1
|
Lafleur S, Bodein A, Mbuya Malaïka Mutombo J, Mathieu A, Joly Beauparlant C, Minne X, Chandad F, Droit A, Houde VP. Multi-Omics Data Integration Reveals Key Variables Contributing to Subgingival Microbiome Dysbiosis-Induced Inflammatory Response in a Hyperglycemic Microenvironment. Int J Mol Sci 2023; 24:ijms24108832. [PMID: 37240180 DOI: 10.3390/ijms24108832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Subgingival microbiome dysbiosis promotes the development of periodontitis, an irreversible chronic inflammatory disease associated with metabolic diseases. However, studies regarding the effects of a hyperglycemic microenvironment on host-microbiome interactions and host inflammatory response during periodontitis are still scarce. Here, we investigated the impacts of a hyperglycemic microenvironment on the inflammatory response and transcriptome of a gingival coculture model stimulated with dysbiotic subgingival microbiomes. HGF-1 cells overlaid with U937 macrophage-like cells were stimulated with subgingival microbiomes collected from four healthy donors and four patients with periodontitis. Pro-inflammatory cytokines and matrix metalloproteinases were measured while the coculture RNA was submitted to a microarray analysis. Subgingival microbiomes were submitted to 16s rRNA gene sequencing. Data were analyzed using an advanced multi-omics bioinformatic data integration model. Our results show that the genes krt76, krt27, pnma5, mansc4, rab41, thoc6, tm6sf2, and znf506 as well as the pro-inflammatory cytokines IL-1β, GM-CSF, FGF2, IL-10, the metalloproteinases MMP3 and MMP8, and bacteria from the ASV 105, ASV 211, ASV 299, Prevotella, Campylobacter and Fretibacterium genera are key intercorrelated variables contributing to periodontitis-induced inflammatory response in a hyperglycemic microenvironment. In conclusion, our multi-omics integration analysis unveiled the complex interrelationships involved in the regulation of periodontal inflammation in response to a hyperglycemic microenvironment.
Collapse
Affiliation(s)
- Sarah Lafleur
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Joanna Mbuya Malaïka Mutombo
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Alban Mathieu
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Charles Joly Beauparlant
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Xavier Minne
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Fatiha Chandad
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Vanessa P Houde
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Saliva-derived microcosm biofilms grown on different oral surfaces in vitro. NPJ Biofilms Microbiomes 2021; 7:74. [PMID: 34504090 PMCID: PMC8429667 DOI: 10.1038/s41522-021-00246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The microbial composition of a specific oral niche could be influenced by initial bacterial adherence, nutrient and physiological property of the local surface. To investigate the influence of nutrient and surface properties on microbial composition, saliva-derived biofilms were grown in agar on three substrata: Reconstructed Human Gingiva (RHG), a hydroxyapatite (HAP) surface, and a titanium (TI) surface. Agar was mixed with either Brain Heart Infusion (BHI) or Thompson (TP) medium. After 1, 3, or 5 days, biofilm viability (by colony forming units) and microbiome profiles (by 16 S rDNA amplicon sequencing) were determined. On RHG, biofilm viability and composition were similar between BHI and TP. However, on the abiotic substrata, biofilm properties greatly depended on the type of medium and substratum. In BHI, the viability of HAP-biofilm first decreased and then increased, whereas that of TI-biofilm decreased in time until a 6-log reduction. In TP, either no or a 2-log reduction in viability was observed for HAP- or TI-biofilms respectively. Furthermore, different bacterial genera (or higher level) were differentially abundant in the biofilms on 3 substrata: Haemophilus and Porphyromonas for RHG; Bacilli for HAP and Prevotella for TI. In conclusion, RHG, the biotic substratum, is able to support a highly viable and diverse microbiome. In contrast, the viability and diversity of the biofilms on the abiotic substrata were influenced by the substrata type, pH of the environment and the richness of the growth media. These results suggest that the host (oral mucosa) plays a vital role in the oral ecology.
Collapse
|
3
|
Myers S, Do T, Meade JL, Tugnait A, Vernon JJ, Pistolic J, Hancock REW, Marsh PD, Trivedi HM, Chen D, Devine DA. Immunomodulatory streptococci that inhibit CXCL8 secretion and NFκB activation are common members of the oral microbiota. J Med Microbiol 2021; 70. [PMID: 33734952 PMCID: PMC8346732 DOI: 10.1099/jmm.0.001329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction Oral tissues are generally homeostatic despite exposure to many potential inflammatory agents including the resident microbiota. This requires the balancing of inflammation by regulatory mechanisms and/or anti-inflammatory commensal bacteria. Thus, the levels of anti-inflammatory commensal bacteria in resident populations may be critical in maintaining this homeostatic balance. Hypothesis/Gap Statement The incidence of immunosuppressive streptococci in the oral cavity is not well established. Determining the proportion of these organisms and the mechanisms involved may help to understand host-microbe homeostasis and inform development of probiotics or prebiotics in the maintenance of oral health. Aim To determine the incidence and potential modes of action of immunosuppressive capacity in resident oral streptococci. Methodology Supragingival plaque was collected from five healthy participants and supragingival and subgingival plaque from five with gingivitis. Twenty streptococci from each sample were co-cultured with epithelial cells±flagellin or LL-37. CXCL8 secretion was detected by ELISA, induction of cytotoxicity in human epithelial cells by lactate dehydrogenase release and NFκB-activation using a reporter cell line. Bacterial identification was achieved through partial 16S rRNA gene sequencing and next-generation sequencing. Results CXCL8 secretion was inhibited by 94/300 isolates. Immunosuppressive isolates were detected in supragingival plaque from healthy (4/5) and gingivitis (4/5) samples, and in 2/5 subgingival (gingivitis) plaque samples. Most were Streptococcus mitis/oralis. Seventeen representative immunosuppressive isolates all inhibited NFκB activation. The immunosuppressive mechanism was strain specific, often mediated by ultra-violet light-labile factors, whilst bacterial viability was essential in certain species. Conclusion Many streptococci isolated from plaque suppressed epithelial cell CXCL8 secretion, via inhibition of NFκB. This phenomenon may play an important role in oral host-microbe homeostasis.
Collapse
Affiliation(s)
- Sarah Myers
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Josephine L Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Aradhna Tugnait
- Division of Restorative Dentistry, University of Leeds, Leeds, UK
| | - Jon J Vernon
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Jelena Pistolic
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Columbia, Canada
| | - Philip D Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | | | | | - Deirdre A Devine
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Candida albicans as an Essential "Keystone" Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020; 9:microorganisms9010059. [PMID: 33379333 PMCID: PMC7823588 DOI: 10.3390/microorganisms9010059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.
Collapse
|
6
|
Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer's disease. Periodontol 2000 2020; 83:242-271. [PMID: 32385876 DOI: 10.1111/prd.12327] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
Approximately 47 million people worldwide have been diagnosed with dementia, 60%-80% of whom have dementia of the Alzheimer's disease type. Unfortunately, there is no cure in sight. Defining modifiable risk factors for Alzheimer's disease may have a significant impact on its prevalence. An increasing body of evidence suggests that chronic inflammation and microbial dysbiosis are risk factors for Alzheimer's disease. Periodontal disease is a chronic inflammatory disease that develops in response to response to microbial dysbiosis. Many studies have shown an association between periodontal disease and Alzheimer's disease. The intent of this paper was to review the existing literature and determine, using the Bradford Hill criteria, whether periodontal disease is causally related to Alzheimer's disease.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA
| | - Ronald G Craig
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA.,Department of Basic Sciences and Craniofacial Biology, New York University, College of Dentistry, New York, New York, USA
| | - Richard Niederman
- Department of Epidemiology and Health Promotion, New York University, College of Dentistry, New York, New York, USA
| | - Juan Fortea
- Alzheimer Down Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona and Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
7
|
|
8
|
Hanel AN, Herzog HM, James MG, Cuadra GA. Effects of Oral Commensal Streptococci on Porphyromonas gingivalis Invasion into Oral Epithelial Cells. Dent J (Basel) 2020; 8:E39. [PMID: 32370286 PMCID: PMC7345648 DOI: 10.3390/dj8020039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to determine if the interaction between common oral commensal bacteria and oral epithelial cells would provide protective effects against the invasion of periodontopathogen Porphyromonas gingivalis. Oral epithelial OKF6/Tert cells were used in co-cultures with Streptococcus gordonii, Streptococcus oralis, Streptococcus mitis, and Streptococcus intermedius. The viability of OKF6/Tert cells following a bacterial challenge was evaluated by trypan blue exclusion. The adherence of commensal species was determined by CFU counts. P. gingivalis invasion in OKF6/Tert cells was assessed before and after exposure to commensal species according to CFU counts. Viability assays show that only S. gordonii and S. intermedius display low toxicity toward OKF6/Tert cells. Both commensals adhere to OKF6/Tert cells at an average ratio of 1 CFU to 10 cells. P. gingivalis invasion into host cells is significantly reduced by 25% or 60% after exposure to S. gordonii or S. intermedius, respectively. The results suggest that these commensal species bind to host cells and diminish P. gingivalis invasion. This is important in the context of periodontal disease since P. gingivalis primarily acts on the host by invading it. Therefore, efforts to decrease invasion will eventually lead to future therapies harnessing the mechanisms employed by oral commensal bacteria.
Collapse
Affiliation(s)
- Alyssa N. Hanel
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
- College of Dental Medicine, Columbia University, 622 W 168th St, New York, NY 10032, USA
| | - Hannah M. Herzog
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| | - Michelle G. James
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| | - Giancarlo A. Cuadra
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.N.H.); (H.M.H.); (M.G.J.)
| |
Collapse
|
9
|
Othman N, Risma Rismayuddin N, Kamaluddin WFWM, Arzmi M, Ismail A, Aidid E. The Pathogenicity of Actinomyces naeslundii is associated with polymicrobial interactions: A systematic review. SCIENTIFIC DENTAL JOURNAL 2020. [DOI: 10.4103/sdj.sdj_31_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Brown JL, Johnston W, Delaney C, Rajendran R, Butcher J, Khan S, Bradshaw D, Ramage G, Culshaw S. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci Rep 2019; 9:15779. [PMID: 31673005 PMCID: PMC6823452 DOI: 10.1038/s41598-019-52115-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface.
Collapse
Affiliation(s)
- Jason L Brown
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Chris Delaney
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Ranjith Rajendran
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK.,Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shaz Khan
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - David Bradshaw
- Oral Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Weybridge, KT13 0DE, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| |
Collapse
|
11
|
Brown JL, Johnston W, Delaney C, Short B, Butcher MC, Young T, Butcher J, Riggio M, Culshaw S, Ramage G. Polymicrobial oral biofilm models: simplifying the complex. J Med Microbiol 2019; 68:1573-1584. [PMID: 31524581 DOI: 10.1099/jmm.0.001063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host-pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark C Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Tracy Young
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Marcello Riggio
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
12
|
Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol 2019; 34. [PMID: 30407731 DOI: 10.1111/omi.12251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
This study examined the oral epithelial immunotranscriptome response patterns modulated by oral bacterial planktonic or biofilm challenge. We assessed gene expression patterns when epithelial cells were challenged with a multispecies biofilm composed of Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis representing a type of periodontopathic biofilm compared to challenge with the same species of planktonic bacteria. Of the 579 human immunology genes, a substantial signal of the epithelial cells was observed to 181 genes. Biofilm challenged stimulated significant elevations compared to planktonic bacteria for IL32, IL8, CD44, B2M, TGFBI, NFKBIA, IL1B, CD59, IL1A, CCL20 representing the top 10 signals comprising 55% of the overall signal for the epithelial cell responses. Levels of PLAU, CD9, IFITM1, PLAUR, CD24, TNFSF10, and IL1RN were all elevated by each of the planktonic bacterial challenge vs the biofilm responses. While the biofilms up-regulated 123/579 genes (>2-fold), fewer genes were increased by the planktonic species (36 [S gordonii], 30 [F nucleatum], 44 [P gingivalis]). A wide array of immune genes were regulated by oral bacterial challenge of epithelial cells that would be linked to the local activity of innate and adaptive immune response components in the gingival tissues. Incorporating bacterial species into a structured biofilm dramatically altered the number and level of genes expressed. Additionally, a specific set of genes were significantly decreased with the multispecies biofilms suggesting that some epithelial cell biologic pathways are down-regulated when in contact with this type of pathogenic biofilm.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada.,College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky
| | - Rebecca Peyyala
- College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky
| | - Octavio A Gonzalez
- College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, Kentucky.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
13
|
Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep 2018; 8:16061. [PMID: 30375445 PMCID: PMC6207751 DOI: 10.1038/s41598-018-34390-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Since the oral mucosa is continuously exposed to abundant microbes, one of its most important defense features is a highly proliferative, thick, stratified epithelium. The cellular mechanisms responsible for this are still unknown. The aim of this study was to determine whether multi-species oral biofilm contribute to the extensive stratification and primed antimicrobial defense in epithelium. Two in vitro models were used: 3D reconstructed human gingiva (RHG) and oral bacteria representative of multi-species commensal biofilm. The organotypic RHG consists of a reconstructed stratified gingiva epithelium on a gingiva fibroblast populated hydrogel (lamina propria). Biofilm was cultured from healthy human saliva, and consists of typical commensal genera Granulicatella and major oral microbiota genera Veillonella and Streptococcus. Biofilm was applied topically to RHG and host–microbiome interactions were studied over 7 days. Compared to unexposed RHG, biofilm exposed RHG showed increased epithelial thickness, more organized stratification and increased keratinocyte proliferation. Furthermore biofilm exposure increased production of RHG anti-microbial proteins Elafin, HBD2 and HBD3 but not HBD1, adrenomedullin or cathelicidin LL-37. Inflammatory and antimicrobial cytokine secretion (IL-6, CXCL8, CXCL1, CCL20) showed an immediate and sustained increase. In conclusion, exposure of RHG to commensal oral biofilm actively contributes to RHG epithelial barrier function.
Collapse
|
14
|
Herrero ER, Fernandes S, Verspecht T, Ugarte-Berzal E, Boon N, Proost P, Bernaerts K, Quirynen M, Teughels W. Dysbiotic Biofilms Deregulate the Periodontal Inflammatory Response. J Dent Res 2018; 97:547-555. [PMID: 29394879 DOI: 10.1177/0022034517752675] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases originate from a dysbiosis within the oral microbiota, which is associated with a deregulation of the host immune response. Although little is known about the initiation of dysbiosis, it has been shown that H2O2 production is one of the main mechanisms by which some commensal bacteria suppress the outgrowth of pathobionts. Current models emphasize the critical nature of complex microbial biofilms that form unique microbial ecologies and of their change during transition from health (homeostatic) to disease (dysbiotic). However, very little is known on how this alters their virulence and host responses. The objective of this study was to determine differences in virulence gene expression by pathobionts and the inflammatory host response in homeostatic and dysbiotic biofilms originating from the same ecology. Quantitative polymerase chain reaction was performed to quantify the pathobiont outgrowth. Expression analysis of bacterial virulence and cellular inflammatory genes together with cytokine enzyme-linked immunosorbent assays were used to detect differences in bacterial virulence and to analyze potential differences in inflammatory response. An increase in pathobionts in induced dysbiotic biofilms was observed compared to homeostatic biofilms. The main virulence genes of all pathobionts were upregulated in dysbiotic biofilms. Exposure of these dysbiotic biofilms to epithelial and fibroblast cultures increased the expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and matrix metalloprotease 8, but especially the chemokine CXCL8 (IL-8). Conversely, homeostatic and beneficial biofilms had a minor immune response at the messenger RNA and protein level. Overall, induced dysbiotic biofilms enriched in pathobionts and virulence factors significantly increased the inflammatory response compared to homeostatic and commensal biofilms.
Collapse
Affiliation(s)
- E R Herrero
- 1 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - S Fernandes
- 1 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - T Verspecht
- 1 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - E Ugarte-Berzal
- 2 Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - N Boon
- 3 Center for Microbial Ecology and Technology (CMET), Ghent University, Gent, Belgium
| | - P Proost
- 4 Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - K Bernaerts
- 5 Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Leuven, Belgium
| | - M Quirynen
- 1 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium.,6 Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - W Teughels
- 1 Department of Oral Health Sciences, KU Leuven, Leuven, Belgium.,6 Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Ippolitov EV, Nikolaeva EN, Tsarev VN. [Oral biofilm: inductors of congenital immunity signal pathways]. STOMATOLOGIIA 2017; 96:58-62. [PMID: 28858283 DOI: 10.17116/stomat201796458-62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- E V Ippolitov
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - E N Nikolaeva
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| | - V N Tsarev
- Moscow State Medical and Dental University named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
16
|
Lee SJ, Choi BK. Involvement of NLRP10 in IL-1α induction of oral epithelial cells by periodontal pathogens. Innate Immun 2017; 23:569-577. [PMID: 28766990 DOI: 10.1177/1753425917722610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study investigated the pathogenesis of periodontitis and the role of nucleotide-binding oligomerization domain-like receptor protein 10 (NLRP10). The human oral epithelial cell line HOK-16B was infected with two periodontal pathogens, Tannerella forsythia and Fusobacterium nucleatum, at various MOIs. RT-PCR and immunoblotting demonstrated that infection increased mRNA and protein expression of NLRP10, respectively. The siRNA-mediated NLRP10 knockdown significantly reduced IL-1α expression and secretion. Both bacteria induced phosphorylation of ERK, JNK and p38 MAP kinases in HOK-16B cells. NLRP10 knockdown impaired ERK phosphorylation only. ERK inhibition significantly decreased the expression of T. forsythia- and F. nucleatum-induced IL-1α. Our data suggest that NLRP10 is involved in activating the ERK signalling pathway in HOK-16B cells infected with T. forsythia and F. nucleatum. This pathway likely augments the pro-inflammatory cytokine IL-1α levels, which may play a critical role in periodontitis.
Collapse
Affiliation(s)
- Seok-Joo Lee
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Bong-Kyu Choi
- 1 Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
- 2 Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Fernandez y Mostajo M, Exterkate RAM, Buijs MJ, Beertsen W, van der Weijden GA, Zaura E, Crielaard W. A reproducible microcosm biofilm model of subgingival microbial communities. J Periodontal Res 2017; 52:1021-1031. [DOI: 10.1111/jre.12473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Affiliation(s)
- M. Fernandez y Mostajo
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Amsterdam the Netherlands
| | - R. A. M. Exterkate
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Amsterdam the Netherlands
| | - M. J. Buijs
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Amsterdam the Netherlands
| | - W. Beertsen
- Department of Periodontology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University; Amsterdam the Netherlands
| | - G. A. van der Weijden
- Department of Periodontology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University; Amsterdam the Netherlands
| | - E. Zaura
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Amsterdam the Netherlands
| | - W. Crielaard
- Department of Preventive Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); Amsterdam the Netherlands
| |
Collapse
|
18
|
Bi J, Koivisto L, Pang A, Li M, Jiang G, Aurora S, Wang Z, Owen GR, Dai J, Shen Y, Grenier D, Haapasalo M, Häkkinen L, Larjava H. Suppression of αvβ6 Integrin Expression by Polymicrobial Oral Biofilms in Gingival Epithelial Cells. Sci Rep 2017; 7:4411. [PMID: 28667248 PMCID: PMC5493688 DOI: 10.1038/s41598-017-03619-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontal diseases manifest by the formation of deep pockets between the gingiva and teeth where multispecies bacterial biofilms flourish, causing inflammation and bone loss. Epithelial cell receptor αvβ6 integrin that regulates inflammation by activating the anti-inflammatory cytokine transforming growth factor-β1, is highly expressed in healthy junctional epithelium that connects the gingiva to the tooth enamel. However, its expression is attenuated in human periodontal disease. Moreover, Itgb6−/− mice display increased periodontal inflammation compared to wild-type mice. We hypothesized that bacterial biofilms present in the periodontal pockets suppress αvβ6 integrin levels in periodontal disease and that this change aggravates inflammation. To this end, we generated three-week-old multi-species oral biofilms in vitro and treated cultured gingival epithelial cells (GECs) with their extracts. The biofilm extracts caused suppression of β6 integrin expression and upregulation of pro-inflammatory cytokines, including interleukin-1β and -6. Furthermore, GECs with β6 integrin siRNA knockdown showed increased interleukin-1β expression, indicating that αvβ6 integrin-deficiency is associated with pro-inflammatory cytokine responsiveness. FSL-1, a synthetic bacterial lipopeptide, also suppressed β6 integrin expression in GECs. Therefore, biofilm components, including lipopeptides, may downregulate αvβ6 integrin expression in the pocket epithelium and thus promote epithelial cell-driven pro-inflammatory response in periodontal disease.
Collapse
Affiliation(s)
- Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Aihui Pang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoqiao Jiang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Saljae Aurora
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhejun Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gethin R Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayin Dai
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ya Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Daniel Grenier
- Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Markus Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
19
|
Wang L, Li C, Weir MD, Zhang K, Zhou Y, Xu HHK, Reynolds MA. Novel multifunctional dental bonding agent for Class-V restorations to inhibit periodontal biofilms. RSC Adv 2017; 7:29004-29014. [PMID: 29910954 PMCID: PMC5998673 DOI: 10.1039/c6ra28711e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently developed a dental bonding agent to bond restorations to teeth using nanoparticles of amorphous calcium phosphate (NACP) for remineralization with rechargeable calcium and phosphate ion release. The objectives of this study were to: (1) incorporate an antibacterial monomer dimethylaminohexadecyl methacrylate (DMAHDM) and a protein-repellent agent 2-methacryloyloxyethyl phosphorylcholine (MPC); and (2) investigate protein adsorption and periodontitis-related biofilms for the first time. A primer, used to prime tooth structures for bonding, was made with pyromellitic glycerol dimethacrylate (PMGDM) and 2-hydroxyethyl methacrylate (HEMA). An adhesive was made with PMGDM, ethoxylated bisphenol A dimethacrylate and HEMA. NACP, MPC and DMAHDM were incorporated. Streptococcus gordonii, Actinomyces naeslundii, Porphyromonas gingivalis, Fusobacterium nucleatum were cultured to form single and multi-species biofilms. Colony-forming units (CFU), live/dead, metabolic activity, and polysaccharide were measured. Adding DMAHDM, MPC and NACP into the bonding agent did not compromise the dentin bond strength (p > 0.1). Bonding agents with 5% MPC reduced protein adsorption to 1/15 that of the control (p < 0.05). Bonding agents with 5% DMAHDM + 5% MPC had much greater reduction in biofilms than DMAHDM or MPC alone (p < 0.05). Biofilm CFU was reduced by 3 to 4 log via DMAHDM + MPC. Metabolic activities and polysaccharide of biofilms were also substantially reduced (p < 0.05). In conclusion, a novel bonding agent was developed for dental restorations with inhibition of biofilms, reducing CFU by 3 to 4 log. Besides remineralizartion and acid-neutralization via NACP to inhibit caries as shown previously, the multifunctional adhesive is promising for root restorations with subgingival margins to suppress periodontal pathogens and protect the periodontium.
Collapse
Affiliation(s)
- Lin Wang
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Michael D. Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hockin H. K. Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore County, MD 21250, USA
| | - Mark A. Reynolds
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Haro A, Saxlin T, Suominen AL, Jula A, Knuuttila M, Ylöstalo P. Serum lipids modify periodontal infection - interleukin-6 association. J Clin Periodontol 2016; 44:275-282. [PMID: 28032903 DOI: 10.1111/jcpe.12688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to investigate whether the systemic response against a local inflammatory process in periodontium is dependent on the individual's serum lipid composition. MATERIAL AND METHODS This study was based on a subpopulation of the Health 2000 Survey that included 878 subjects who were aged between 45 and 64 years, dentate, non-diabetic and non-rheumatic. The inflammatory condition of periodontium was measured by means of the number of teeth with deepened (4 mm or deeper) periodontal pockets. Systemic inflammation was assessed by means of the serum levels of interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α). The association between an inflammatory condition in the periodontium and the systemic inflammatory response was analysed using linear regression models. RESULTS The number of teeth with deepened periodontal pockets was associated with elevated serum IL-6 levels among subjects with an unfavourable lipid composition (low-density lipoprotein cholesterol ≥3.7 mmol/l or high-density lipoprotein cholesterol <1.3 mmol/l). There was no association between serum TNF-α levels and the number of teeth with deepened periodontal pockets in these data. CONCLUSION The systemic response against the inflammatory condition of periodontium varied between individuals. The variation appeared to be dependent on the serum lipid composition or related factors.
Collapse
Affiliation(s)
- Anniina Haro
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,City of Äänekoski, Public Health Centre, Oral Health Care Services, Äänekoski, Finland
| | - Tuomas Saxlin
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Surgery, Kuopio University Hospital, Kuopio, Finland.,Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Surgery, Kuopio University Hospital, Kuopio, Finland.,The Living Environment and Health Unit, National Institute for Health and Welfare, Kuopio, Finland.,The Health Monitoring Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Antti Jula
- National Institute for Health and Welfare (THL), Turku, Finland
| | - Matti Knuuttila
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and Oulu University, Oulu, Finland
| | - Pekka Ylöstalo
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Surgery, Kuopio University Hospital, Kuopio, Finland.,Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and Oulu University, Oulu, Finland
| |
Collapse
|
21
|
Stephen AS, Millhouse E, Sherry L, Aduse-Opoku J, Culshaw S, Ramage G, Bradshaw DJ, Burnett GR, Allaker RP. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response. PLoS One 2016; 11:e0169157. [PMID: 28033374 PMCID: PMC5199072 DOI: 10.1371/journal.pone.0169157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1α when stimulated with the mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation and cytokine response with subsequent effects on oral malodor and periodontitis is suggested.
Collapse
Affiliation(s)
- Abish S. Stephen
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Emma Millhouse
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Leighann Sherry
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Aduse-Opoku
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Shauna Culshaw
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | | | - Gary R. Burnett
- GlaxoSmithKline Consumer Healthcare, Weybridge, United Kingdom
| | - Robert P. Allaker
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
22
|
Ramage G, Lappin DF, Millhouse E, Malcolm J, Jose A, Yang J, Bradshaw DJ, Pratten JR, Culshaw S. The epithelial cell response to health and disease associated oral biofilm models. J Periodontal Res 2016; 52:325-333. [PMID: 27330034 PMCID: PMC5412879 DOI: 10.1111/jre.12395] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 02/03/2023]
Abstract
Background and Objective Different bacteria differentially stimulate epithelial cells. Biofilm composition and viability are likely to influence the epithelial response. In vitro model systems are commonly used to investigate periodontitis‐associated bacteria and their interactions with the host; therefore, understanding factors that influence biofilm–cell interactions is essential. The present study aimed to develop in vitro monospecies and multispecies biofilms and investigate the epithelial response to these biofilms. Material and Methods Bacterial biofilms were cultured in vitro and then either live or methanol‐fixed biofilms were co‐cultured with epithelial cells. Changes in epithelial cell viability, gene expression and cytokine content of culture supernatants were evaluated. Results Bacterial viability was better preserved within mixed‐species biofilm culture than within single‐species biofilm culture. Both mixed‐ and single‐species biofilms stimulated increased expression of mRNA for interleukin 8 (IL8), C‐X‐C motif chemokine ligand 3 (CXCL3), C‐X‐C motif chemokine ligand 1 (CXCL1), interleukin 1 (IL1), interleukin 6 (IL6), colony‐stimulating factor 2 (CSF2) and tumour necrosis factor (TNF), and the response was greatest in response to mixed‐species biofilms. Following co‐culture, cytokines detected in the supernatants included IL‐8, IL‐6, granulocyte colony‐stimulating factor and granulocyte–macrophage colony‐stimulating factor, with the greatest release of cytokines found following co‐culture with methanol‐fixed, mixed‐species biofilms. Conclusions These data show that epithelial cells generate a distinct cytokine gene‐ and protein‐expression signature in response to live or fixed, single‐ or multispecies biofilms.
Collapse
Affiliation(s)
- G Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK
| | - D F Lappin
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK
| | - E Millhouse
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK
| | - J Malcolm
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Jose
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK.,GlaxoSmithKline Consumer Healthcare, St George's Avenue, Weybridge, Surrey, UK
| | - J Yang
- GlaxoSmithKline Consumer Healthcare, St George's Avenue, Weybridge, Surrey, UK
| | - D J Bradshaw
- GlaxoSmithKline Consumer Healthcare, St George's Avenue, Weybridge, Surrey, UK
| | - J R Pratten
- GlaxoSmithKline Consumer Healthcare, St George's Avenue, Weybridge, Surrey, UK
| | - S Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, University of Glasgow, Glasgow, UK.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Bi J, Koivisto L, Owen G, Huang P, Wang Z, Shen Y, Bi L, Rokka A, Haapasalo M, Heino J, Häkkinen L, Larjava H. Epithelial Microvesicles Promote an Inflammatory Phenotype in Fibroblasts. J Dent Res 2016; 95:680-8. [DOI: 10.1177/0022034516633172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microvesicles (MVs) are extracellular vesicles secreted by various cell types that are involved in intercellular communication. We hypothesized that in human periodontal disease, the pocket epithelium releases MVs, which then modulate gene expression in the underlying fibroblasts to control periodontal inflammation. MVs were isolated from culture medium of gingival epithelial cells (GECs) treated with oral bacterial biofilm extract or left untreated. Biofilm treatment significantly increased MV release from the GECs. Mass spectrometry of GEC-MVs identified a total of 2,173 proteins, of which about 80% were detected in MVs from both control and biofilm-treated GECs. Among 80 signature genes of human gingival fibroblasts, 20 were significantly regulated ( P < 0.05) by MVs from control and biofilm-treated GECs in a similar manner. Matrix metalloproteinase 1 and 3 and interleukin 6 and 8 showed the strongest regulation at the mRNA and protein levels. Several cellular signaling pathways were activated by GEC-MVs in human gingival fibroblasts, including Smad and mitogen-activated protein kinase–associated pathways ERK1/2, JNK, and p38. However, ERK1/2 signaling dominated in the MV-induced gene expression changes. The results demonstrate that GEC-MVs have a strong regulatory effect on the expression of fibroblast genes associated with inflammation and matrix degradation and that bacterial biofilm stimulates the generation of GEC-MVs. This suggests that bacterial biofilms can contribute to the initiation and progression of periodontal disease by promoting a tissue-destructive phenotype in gingival fibroblasts via the enhanced secretion of epithelial MVs.
Collapse
Affiliation(s)
- J. Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - L. Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - G. Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - P. Huang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z. Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - Y. Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - L. Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - A. Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - M. Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - J. Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - L. Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - H.S. Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Noble JM, Scarmeas N, Celenti RS, Elkind MSV, Wright CB, Schupf N, Papapanou PN. Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS One 2014; 9:e114959. [PMID: 25522313 PMCID: PMC4270775 DOI: 10.1371/journal.pone.0114959] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023] Open
Abstract
Background Periodontitis and Alzheimer disease (AD) are associated with systemic inflammation. This research studied serum IgG to periodontal microbiota as possible predictors of incident AD. Methods Using a case-cohort study design, 219 subjects (110 incident AD cases and 109 controls without incident cognitive impairment at last follow-up), matched on race-ethnicity, were drawn from the Washington Heights-Inwood Columbia Aging Project (WHICAP), a cohort of longitudinally followed northern Manhattan residents aged >65 years. Mean follow-up was five years (SD 2.6). In baseline sera, serum IgG levels were determined for bacteria known to be positively or negatively associated with periodontitis (Porphyromonas gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans Y4, Treponema denticola, Campylobacter rectus, Eubacterium nodatum, and Actinomyces naeslundii genospecies-2). In all analyses, we used antibody threshold levels shown to correlate with presence of moderate-severe periodontitis. Results Mean age was 72 years (SD 6.9) for controls, and 79 years (SD 4.6) for cases (p<0.001). Non-Hispanic Whites comprised 26%, non-Hispanic Blacks 27%, and Hispanics 48% of the sample. In a model adjusting for baseline age, sex, education, diabetes mellitus, hypertension, smoking, prior history of stroke, and apolipoprotein E genotype, high anti-A. naeslundii titer (>640 ng/ml, present in 10% of subjects) was associated with increased risk of AD (HR = 2.0, 95%CI: 1.1–3.8). This association was stronger after adjusting for other significant titers (HR = 3.1, 95%CI: 1.5–6.4). In this model, high anti-E. nodatum IgG (>1755 ng/ml; 19% of subjects) was associated with lower risk of AD (HR = 0.5, 95%CI: 0.2–0.9). Conclusions Serum IgG levels to common periodontal microbiota are associated with risk for developing incident AD.
Collapse
Affiliation(s)
- James M. Noble
- Taub Institute for Alzheimer Disease and the Aging Brain, Columbia University, New York, New York, United States of America
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Nikolaos Scarmeas
- Taub Institute for Alzheimer Disease and the Aging Brain, Columbia University, New York, New York, United States of America
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Social Medicine, Psychiatry, and Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Romanita S. Celenti
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, United States of America
| | - Mitchell S. V. Elkind
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Clinton B. Wright
- Evelyn F. McKnight Brain Institute, Departments of Neurology and Epidemiology & Public Health Sciences, and the Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nicole Schupf
- Taub Institute for Alzheimer Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Panos N. Papapanou
- Division of Periodontics, Section of Oral and Diagnostic Sciences, Columbia University College of Dental Medicine, New York, New York, United States of America
| |
Collapse
|
25
|
Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, Middleton AM, Pratten J, Culshaw S, Ramage G. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014; 14:80. [PMID: 24972711 PMCID: PMC4080992 DOI: 10.1186/1472-6831-14-80] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 01/07/2023] Open
Abstract
Background Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties. Methods An in vitro multi-species biofilm containing S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level. Results CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA. Conclusions CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may influence gingival inflammation, thereby validating the use of a biofilm co-culture model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK.
| |
Collapse
|
26
|
Yee M, Kim S, Sethi P, Düzgüneş N, Konopka K. Porphyromonas gingivalis stimulates IL-6 and IL-8 secretion in GMSM-K, HSC-3 and H413 oral epithelial cells. Anaerobe 2014; 28:62-7. [PMID: 24887636 DOI: 10.1016/j.anaerobe.2014.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/05/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Infection of oral epithelial cells with periodontopathogenic bacteria results in the production of pro-inflammatory cytokines involved in the initiation and progression of periodontal disease. The purpose of this study was to examine the release of interleukin (IL)-6 and IL-8 by oral epithelial cells after exposure to Porphyromonas gingivalis. Non-tumor-derived, immortalized human GMSM-K cells, and human oral squamous cell carcinoma, HSC-3 and H413 cells, were co-cultured with live and heat-inactivated P. gingivalis 2561 (ATCC 33277) and W83 (ATCC BAA-308™). IL-6 and IL-8 were quantified in the culture supernatants after 6 and 24 h. The basal levels of both cytokines and the responses to P. gingivalis were strongly dependent on cell type. GMSM-K cells produced less IL-8 than HSC-3 and H413 cells. Live P. gingivalis induced significant IL-6 and IL-8 secretion in GMSM-K and HSC-3 cells, and heat-inactivation of bacteria enhanced greatly IL-6 and IL-8 stimulation in these cells. Uninfected H413 cells produced high levels of IL-6 and IL-8, but were not responsive to live P. gingivalis; heat-inactivated P. gingivalis up-regulated IL-6 and IL-8 secretion in these cells. Since base-line secretion of IL-6 and IL-8, and responses to P. gingivalis depend on the cell type, conclusions on the responses to P. gingivalis should not be based on studies with a single cell type.
Collapse
Affiliation(s)
- Michael Yee
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Shawn Kim
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Pushpinder Sethi
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Nejat Düzgüneş
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States
| | - Krystyna Konopka
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 2155 Webster Street, San Francisco, CA 94115, United States.
| |
Collapse
|
27
|
Belibasakis GN, Thurnheer T, Bostanci N. Interleukin-8 responses of multi-layer gingival epithelia to subgingival biofilms: role of the "red complex" species. PLoS One 2013; 8:e81581. [PMID: 24339946 PMCID: PMC3858256 DOI: 10.1371/journal.pone.0081581] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease that results in the destruction of the tooth-supporting (periodontal) tissues. The Gram-negative anaerobic species Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, (also known as the “red complex” species) are highly associated with subgingival biofilms at periodontitis-affected sites. A major chemokine produced by the gingival epithelium in response to biofilm challenge, is interleukin (IL)-8. The aim of this in vitro study was to investigate the relative effect of the “red complex” species as constituents of subgingival biofilms, on the regulation of IL-8 by gingival epithelia. Multi-layered organotypic human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its 7-species variant, excluding the “red complex”. IL-8 gene expression and secretion analyses were performed by qPCR and ELISA, respectively. After 3 h, both biofilms up-regulated IL-8 gene expression, but the presence of the “red complex” resulted in 3-fold greater response. IL-8 secretion was also up-regulated by both biofilms, with no differences between them. After 24 h, the 10-species biofilm reduced IL-8 secretion to 50% of the control, but this was not affected when the “red complex” was absent. In conclusion, as part of biofilms, “red complex” species differentially regulate IL-8 in gingival epithelia, potentially affecting the chemotactic responses of the tissue.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
- * E-mail:
| | - Thomas Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Sherry L, Millhouse E, Lappin DF, Murray C, Culshaw S, Nile CJ, Ramage G. Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health 2013; 13:47. [PMID: 24063298 PMCID: PMC3849008 DOI: 10.1186/1472-6831-13-47] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/23/2013] [Indexed: 12/04/2022] Open
Abstract
Background A number of oral diseases, including periodontitis, derive from microbial biofilms and are associated with increased antimicrobial resistance. Despite the widespread use of mouthwashes being used as adjunctive measures to control these biofilms, their prolonged use is not recommended due to various side effects. Therefore, alternative broad-spectrum antimicrobials that minimise these effects are highly sought after. Carbohydrate derived fulvic acid (CHD-FA) is an organic acid which has previously demonstrated to be microbiocidal against Candida albicans biofilms, therefore, the aims of this study were to evaluate the antibacterial activity of CHD-FA against orally derived biofilms and to investigate adjunctive biological effects. Methods Minimum inhibitory concentrations were evaluated for CHD-FA and chlorhexidine (CHX) against a range of oral bacteria using standardised microdilution testing for planktonic and sessile. Scanning electron microscopy was also employed to visualise changes in oral biofilms after antimicrobial treatment. Cytotoxicity of these compounds was assessed against oral epithelial cells, and the effect of CHD-FA on host inflammatory markers was assessed by measuring mRNA and protein expression. Results CHD-FA was highly active against all of the oral bacteria tested, including Porphyromonas gingivalis, with a sessile minimum inhibitory concentration of 0.5%. This concentration was shown to kill multi-species biofilms by approximately 90%, levels comparable to that of chlorhexidine (CHX). In a mammalian cell culture model, pretreatment of epithelial cells with buffered CHD-FA was shown to significantly down-regulate key inflammatory mediators, including interleukin-8 (IL-8), after stimulation with a multi-species biofilm. Conclusions Overall, CHD-FA was shown to possess broad-spectrum antibacterial activity, with a supplementary function of being able to down-regulate inflammation. These properties offer an attractive spectrum of function from a naturally derived compound, which could be used as an alternative topical treatment strategy for oral biofilm diseases. Further studies in vitro and in vivo are required to determine the precise mechanism by which CHD-FA modulates the host immune response.
Collapse
Affiliation(s)
- Leighann Sherry
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gong HL, Shi Y, Zhou L, Wu CP, Cao PY, Tao L, Xu C, Hou DS, Wang YZ. The Composition of Microbiome in Larynx and the Throat Biodiversity between Laryngeal Squamous Cell Carcinoma Patients and Control Population. PLoS One 2013; 8:e66476. [PMID: 23824228 PMCID: PMC3688906 DOI: 10.1371/journal.pone.0066476] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/07/2013] [Indexed: 01/13/2023] Open
Abstract
The throat is an ecological assemblage involved human cells and microbiota, and the colonizing bacteria are important factors in balancing this environment. However, this bacterial community profile has thus been poorly investigated. The purpose of this study was to investigate the microbial biology of the larynx and to analyze the throat biodiversity in laryngeal carcinoma patients compared to a control population in a case-control study. Barcoded pyrosequencing analysis of the 16S rRNA gene was used. We collected tissue samples from 29 patients with laryngeal carcinoma and 31 control patients with vocal cord polyps. The findings of high-quality sequence datasets revealed 218 genera from 13 phyla in the laryngeal mucosa. The predominant communities of phyla in the larynx were Firmicutes (54%), Fusobacteria (17%), Bacteroidetes (15%), Proteobacteria (11%), and Actinobacteria (3%). The leading genera were Streptococcus (36%), Fusobacterium (15%), Prevotella (12%), Neisseria (6%), and Gemella (4%). The throat bacterial compositions were highly different between laryngeal carcinoma subjects and control population (p = 0.006). The abundance of the 26 genera was significantly different between the laryngeal cancer and control groups by metastats analysis (p<0.05). Fifteen genera may be associated with laryngeal carcinoma by partial least squares discriminant analysis (p<0.001). In summary, this study revealed the microbiota profiles in laryngeal mucosa from tissue specimens. The compositions of bacteria community in throat were different between laryngeal cancer patients and controls, and probably were related with this carcinoma. The disruption of this bio-ecological niche might be a risk factor for laryngeal carcinoma.
Collapse
Affiliation(s)
- Hong-Li Gong
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- * E-mail: (LZ); (YS)
| | - Liang Zhou
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- * E-mail: (LZ); (YS)
| | - Chun-Ping Wu
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Peng-Yu Cao
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Lei Tao
- Department of Otolaryngology, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Sheng Hou
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Zhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Sequencing Centre, Shanghai, China
| |
Collapse
|