilage of ingested foods by producing lactic acid, which aids in gut acidification. Moreover, lactic acid bacteria are extensively employed in food science. In contrast, lactic acid bacteria in the oral cavity are often perceived as pathogenic factors contributing to the development of dental caries. As a consequence, substantial research has been conducted in oral and dental sciences to explore lactic acid bacteria and the oral microbiome. This research primarily involves analyzing bacterial flora, investigating metabolic activities such as acid production, and investigating metabolic regulation within the oral environment. The oral cavity serves as the gateway to the digestive tract and respiratory system, characterized by a constantly fluctuating environment that significantly impacts the metabolic activity of lactic acid bacteria. Hence, when investigating oral lactic acid bacteria, it is crucial to adopt research plans and methodologies that account for these metabolic environment changes. In this section, we present some of the methods employed in our study.
Collapse
Affiliation(s)
- Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
OKUBO S, OZEKI Y, YAMADA T, SAITO K, ISHIHARA N, YANAGIDA Y, MAYANAGI G, WASHIO J, TAKAHASHI N. Facile Fabrication of All-solid-state Ion-selective Electrodes by Laminating and Drop-casting for Multi-sensing. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shingo OKUBO
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Yoshihisa OZEKI
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Tetsuya YAMADA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Kosuke SAITO
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Noboru ISHIHARA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Yasuko YANAGIDA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Gen MAYANAGI
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| | - Jumpei WASHIO
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| | - Nobuhiro TAKAHASHI
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| |
Collapse
|
4
|
Choe YE, Kim YJ, Jeon SJ, Ahn JY, Park JH, Dashnyam K, Mandakhbayar N, Knowles JC, Kim HW, Jun SK, Lee JH, Lee HH. Investigating the mechanophysical and biological characteristics of therapeutic dental cement incorporating copper doped bioglass nanoparticles. Dent Mater 2021; 38:363-375. [PMID: 34933758 DOI: 10.1016/j.dental.2021.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was investigated the mechanophysical properties of zinc phosphate cement (ZPC) with or without the copper doped bioglass nanoparticles (Cu-BGn) and their biological effect on dental pulp human cells and bacteria. MATERIALS AND METHODS Cu-BGn were synthesized and characterized firstly and then, the experimental (Cu-ZPC) and control (ZPC) samples were fabricated with similar sizes and/or dimensions (diameter: 4 mm and height: 6 mm) based on the International Organization of Standards (ISO). Specifically, various concentrations of Cu-BGn were tested, and Cu-BGn concentration was optimized at 2.5 wt% based on the film thickness and overall setting time. Next, we evaluated the mechanophysical properties such as compressive strength, elastic modulus, hardness, and surface roughness. Furthermore, the biological behaviors including cell viability and odontoblastic differentiation by using dental pulp human cells as well as antibacterial properties were investigated on the Cu-ZPC. All data were analyzed statistically using SPSS® Statistics 20 (IBM®, USA). p < 0.05 (*) was considered significant, and 'NS' represents nonsignificant. RESULTS Cu-BGn was obtained via a sol-gel method and added onto the ZPC for fabricating a Cu-ZPC composite and for comparison, the Cu-free-ZPC was used as a control. The film thickness (≤ 25 µm) and overall setting time (2.5-8 min) were investigated and the mechanophysical properties showed no significance ('NS') between Cu-ZPC and bare ZPC. However, cell viability and odontoblastic differentiation, alkaline phosphate (ALP) activity and alizarin red S (ARS) staining were highly stimulated in the extracts from the Cu-ZPC group compared to the ZPC group. Additionally, the antibacterial test showed that the Cu-ZPC extracts were more effective than the ZPC extracts (p < 0.05). SIGNIFICANCE Cu-ZPC showed adequate mechanophysical properties (compressive strength, hardness, and surface roughness) and enhanced odontoblastic differentiation as well as antibacterial properties compared to the ZPC-only group. Based on the findings, the fabricated Cu-ZPC might have the potential for use in the field of dental medicine and clinical applications.
Collapse
Affiliation(s)
- Young-Eun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Se-Jeong Jeon
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Drug Research Institute, Mongolian Pharmaceutical University & Monos group, Ulaanbaatar 14250, Mongolia.
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea; Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Soo-Kyung Jun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Dental Hygiene, Hanseo University, 46 Hanseo 1-ro, Seosan, Chungcheongnam-do 31962, Republic of Korea.
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea.
| |
Collapse
|
5
|
Mayanagi G, Yufang L, Hoshino T, Takahashi N. A water-soluble glass-based temporary restorative resin inhibited bacteria-induced pH reductions at the bacteria-material interface. Dent Mater J 2021; 41:95-100. [PMID: 34483202 DOI: 10.4012/dmj.2021-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the inhibitory effects of a water-soluble glass based temporary restorative resin (WSG-TRR) on bacteriainduced pH reductions at the bacteria-material interface. Each material (WSG-TRR, glass-ionomer cement, resin composite and conventional temporary restorative resin) was fixed to the bottom of the well of the experimental apparatus. The well was filled with pelleted cells of Streptococcus mutans, and the pH at the bacteria-material interface was monitored using a miniature pH electrode. The concentration of ions released from WSG-TRR and the effect of fluoride and zinc ions on bacteria-induced pH reduction was evaluated. The buffering capacities of WSG-TRR and WSG were also evaluated. At 90 min after the glucose addition, WSG-TRR exhibited the highest pH (5.29±0.12). Fluoride ion was detected at the interface between bacteria and WSG-TRR. Moreover, WSG were found to confer high buffering capacity. A WSG-TRR reduced bacteria-induced pH reductions at the bacteria-material interface.
Collapse
Affiliation(s)
- Gen Mayanagi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry.,Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry
| | - Luo Yufang
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry.,School and hospital of Stomatology, Fujian Medical University
| | - Tomohiro Hoshino
- Department of Next-Generation Dental Material Engineering, Tohoku University Graduate School of Dentistry
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
6
|
Schlafer S, Bornmann T, Paris S, Göstemeyer G. The impact of glass ionomer cement and composite resin on microscale pH in cariogenic biofilms and demineralization of dental tissues. Dent Mater 2021; 37:1576-1583. [PMID: 34419256 DOI: 10.1016/j.dental.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Secondary caries is among the most frequent reasons for the failure of dental restorations. Glass ionomer cement (GIC) restorations have been proposed to protect the surrounding dental tissues from demineralization through the release of fluoride and by buffering the acid attack from dental biofilms. In contrast, the lack of buffering by composite resin (CR) restorations has been suggested as a promoting factor for the development of secondary caries. METHODS The present study employed transversal microradiography and confocal microscopy based pH ratiometry to quantify mineral loss and map microscale pH gradients inside Streptococcus mutans biofilms grown on compound specimens consisting of enamel, dentin and either GIC or CR. RESULTS Mineral loss in dentin was significantly lower next to GIC than next to CR, but no significant differences in local biofilm pH were observed between the two restorative materials. SIGNIFICANCE The cariostatic effect of GIC relies predominantly on the provision of fluoride and not on a direct buffering action. The lack of buffering by CR did not affect local biofilm pH and may therefore be of minor importance for secondary caries development.
Collapse
Affiliation(s)
- Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark.
| | - Tanja Bornmann
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark; Department of Operative and Preventive Dentistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| | - Gerd Göstemeyer
- Department of Operative and Preventive Dentistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany.
| |
Collapse
|
7
|
Yu Z, Tao S, Xu HHK, Weir MD, Fan M, Liu Y, Zhou X, Liang K, Li J. Rechargeable adhesive with calcium phosphate nanoparticles inhibited long-term dentin demineralization in a biofilm-challenged environment. J Dent 2020; 104:103529. [PMID: 33189801 DOI: 10.1016/j.jdent.2020.103529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES This study aims to investigate the long-term demineralization-inhibition capability of a rechargeable adhesive with nanoparticles of amorphous calcium phosphate (NACP) on dentin in a biofilm-challenged environment. METHODS The NACP adhesive was immersed in a pH 4 solution to exhaust calcium (Ca) and phosphate (P) ions and then recharged with Ca and P ions. Dentin samples were demineralized underStreptococcus mutans biofilms for 24 h and randomly divided into two groups: (1) dentin control, (2) dentin with recharged NACP adhesives. Each day, all the samples were immersed in brain heart infusion broth with 1% sucrose (BHIS) for 4 h, and then in artificial saliva (AS) for 20 h. This cycle was repeated for 10 days. The pH of BHIS, the Ca and P ions content of the BHIS and AS were measured daily. After 10 days, the lactic acid production and colony-forming units of the biofilms were tested. The changes of remineralization/demineralization were also analyzed. RESULTS Dentin in the control group showed further demineralization. The recharged NACP adhesive neutralized acids, increasing the pH to above 5, and released large amounts of Ca and P ions each day. The recharged NACP adhesive decreased the production of lactic acid (P < 0.05), inhibited dentin demineralization and sustained the dentin hardness in the biofilm-challenged environment, showing an excellent long-term demineralization-inhibition capability. CONCLUSIONS The NACP adhesive could continuously inhibit dentin demineralization in a biofilm-challenged environment by recharging with Ca and P ions. SIGNIFICANCE The rechargeable NACP adhesive could provide long-term dentin bond protection.
Collapse
Affiliation(s)
- Zhaohan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Menglin Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Ishiguro T, Mayanagi G, Azumi M, Otani H, Fukushima A, Sasaki K, Takahashi N. Sodium fluoride and silver diamine fluoride-coated tooth surfaces inhibit bacterial acid production at the bacteria/tooth interface. J Dent 2019; 84:30-35. [PMID: 30707994 DOI: 10.1016/j.jdent.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate whether coating tooth surfaces with sodium fluoride (NaF) or silver diamine fluoride (SDF) inhibits bacteria-induced pH reductions at the bacteria/tooth interface. METHODS Specimens of coronal enamel (CE) or root dentin (RD) were prepared. The surfaces of the specimens were treated with 2% NaF or 38% SDF solution. Some specimens were aged for 1 week after being treated. A tooth specimen was fixed to the bottom of the well of the experimental apparatus. A miniature pH electrode was placed on the specimen and the well was filled with Streptococcus mutans (SM) cells. The pH was monitored after the addition of 0.5% glucose. SM cells were recovered from the wells, and the amounts of lactate, calcium, fluoride, and silver were measured. RESULTS The fluoride-treated tooth specimens exhibited significantly higher pH values than the untreated controls, irrespective of the tooth substrate at 120 min (CE: NaF 4.62 ± 0.06 vs 4.34 ± 0.10 and SDF 5.23 ± 0.29 vs 4.44 ± 0.16, RD: NaF 5.10 ± 0.11 vs 4.54 ± 0.33 and SDF 6.65 ± 0.47 vs 4.64 ± 0.39). The SDF-coated RD specimens released the greatest amounts of fluoride (103.3 ± 48.1 nmol/well) and silver (70.4 ± 36.9 nmol/well), while they exhibited significantly lower lactate production and decalcification (calcium release) than the control samples (lactate: 4.0 ± 0.7 vs 7.4 ± 0.3 mmol/l, calcium: 2.2 ± 0.4 vs 3.7 ± 0.5 μg/ml). This antimicrobial effect was weakened by 1 week's aging, while the acid resistance of the fluoride-treated surfaces seemed to increase with aging. CONCLUSIONS Fluoride-treated tooth surfaces inhibit bacterial acid production at the bacteria/tooth interface. The SDF-coated RD had the strongest inhibitory effect. CLINICAL SIGNIFICANCE Coating RD with SDF could help to prevent root caries.
Collapse
Affiliation(s)
- Tomoko Ishiguro
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Gen Mayanagi
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Marika Azumi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Azusa Fukushima
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
9
|
Kitagawa H, Miki-Oka S, Mayanagi G, Abiko Y, Takahashi N, Imazato S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J Dent 2018; 70:92-96. [PMID: 29294301 DOI: 10.1016/j.jdent.2017.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO33- and F- ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO33- and F- on S. mutans metabolic activities. METHODS The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO33- or F- solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. RESULTS The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO33- and F- compared with the absence of these ions (p < 0.05). CONCLUSIONS pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO33- or F-. CLINICAL SIGNIFICANCE BO33- or F- released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth.
Collapse
Affiliation(s)
- Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Saeki Miki-Oka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Gen Mayanagi
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Flanagan D. Zinc phosphate as a definitive cement for implant-supported crowns and fixed dentures. Clin Cosmet Investig Dent 2017; 9:93-97. [PMID: 29138601 PMCID: PMC5679570 DOI: 10.2147/ccide.s146544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Implant-supported dental prostheses can be retained by a screw or cement. Implant-supported fixed partial dentures have a passive fit. A passive fit means there is an internal gap between the abutment surface and the intaglio of the retainer to insure that there is no lateral pressure on the supporting implants or friction upon seating of the prosthesis. This gap is filled with cement for retention of the prosthesis. Any lateral pressure may cause marginal bone loss or periimplantitis. Also, there is usually a microscopic gap at the margin of a crown retainer that exposes the cement to oral fluids. The solubility of zinc phosphate (ZOP) cement is a definite liability due to the risk for cement dissolution. In fixed prostheses, the dissolution of the cement of one or more retainers would cause a transfer of the occlusal load to the retained unit(s). The resulting rotation and lifting of the cement-retained implants from occlusal and parafunctional loads could cause loss of osseointegration of the abutment-retained implant(s). ZOP cement may not be indicated for implant-supported fixed partial dentures or splints. Cement dissolution in single unit probably only involves re-cementation, if the patient does not swallow or aspirate the crown.
Collapse
|
11
|
Fukushima A, Mayanagi G, Sasaki K, Takahashi N. Corrosive effects of fluoride on titanium under artificial biofilm. J Prosthodont Res 2017; 62:104-109. [PMID: 28916465 DOI: 10.1016/j.jpor.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aimed to investigate the effect of sodium fluoride (NaF) on titanium corrosion using a biofilm model, taking environmental pH into account. METHODS Streptococcus mutans cells were used as the artificial biofilm, and pH at the bacteria-titanium interface was monitored after the addition of 1% glucose with NaF (0, 225 or 900ppmF) at 37°C for 90min. In an immersion test, the titanium samples were immersed in the NaF solution (0, 225 or 900ppm F; pH 4.2 or 6.5) for 30 or 90min. Before and after pH monitoring or immersion test, the electrochemical properties of the titanium surface were measured using a potentiostat. The amount of titanium eluted into the biofilm or the immersion solution was measured using inductively coupled plasma mass spectrometry. The color difference (ΔE*ab) and gloss of the titanium surface were determined using a spectrophotometer. RESULTS After incubation with biofilm, pH was maintained at around 6.5 in the presence of NaF. There was no significant change in titanium surface and elution, regardless of the concentration of NaF. After immersion in 900ppm NaF solution at pH 4.2, corrosive electrochemical change was induced on the surface, titanium elution and ΔE*ab were increased, and gloss was decreased. CONCLUSIONS NaF induces titanium corrosion in acidic environment in vitro, while NaF does not induce titanium corrosion under the biofilm because fluoride inhibits bacterial acid production. Neutral pH fluoridated agents may still be used to protect the remaining teeth, even when titanium-based prostheses are worn.
Collapse
Affiliation(s)
- Azusa Fukushima
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Gen Mayanagi
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
12
|
Mayanagi G, Igarashi K, Washio J, Takahashi N. pH Response and Tooth Surface Solubility at the Tooth/Bacteria Interface. Caries Res 2017; 51:160-166. [PMID: 28147347 DOI: 10.1159/000454781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022] Open
Abstract
Evaluating the physiochemical processes at the tooth surface/bacteria interface is important for elucidating the etiology of dental caries. This study aimed to compare the mineral solubility and protein degradation of coronal enamel (CE) and root dentin (RD), and investigate the involvement of dissolved components in bacteria-induced pH changes using a model of tooth/bacteria interface. An experimental apparatus forming a well was made of polymethyl methacrylate, and a bovine tooth (CE or RD) specimen was fixed at the bottom of the well. A miniature pH electrode was placed on the tooth, and Streptococcus mutans NCTC 10449 cells, grown in 0.5% glucose-containing complex medium, were packed into the well. The pH at the tooth/S. mutans interface was monitored continuously for 120 min after the addition of 0.5% glucose at 37°C. S. mutans cells were recovered from the wells, and the amounts of lactate and calcium were measured using a portable lactate meter and a fluorescent dye, respectively. Proteolytic activity was also evaluated fluorometrically. The pH of the RD/S. mutans interface was significantly higher than that of the CE/S. mutans interface (30 min: 6.37 ± 0.12 vs. 6.18 ± 0.11, 60 min: 6.08 ± 0.14 vs. 5.66 ± 0.27, 90 min: 5.49 ± 0.24 vs. 5.14 ± 0.22, p < 0.05). Greater amounts of calcium were dissolved from RD (3.19 ± 0.74 µg/mL) than from CE (1.84 ± 0.68 µg/mL; p < 0.05), while similar amounts of lactate were produced. Proteolytic activity was not detected at any of the interfaces. These results indicate that RD is more soluble to bacteria-induced acidification than CE. This method can contribute to the evaluation and development of caries-preventive materials.
Collapse
Affiliation(s)
- Gen Mayanagi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | |
Collapse
|
13
|
Nedeljkovic I, De Munck J, Slomka V, Van Meerbeek B, Teughels W, Van Landuyt K. Lack of Buffering by Composites Promotes Shift to More Cariogenic Bacteria. J Dent Res 2016; 95:875-81. [DOI: 10.1177/0022034516647677] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Secondary caries (SC) remains a very important problem with composite restorations. The objectives of this study were to test the acid-buffering ability of several restorative materials and to evaluate whether buffering of the restorative material has an impact on the microbial composition of the biofilm. Disk-shaped specimens of conventional composite, composite with surface prereacted glass-ionomer filler particles (so-called giomer), glass-ionomer cement (GIC), amalgam, and hydroxyapatite (HAp) (control) were exposed to aqueous solutions with pH 4, 5, 6, and 7 and to the medium containing bacteria-produced acids, and pH changes were recorded over several days. Next, material specimens were immersed in bacterial growth medium with pH adjusted to 5. After a 24-h incubation, the extracts were collected and inoculated with a cariogenic ( Streptococcus mutans) and a noncariogenic ( Streptococcus sanguinis) species. The bacterial growth was monitored both in a single-species model by spectrophotometry and in a dual-species model by viability quantitative polymerase chain reaction. Amalgam and HAp showed the strongest acid-buffering ability, followed by the GIC and the giomer, while the conventional composite did not exhibit any buffering capacity. Furthermore, due to the lack of acid-buffering abilities, composite was not able to increase the pH of the medium (pH 5), which, in the absence of antibacterial properties, allowed the growth of S. mutans, while the growth of S. sanguinis, a less aciduric species, was completely inhibited. A similar effect was observed when bacteria were cultured together: there was a higher percentage of S. mutans and lower percentage of S. sanguinis with the conventional composite than with other materials and HAp. In conclusion, conventional composites lack the ability to increase the local pH, which leads to the outgrowth of more acidogenic/aciduric bacteria and higher cariogenicity of the biofilm. Together with lack of antibacterial properties, lack of buffering may account for the higher susceptibility of composites to SC.
Collapse
Affiliation(s)
- I. Nedeljkovic
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - J. De Munck
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - V. Slomka
- Oral Microbiology, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - B. Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - W. Teughels
- Oral Microbiology, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - K.L. Van Landuyt
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Fukushima A, Mayanagi G, Nakajo K, Sasaki K, Takahashi N. Microbiologically induced corrosive properties of the titanium surface. J Dent Res 2014; 93:525-9. [PMID: 24554541 DOI: 10.1177/0022034514524782] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Corrosion of titanium is the major concern when it is used for dental treatment. This study aimed to investigate the mechanism of the microbiologically induced corrosive properties of titanium. An experimental well was made of polymethyl methacrylate with pure titanium at the bottom. Viable or killed cells of Streptococcus mutans were packed into the well, and pH at the bacteria-titanium interface was monitored with and without glucose. Before and after 90-minute incubation, the electrochemical behavior on the titanium surface was measured by means of a potentiostat. The oxygen concentration under bacterial cells was monitored with oxygen-sensitive fluorescent film. The amount of titanium eluted was measured by inductively coupled plasma-mass spectrometry. The corrosion current and passive current under killed cells were low and stable during 90 min, while those under viable cells increased, regardless of the glucose-induced pH fall. The polarization resistance and oxygen concentration under killed cells were high and stable, while those under viable cells decreased. No elution of titanium was detected. Viable bacterial cells may form 'oxygen concentration cells' through metabolism-coupled oxygen consumption and subsequently induce corrosive properties of the titanium surface.
Collapse
|
15
|
Mayanagi G, Igarashi K, Washio J, Domon-Tawaraya H, Takahashi N. Effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria-material interface: an in vitro model study. J Dent 2013; 42:15-20. [PMID: 24246685 DOI: 10.1016/j.jdent.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Inhibition of bacterial acid production by dental restorative materials is one of the strategies for secondary caries prevention. This study aimed to evaluate the effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria-material interface. METHODS Four fluoride-releasing restorative materials, glass-ionomer cement (GIC), resin-modified glass-ionomer cement (RMGIC), resin composite (RC) and flowable resin composite (FRC) were used. Each specimen was immersed in potassium phosphate buffer at pH 7.0 for 10min and 4 weeks, and in potassium acetate buffer at pH 5.5 for 4 weeks. An experimental apparatus was made of polymethyl methacrylate and had a well with restorative materials or polymethyl methacrylate (control) at the bottom. The well was packed with cells of Streptococcus mutans, and the pH at the interface between cells and materials was monitored using a miniature pH electrode after the addition of 1% glucose for 90min, and the fluoride released into the well was quantified using a fluoride ion electrode. RESULTS The pH of GIC (4.98-5.18), RMGIC (4.77-4.99), RC (4.62-4.75) and FRC (4.54-4.84) at 90min were higher than that of control (4.31-4.49). The fluoride amounts released from GIC were the highest, followed by RMGIC, RC and FRC, irrespective of immersion conditions. Saliva coating on materials had no significant effect. CONCLUSIONS The fluoride-releasing restorative materials inhibited pH fall at the bacteria-material interface. The degree of inhibition of pH fall seemed to correspond to the amount of fluoride detected, suggesting that the inhibition was due to the fluoride released from these materials. CLINICAL SIGNIFICANCE A little amount of fluoride actually released from the fluoride-releasing materials may have caries preventive potential for oral bacteria.
Collapse
Affiliation(s)
- Gen Mayanagi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan; Research Unit for Interface Oral Health Science, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Koei Igarashi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hitomi Domon-Tawaraya
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan; Division of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
16
|
Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013; 65:405-20. [PMID: 22664230 DOI: 10.1016/j.addr.2012.05.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022]
Abstract
The role of metal ions in the body and particularly in the formation, regulation and maintenance of bone is only just starting to be unravelled. The role of some ions, such as zinc, is more clearly understood due to its central importance in proteins. However, a whole spectrum of other ions is known to affect bone formation but the exact mechanism is unclear as the effects can be complex, multifactorial and also subtle. Furthermore, a significant number of studies utilise single doses in cell culture medium, whereas the continual, sustained release of an ion may initiate and mediate a completely different response. We have reviewed the role of the most significant ions that are known to play a role in bone formation, namely calcium, zinc, strontium, magnesium, boron, titanium and also phosphate anions as well as copper and its role in angiogenesis, an important process interlinked with osteogenesis. This review will also examine how delivery systems may offer an alternative way of providing sustained release of these ions which may effect and potentiate a more appropriate and rapid tissue response.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, 256 Gray's Inn Rd, London, WC1X 8LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Matsuura K, Asano Y, Yamada A, Naruse K. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor. SENSORS (BASEL, SWITZERLAND) 2013; 13:2484-93. [PMID: 23429511 PMCID: PMC3649397 DOI: 10.3390/s130202484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/08/2013] [Accepted: 02/10/2013] [Indexed: 12/21/2022]
Abstract
Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium.
Collapse
Affiliation(s)
- Koji Matsuura
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; E-Mail:
| | - Yuka Asano
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; E-Mail:
| | - Akira Yamada
- Department of Mechanical Systems Engineering, Faculty of Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan; E-Mail:
- Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Keiji Naruse
- Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
18
|
Abstract
We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.
Collapse
|
19
|
MA S, IMAZATO S, CHEN JH, MAYANAGI G, TAKAHASHI N, ISHIMOTO T, NAKANO T. Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dent Mater J 2012. [DOI: 10.4012/dmj.2012-061] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|