1
|
Zheng C, Jiang P, Hu S, Tang Y, Dou L. Characterization of cells in blood evoked from periapical tissues in immature teeth with pulp necrosis and their potential for autologous cell therapy in Regenerative Endodontics. Arch Oral Biol 2024; 162:105957. [PMID: 38471313 DOI: 10.1016/j.archoralbio.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE The objectives of this study were to isolate, characterize progenitor cells from blood in the root canals of necrotic immature permanent teeth evoked from periapical tissues and evaluate the applicable potential of these isolated cells in Regenerative Endodontics. DESIGN Ten necrotic immature permanent teeth from seven patients were included. Evoked bleeding from periapical tissues was induced after chemical instrumentation of the root canals. Cells were isolated from the canal blood and evaluated for cell surface marker expression, multilineage differentiation potential, proliferation ability, and target protein expression. Cell sheets formed from these cells were transferred into human root segments, and then transplanted into nude mice. Histological examination was performed after eight weeks. Data analysis was conducted using one-way ANOVA followed by Tukey's post-hoc comparison, considering p < 0.05 as statistically significant. RESULTS The isolated cells exhibited characteristics typical of fibroblastic cells with colony-forming efficiency, and displayed Ki67 positivity and robust proliferation. Flow cytometry data demonstrated that at passage 3, these cells were positive for CD73, CD90, CD105, CD146, and negative for CD34 and CD45. Vimentin expression indicated a mesenchymal origin. Under differentiation media specific differentiation media, the cells demonstrated osteogenic, adipogenic, and chondrogenic differentiation potential. Subcutaneous root canals with cell sheets of isolated cells in nude mice showed the formation of pulp-like tissues. CONCLUSIONS This study confirmed the presence of progenitor cells in root canals following evoked bleeding from periapical tissues of necrotic immature teeth. Isolated cells exhibited similar immunophenotype and regenerative potential with dental mesenchymal stromal cells in regenerative endodontic therapy.
Collapse
Affiliation(s)
- Chengxiang Zheng
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Peiru Jiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shan Hu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Tang
- School of Dental Medicine Western University of Health Sciences, Pomona, CA, USA
| | - Lei Dou
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
2
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Astudillo-Ortiz E, Babo PS, Sunde PT, Galler KM, Gomez-Florit M, Gomes ME. Endodontic Tissue Regeneration: A Review for Tissue Engineers and Dentists. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:491-513. [PMID: 37051704 DOI: 10.1089/ten.teb.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The paradigm shift in the endodontic field from replacement toward regenerative therapies has witnessed the ever-growing research in tissue engineering and regenerative medicine targeting pulp-dentin complex in the past few years. Abundant literature on the subject that has been produced, however, is scattered over diverse areas of knowledge. Moreover, the terminology and concepts are not always consensual, reflecting the range of research fields addressing this subject, from endodontics to biology, genetics, and engineering, among others. This fact triggered some misinterpretations, mainly when the denominations of different approaches were used as synonyms. The evaluation of results is not precise, leading to biased conjectures. Therefore, this literature review aims to conceptualize the commonly used terminology, summarize the main research areas on pulp regeneration, identify future trends, and ultimately clarify whether we are really on the edge of a paradigm shift in contemporary endodontics toward pulp regeneration.
Collapse
Affiliation(s)
- Esteban Astudillo-Ortiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Endodontics, School of Dentistry, University of Cuenca, Cuenca, Ecuador
| | - Pedro S Babo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Pia T Sunde
- Department of Endodontics, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kerstin M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
4
|
Li Z, Zheng C, Jiang P, Xu X, Tang Y, Dou L. Human digested dentin matrix for dentin regeneration and the applicative potential in vital pulp therapy. J Endod 2023:S0099-2399(23)00238-8. [PMID: 37150293 DOI: 10.1016/j.joen.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Human dentin is a natural acellular matrix with excellent reported biocompatibility. The aim was to fabricate a novel dentin matrix material from human dentin and investigate its applicative potential for vital pulp therapy. METHODS Digested dentin matrix extract (DDME) was fabricated using controlled enzymatic digestion under acidic conditions. The surfaces and biocompatibility of DDME were then investigated, with its effects on the odontogenic differentiation of human dental pulp cells (hDPCs) also studied. The ability of DDME to induce mineralization was assessed in a nude mouse model. The performance of DDME as a pulp capping agent was evaluated in an in-situ rat model. The molecular mechanism was verified by mRNA sequencing. RESULTS A novel type of dentin matrix material with a uniform size of 8 μm was fabricated. DDME had a similar band compared with grinded dentin matrix, with a smaller size and more uneven surface, as detected by Fourier Transform Infrared Spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS). DDME at low concentrations did not affect hDPCs viability or proliferation, but enhanced runt-related transcription factor 2, dentin matrix acidic phosphoprotein 1 and collagen 1A1 expression in hDPCs in vitro. DDME was superior to HA-TCP in dentin-like mineralized tissue formation after subcutaneous transplantation. In the rat model of pulpotomy, DDME showed visible curative effects. The underlying mechanism may be the inhibition of Hippo signaling following DDME treatment. DDME promoted Yes-associated protein (YAP) 1 nuclear influx, thereby enhancing the expression of DMP-1, which was reversed by YAP inhibitor treatment. CONCLUSIONS Human DDME can be used as a biomaterial for dentin regeneration. The combined application of DDME and current pulp capping agents is a potential choice for vital pulp therapy.
Collapse
Affiliation(s)
- Zheng Li
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Chengxiang Zheng
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Peiru Jiang
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiaoqi Xu
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Yin Tang
- University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA, USA; School of Dental Medicine, Western University of Medical Sciences, Pomona, CA, USA
| | - Lei Dou
- 6 Stomatological Hospital of Chongqing Medical University, 426#, Song Shi Bei Road, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical, University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2022. J Oral Biosci 2023; 65:1-12. [PMID: 36740188 DOI: 10.1016/j.job.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Bone Cell Biology," "Tooth Development & Regeneration," "Tooth Bleaching," "Adipokines," "Milk Thistle," "Epithelial-Mesenchymal Transition," "Periodontitis," "Diagnosis," "Salivary Glands," "Tooth Root," "Exosome," "New Perspectives of Tooth Identification," "Dental Pulp," and "Saliva" in addition to the review articles by the winner of the "Lion Dental Research Award" ("Plastic changes in nociceptive pathways contributing to persistent orofacial pain") presented by the Japanese Association for Oral Biology. CONCLUSION The review articles in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge about various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Rahman SU, Kim WJ, Chung SH, Woo KM. Nanofibrous topography-driven altered responsiveness to Wnt5a mediates the three-dimensional polarization of odontoblasts. Mater Today Bio 2022; 17:100479. [DOI: 10.1016/j.mtbio.2022.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Bimodal expression of Wnt5a in the tooth germ: A comparative study using in situ hybridization and immunohistochemistry. Ann Anat 2021; 240:151868. [PMID: 34823012 DOI: 10.1016/j.aanat.2021.151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND During tooth development, Wnt5a, a member of the noncanonical Wnt ligand, is expressed prominently in the dental mesenchyme. However, the spatiotemporal profiles of Wnt5a protein production and distribution in tooth germs are largely unknown, which impairs elucidation of the Wnt5a-mediated regulatory mechanism of tooth development. METHODS We performed analyzes of the spatiotemporal expression of Wnt5a in embryonic tooth germs (E11.5-E18.5) by using in situ hybridization and immunohistochemistry in parallel. The developmental stages of the embryonic tooth germs were determined by HE staining. In order to compare the spatiotemporal distribution patterns of Wnt5a mRNA-expressing cells and those of Wnt5a protein-expressing cells, serial frontal sections of paraffinized mouse embryo heads were used for the analyzes. When needed, the immunohistochemistry images were subjected to digital detection analysis of Wnt5a immunostaining signal using the WinROOF 2018 Ver. 4.19.0 image processing software program. RESULTS Throughout the developmental process, cells expressing Wnt5a mRNA were found in various tissues including the dental follicle, dental papilla, inner and outer enamel epithelium, stratum intermediate, and stellate reticulum. However, odontoblasts differentiating and polarizing at E18.5 were the only cells representing an accumulation of Wnt5a protein in the apical region of the odontoblast process. The Wnt5a protein was undetectable in undifferentiated mesenchymal cells as well as any other cells positive for Wnt5a mRNA. CONCLUSION Differentiating odontoblasts execute Wnt5a expression, the mode of which is distinct from that executed by the other cells constituting tooth germ. Change of the mode of Wnt5a expression begins to take place in the mesenchymal cells by E18.5, starting the elongation of the cytoplasmic process.
Collapse
|
8
|
Yamakoshi Y, Chiba-Ohkuma R, Hidaka Y, Onuma K, Yamamoto R, Saito MM, Karakida T. Repurposing MDZ as a tool for tissue regeneration in dental cells. J Oral Biosci 2021; 64:37-42. [PMID: 34718143 DOI: 10.1016/j.job.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Several recent studies have focused on the utility of drug repurposing to expand clinical application of approved therapeutics. Here, we investigate the efficacy of midazolam (MDZ) and cytokines for regenerating calcified tissue, using immortalized porcine dental pulp (PPU7) and mouse skeletal muscle derived myoblast (C2C12) cells, with the goal of repurposing MDZ as a new treatment to facilitate calcified tissue regeneration. HIGHLIGHTS We noted that PPU7 and C2C12 cells cultured with various MDZ regimens displayed increased bone morphogenic protein (BMP-2), transforming growth factor beta (TGF-β), and alkaline phosphatase activity. These increases were highest in PPU7 cells cultured with MDZ alone, and in C2C12 cells cultured with MDZ and BMP-2. PPU7 cells cultured under these conditions demonstrated markedly elevated expression of odontoblastic gene markers, indicating their likely differentiation into odontoblasts. Expression levels of osteoblastic gene markers also increased in C2C12 cells, suggesting that MDZ potentiates the effect of BMP-2, inducing osteoblast differentiation in these cells. Newly formed calcified deposits in both PPU7 and C2C12 cells were identified as hydroxyapatite via crystallographic and crystal engineering analyses. CONCLUSION MDZ increases ALP activity, inducing expression of specific marker genes for both odontoblasts and osteoblasts while promoting hydroxyapatite production in both PPU7 and C2C12 cells. These responses were cell type specific. MDZ treatment alone could induce these changes in PPU7 cells, but C2C12 cell differentiation required BMP-2 addition.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yukihiko Hidaka
- Hidaka Dental Clinic, 201 Shintsukagoshi, Saiwai-ku, Kawasaki 212-0027, Japan.
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
9
|
Deng S, Fan L, Wang Y, Zhang Q. Constitutive activation of β-catenin in odontoblasts induces aberrant pulp calcification in mouse incisors. J Mol Histol 2021; 52:567-576. [PMID: 33689044 DOI: 10.1007/s10735-021-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
During dentin formation, odontoblast polarization ensures that odontoblasts directionally secrete dentin matrix protein, leading to tubular dentin formation; however, little is known about the major features and regulatory mechanisms of odontoblast polarization. In a study of epithelial cell polarization, β-catenin was shown to serve as a structural component of cadherin-based adherens junctions to initiate cell polarity. However, the role of β-catenin in odontoblast polarization has not been well investigated. In this study, we explored whether β-catenin participated in odontoblast polarization to regulate the secretion of mineralization proteins. We established Col1-CreErt2; β-catenin exon3fl/fl (CA-β-catenin) mice, which constitutively activate β-catenin in odontoblasts. CA-β-catenin mice exhibited disorganization and depolarization of incisor odontoblasts. Moreover, the incisor dentin was hypomineralized, and ectopic calcification was found in mouse incisor pulp. In addition, by constitutive activation of β-catenin, the expression levels of the core polarity molecule Cdc42 and its downstream polarity protein complex Par3-Par6-aPKC were decreased in the incisors of CA-β-catenin mice. These findings suggest that β-catenin plays an essential role in dentin formation by regulating odontoblast polarization.
Collapse
Affiliation(s)
- Shijian Deng
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
| | - Linlin Fan
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Pediatric Dentistry, Wuxi Stomatology Hospital, Jiangsu, China
| | - Yunfei Wang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Endodontics, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
10
|
Ohki R, Matsuki-Fukushima M, Fujikawa K, Mayahara M, Matsuyama K, Nakamura M. In the absence of a basal lamina, ameloblasts absorb enamel in a serumless and chemically defined organ culture system. J Oral Biosci 2021; 63:66-73. [PMID: 33493674 DOI: 10.1016/j.job.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Tooth organ development was examined in a serumless, chemically defined organ culture system to determine whether morphological and functional development was identical to that in in vivo and serum-supplemented organ cultures. METHODS Mouse mandibular first molar tooth organs at 16 days of gestation were cultured for up to 28 days in a Tronwell culture system using a serum-supplemented or serumless, chemically defined medium. After culture, specimens were processed for assessing tooth development using ultrastructural, immunohistochemical, and mRNA expression analyses. RESULTS In serum-supplemented conditions, inner enamel epithelial cells differentiated into secretory-stage ameloblasts, which formed enamel and reached the maturation stage after 14 and 21 days of culture, respectively. Ameloblasts deposited a basal lamina on immature enamel. Conversely, in serumless conditions, ameloblasts formed enamel on mineralized dentin after 21 days. Moreover, maturation-stage ameloblasts did not form basal lamina and directly absorbed mineralized enamel after 28 days of culture. RT-PCR analysis indicated that tooth organs, cultured in serumless conditions for 28 days, had significantly reduced expression levels of ODAM, amelotin, and laminin-322. CONCLUSIONS These results indicate that several differences were detected compared to the development in serum-supplemented conditions, such as delayed enamel and dentin formation and the failure of maturation-stage ameloblasts to form basal laminae. Therefore, our results suggest that some factors might be required for the steady formation of mineralized dentin, enamel, and a basal lamina. Additionally, our results indicate that a basal lamina is necessary for enamel maturation.
Collapse
Affiliation(s)
- Retsu Ohki
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - M Matsuki-Fukushima
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - K Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Mitsuori Mayahara
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Kayo Matsuyama
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan.
| |
Collapse
|
11
|
Wang X, Chiba Y, Jia L, Yoshizaki K, Saito K, Yamada A, Qin M, Fukumoto S. Expression Patterns of Claudin Family Members During Tooth Development and the Role of Claudin-10 ( Cldn10) in Cytodifferentiation of Stratum Intermedium. Front Cell Dev Biol 2020; 8:595593. [PMID: 33195274 PMCID: PMC7642450 DOI: 10.3389/fcell.2020.595593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023] Open
Abstract
There is growing evidence showing that tight junctions play an important role in developing enamel. Claudins are one of the main components of tight junctions and may have pivotal functions in modulating various cellular events, such as regulating cell differentiation and proliferation. Mutations in CLDN10 of humans are associated with HELIX syndrome and cause enamel defects. However, current knowledge regarding the expression patterns of claudins and the function of Cldn10 during tooth development remains fragmented. In this study, we aimed to analyze the expression patterns of claudin family members during tooth development and to investigate the role of Cldn10 in amelogenesis. Using cap analysis gene expression of developing mouse tooth germs compared with that of the whole body, we found that Cldn1 and Cldn10 were highly expressed in the tooth. Furthermore, single-cell RNA-sequence analysis using 7-day postnatal Krt14-RFP mouse incisors revealed Cldn1 and Cldn10 exhibited distinct expression patterns. Cldn10 has two isoforms, Cldn10a and Cldn10b, but only Cldn10b was expressed in the tooth. Immunostaining of developing tooth germs revealed claudin-10 was highly expressed in the inner enamel epithelium and stratum intermedium. We also found that overexpression of Cldn10 in the dental epithelial cell line, SF2, induced alkaline phosphatase (Alpl) expression, a marker of maturated stratum intermedium. Our findings suggest that Cldn10 may be a novel stratum intermedium marker and might play a role in cytodifferentiation of stratum intermedium.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lingling Jia
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Hattori-Sanuki T, Karakida T, Chiba-Ohkuma R, Miake Y, Yamamoto R, Yamakoshi Y, Hosoya N. Characterization of Living Dental Pulp Cells in Direct Contact with Mineral Trioxide Aggregate. Cells 2020; 9:cells9102336. [PMID: 33096862 PMCID: PMC7589724 DOI: 10.3390/cells9102336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mineral trioxide aggregate (MTA) was introduced as a material for dental endodontic regenerative therapy. Here, we show the dynamics of living dental pulp cells in direct contact with an MTA disk. A red fluorescence protein (DsRed) was introduced into immortalized porcine dental pulp cells (PPU7) and cloned. DsRed-PPU7 cells were cultured on the MTA disk and cell proliferation, chemotaxis, the effects of growth factors and the gene expression of cells were investigated at the biological, histomorphological and genetic cell levels. Mineralized precipitates formed in the DsRed-PPU7 cells were characterized with crystal structural analysis. DsRed-PPU7 cells proliferated in the central part of the MTA disk until Day 6 and displayed a tendency to move to the outer circumference. Both transforming growth factor beta and bone morphogenetic protein promoted the proliferation and movement of DsRed-PPU7 cells and also enhanced the expression levels of odontoblastic gene differentiation markers. Mineralized precipitates formed in DsRed-PPU7 were composed of calcium and phosphate but its crystals were different in each position. Our investigation showed that DsRed-PPU7 cells in direct contact with the MTA disk could differentiate into odontoblasts by controlling cell–cell and cell–substrate interactions depending on cell adhesion and the surrounding environment of the MTA.
Collapse
Affiliation(s)
- Tamaki Hattori-Sanuki
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.H.-S.); (N.H.)
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Yasuo Miake
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.K.); (R.C.-O.); (R.Y.)
- Correspondence: ; Tel.: +81-45-580-8479; Fax: +81-45-573-9599
| | - Noriyasu Hosoya
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (T.H.-S.); (N.H.)
| |
Collapse
|
13
|
Wang J, Qi G, Qu X, Ling X, Zhang Z, Jin Y. Molecular Profiling of Dental Pulp Stem Cells during Cell Differentiation by Surface Enhanced Raman Spectroscopy. Anal Chem 2020; 92:3735-3741. [PMID: 32011124 DOI: 10.1021/acs.analchem.9b05026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dental pulp stem cells (DPSCs) are considered one of the key cells in tooth regeneration engineering. Understanding molecular biological information on DPSCs during differentiation is of great significance for the construction of tissue-engineered teeth. In this study, we investigated the differentiation process of DPSCs stimulated by drugs and gained molecular insights in the process. By using label-free and noninvasive surface enhanced Raman spectroscopy (SERS) to monitor molecular change profiling in the cell nucleus of single DPSCs during the differentiation process, we found that two pivotal differentiation biomarkers, alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), were overexpressed during the process. Continuous and intermittent monitoring of SERS spectra from the nuclear region indicated that the expression of proteins and related amino acids of tryptophan were markedly increased until peak period of differentiation (on day 14). Meanwhile corresponding transformation of DNA/RNA backbone vibrational modes was also observed during the differentiation process, indicating the occurrence of replication or transcription of DNA. The method provides a useful tool for the molecular biology studies of DPSCs differentiation, and the finding will broaden our understanding of DPSCs differentiation.
Collapse
Affiliation(s)
- Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaozhang Qu
- Department of Endocrinology, The Second Part of the First Hospital, Jilin University, Changchun, 130021, Jilin P. R. China
| | - Xiaoxu Ling
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin P.R. China
| | - Zhimin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin P.R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
14
|
Niu L, Zhang H, Liu Y, Wang Y, Li A, Liu R, Zou R, Yang Q. Microfluidic Chip for Odontoblasts in Vitro. ACS Biomater Sci Eng 2019; 5:4844-4851. [DOI: 10.1021/acsbiomaterials.9b00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yan Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, P. R. China
| | - Qingzhen Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
15
|
Expression of CPNE7 during mouse dentinogenesis. J Mol Histol 2019; 50:179-188. [DOI: 10.1007/s10735-019-09816-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
16
|
Potential for Drug Repositioning of Midazolam for Dentin Regeneration. Int J Mol Sci 2019; 20:ijms20030670. [PMID: 30720745 PMCID: PMC6387224 DOI: 10.3390/ijms20030670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 01/03/2023] Open
Abstract
Drug repositioning promises the advantages of reducing costs and expediting approval schedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulates inhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potential for drug repositioning of MDZ for dentin regeneration. A porcine dental pulp-derived cell line (PPU-7) that we established was cultured in MDZ-only, the combination of MDZ with bone morphogenetic protein 2, and the combination of MDZ with transforming growth factor-beta 1. The differentiation of PPU-7 into odontoblasts was investigated at the cell biological and genetic level. Mineralized nodules formed in PPU-7 were characterized at the protein and crystal engineering levels. The MDZ-only treatment enhanced the alkaline phosphatase activity and mRNA levels of odontoblast differentiation marker genes, and precipitated nodule formation containing a dentin-specific protein (dentin phosphoprotein). The nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. The morphology, orientation, and chemical composition of the hydroxyapatite crystals were similar to those of hydroxyapatite that had transformed from amorphous calcium phosphate nanoparticles, as well as the hydroxyapatite in human molar dentin. Our investigation showed that a combination of MDZ and PPU-7 cells possesses high potential of drug repositioning for dentin regeneration.
Collapse
|
17
|
Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol 2018; 98:1-11. [PMID: 30473389 DOI: 10.1016/j.ejcb.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
18
|
Yamakawa S, Niwa T, Karakida T, Kobayashi K, Yamamoto R, Chiba R, Yamakoshi Y, Hosoya N. Effects of Er:YAG and Diode Laser Irradiation on Dental Pulp Cells and Tissues. Int J Mol Sci 2018; 19:ijms19082429. [PMID: 30126087 PMCID: PMC6121961 DOI: 10.3390/ijms19082429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Vital pulp therapy (VPT) is to preserve the nerve and maintain healthy dental pulp tissue. Laser irradiation (LI) is beneficial for VPT. Understanding how LI affects dental pulp cells and tissues is necessary to elucidate the mechanism of reparative dentin and dentin regeneration. Here, we show how Er:YAG-LI and diode-LI modulated cell proliferation, apoptosis, gene expression, protease activation, and mineralization induction in dental pulp cells and tissues using cell culture, immunohistochemical, genetic, and protein analysis techniques. Both LIs promoted proliferation in porcine dental pulp-derived cell lines (PPU-7), although the cell growth rate between the LIs was different. In addition to proliferation, both LIs also caused apoptosis; however, the apoptotic index for Er:YAG-LI was higher than that for diode-LI. The mRNA level of odontoblastic gene markers-two dentin sialophosphoprotein splicing variants and matrix metalloprotease (MMP)20 were enhanced by diode-LI, whereas MMP2 was increased by Er:YAG-LI. Both LIs enhanced alkaline phosphatase activity, suggesting that they may help induce PPU-7 differentiation into odontoblast-like cells. In terms of mineralization induction, the LIs were not significantly different, although their cell reactivity was likely different. Both LIs activated four MMPs in porcine dental pulp tissues. We helped elucidate how reparative dentin is formed during laser treatments.
Collapse
Affiliation(s)
- Shunjiro Yamakawa
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takahiko Niwa
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuyuki Kobayashi
- Department of Dental Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Risako Chiba
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Noriyasu Hosoya
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
19
|
Rahman SU, Oh JH, Cho YD, Chung SH, Lee G, Baek JH, Ryoo HM, Woo KM. Fibrous Topography-Potentiated Canonical Wnt Signaling Directs the Odontoblastic Differentiation of Dental Pulp-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17526-17541. [PMID: 29741358 DOI: 10.1021/acsami.7b19782] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanofibrous engineered matrices have significant potential in cellular differentiation and tissue regeneration. Stem cells require specific extracellular signals that lead to the induction of different lineages. However, the mechanisms by which the nanofibrous matrix promotes mesenchymal stem cell (MSC) differentiation are largely unknown. Here, we investigated the mechanisms that underlie nanofibrous matrix-induced odontoblastic differentiation of human dental pulp MSCs (DP-MSCs). An electrospun polystyrene nanofibrous (PSF) matrix was prepared, and the cell responses to the PSF matrix were assessed in comparison with those on conventional tissue culture dishes. The PSF matrix promoted the expression of Wnt3a, Wnt5a, Wnt10a, BMP2, BMP4, and BMP7 in the DP-MSCs, concomitant with the induction of odontoblast/osteoblast differentiation markers, dentin sialophosphoprotein (DSPP), osteocalcin, and bone sialoprotein, whose levels were further enhanced by treatment with recombinant Wnt3a. The DP-MSCs cultured on the PSF matrix also exhibited a high alkaline phosphatase activity and intense Alizarin Red staining, indicating that the PSF matrix promotes odontoblast differentiation. Besides inducing the expression of Wnt3a, the PSF matrix maintained high levels of β-catenin protein and enhanced its translocation to the nucleus, leading to its transcriptional activity. Forced expression of LEF1 or treatments with LiCl further enhanced the DSPP expression. Blocking the Wnt3a-initiated signaling abrogated the PSF-induced DSPP expression. Furthermore, the cells on the PSF matrix increased the DSPP promoter activity. The β-catenin complex was bound to the conserved motifs on the DSPP promoter dictating its transcription. Transplantations of the preodontoblast-seeded PSF matrix to the subcutaneous tissues of nude mice confirmed the association of the PSF matrix with the Wnt3a and DSPP expressions in vivo. Taken together, these results demonstrate the nanofibrous engineered matrix strongly supports odontoblastic differentiation of DP-MSCs by enhancing Wnt/β-catenin signaling.
Collapse
|
20
|
Botelho J, Cavacas MA, Borrecho G, Polido M, Oliveira P, Martins Dos Santos J. Human ex vivo dentin-pulp complex preservation in a full crown model. J Oral Biol Craniofac Res 2017; 7:19-22. [PMID: 28316916 DOI: 10.1016/j.jobcr.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/11/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Currently, there is lack of human in vitro full tooth models that hold the odontoblast layer with pulp tissue in their native environment. The appearance of new in vitro and in vivo models has provided new understanding of the potential of tissue engineering in dental pulp regeneration. However, the development of new in vitro full tooth models will allow us to get closer to in vivo conditions. Thus, the aim of this study is to preserve a living dentin-pulp complex, in a novel in vitro full crown model, after tooth extraction. METHODS Twenty intact third molars, after preparation, were divided into four groups, with five samples each. We placed the negative control samples (C) in saline, and the tested groups were placed (T) in supplemented DMEM, at two different times: 1 and 7 days. The specimens were processed for light microscopy observation. RESULTS Contrary to C-groups, T-groups showed a functional dentin-pulp complex. The treated dentin-pulp complex presents normal histological appearance. CONCLUSIONS This study showed that it is possible to preserve a living dentin-pulp complex after tooth extraction during 7 days.
Collapse
Affiliation(s)
- João Botelho
- Instituto Superior de Ciências da Saúde Egas Moniz, Anatomy Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| | - Maria Alzira Cavacas
- Instituto Superior de Ciências da Saúde Egas Moniz, Anatomy Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| | - Gonçalo Borrecho
- Instituto Superior de Ciências da Saúde Egas Moniz, Anatomy Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| | - Mário Polido
- Instituto Superior de Ciências da Saúde Egas Moniz, Dental Materials Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| | - Pedro Oliveira
- Instituto Superior de Ciências da Saúde Egas Moniz, Anatomy Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| | - José Martins Dos Santos
- Instituto Superior de Ciências da Saúde Egas Moniz, Anatomy Department, Campus Universitário, Quinta da Granja, Caparica, Setúbal, Portugal
| |
Collapse
|
21
|
Gonçalves LF, Fernandes AP, Cosme-Silva L, Colombo FA, Martins NS, Oliveira TM, Araujo TH, Sakai VT. Effect of EDTA on TGF-β1 released from the dentin matrix and its influence on dental pulp stem cell migration. Braz Oral Res 2016; 30:e131. [PMID: 28001241 DOI: 10.1590/1807-3107bor-2016.vol30.0131] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bioactive molecules stored in dentin, such as transforming growth factor beta1 (TGF-b1), may be involved in the signaling events related to dental tissue repair. The authors conducted an in vitro evaluation of the amount of TGF-b1 released from dentin slices after treatment with 10% ethylenediaminetetraacetic acid (EDTA), 2.5% sodium hypochlorite (NaOCl) or phosphate-buffered saline (PBS), and the effect of this growth factor on stem cell migration from human exfoliated deciduous teeth (SHED). Sixty 1-mm-thick tooth slices were prepared with or without the predentin layer, and treated with either 10% EDTA for 1 minute, 2.5% NaOCl for 5 days or kept in PBS. Tooth slice conditioned media were prepared and used for TGF-b1 ELISA and migration assays. Culture medium with different concentrations of recombinant human TGF-b1 (0.5, 1.0, 5.0 or 10.0 ng/mL) was also tested by migration assay. The data were evaluated by ANOVA and Tukey's test. Optical density values corresponding to media conditioned by tooth slices either containing or not containing the predentin layer and treated with 10% EDTA were statistically greater than the other groups and close to 1 ng/mL. Increased rates of migration toward media conditioned by tooth slices containing the predentin layer and treated with PBS, 10% EDTA or 2.5% NaOCl were observed. Recombinant human TGF-b1 also stimulated migration of SHED, irrespective of the concentration used. EDTA may be considered an effective extractant of TGF-b1 from the dentin matrix. However, it does not impact SHED migration, suggesting that other components may account for the cell migration.
Collapse
Affiliation(s)
- Lidiany Freitas Gonçalves
- Universidade Federal de Alfenas, School of Dentistry, Department of Clinics and Surgery, Alfenas, MG, Brazil
| | - Ana Paula Fernandes
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil
| | - Leopoldo Cosme-Silva
- Universidade Federal de Alfenas, School of Dentistry, Department of Clinics and Surgery, Alfenas, MG, Brazil
| | - Fabio Antonio Colombo
- Universidade Federal de Alfenas, Institute of Biomedical Sciences, Department of Pathology and Parasitology, Alfenas, MG, Brazil
| | | | - Thais Marchini Oliveira
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil
| | - Tomaz Henrique Araujo
- Universidade Federal de Alfenas, Institute of Biomedical Sciences, Department for Cell, Tissue and Developmental Biology, Alfenas, MG, Brazil
| | - Vivien Thiemy Sakai
- Universidade Federal de Alfenas, School of Dentistry, Department of Clinics and Surgery, Alfenas, MG, Brazil
| |
Collapse
|
22
|
Xu J, Shao M, Pan H, Wang H, Cheng L, Yang H, Hu T. Novel role of zonula occludens-1: A tight junction protein closely associated with the odontoblast differentiation of human dental pulp cells. Cell Biol Int 2016; 40:787-95. [PMID: 27109589 DOI: 10.1002/cbin.10617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/21/2016] [Indexed: 02/05/2023]
Abstract
Zonula occludens-1 (ZO-1), a tight junction protein, contributes to the maintenance of the polarity of odontoblasts and junctional complex formation in odontoblast layer during tooth development. However, expression and possible role of ZO-1 in human dental pulp cells (hDPCs) during repair process remains unknown. Here, we investigated the expression of ZO-1 in hDPCs and the relationship with odontoblast differentiation. We found the processes of two adjacent cells were fused and formed junction-like structure using scanning electron microscopy. Fluorescence immunoassay and Western blot confirmed ZO-1 expression in hDPCs. Especially, ZO-1 was high expressed at the cell-cell junction sites. More interestingly, ZO-1 accumulated at the leading edge of lamellipodia in migrating cells when a scratch assay was performed. Furthermore, ZO-1 gradual increased during odontoblast differentiation and ZO-1 silencing greatly inhibited the differentiation. ZO-1 binds directly to actin filaments and RhoA/ROCK signaling mainly regulates cell cytoskeleton, thus RhoA/ROCK might play a role in regulating ZO-1. Lysophosphatidic acid (LPA) and Y-27632 were used to activate and inhibit RhoA/ROCK signaling, respectively, with or without mineralizing medium. In normal cultured hDPCs, RhoA activation increased ZO-1 expression and especially in intercellular contacts, whereas ROCK inhibition attenuated the effects induced by LPA. However, expression of ZO-1 was upregulated by Y-27632 but not significantly affected by LPA after odontoblast differentiation. Hence, ZO-1 highly expresses in cell-cell junctions and is related to odontoblast differentiation, which may contribute to dental pulp repair or even the formation of an odontoblast layer. RhoA/ROCK signaling is involved in the regulation of ZO-1.
Collapse
Affiliation(s)
- Jue Xu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- State Key Laboratory of Oral Diseases, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongying Pan
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huning Wang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Cuffaro HM, Pääkkönen V, Tjäderhane L. Enzymatic isolation of viable human odontoblasts. Int Endod J 2015; 49:454-61. [PMID: 26011565 DOI: 10.1111/iej.12473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/18/2015] [Indexed: 02/04/2023]
Abstract
AIM To improve an enzymatic method previously used for isolation of rat odontoblasts to isolate viable mature human odontoblasts. METHODOLOGY Collagenase I, collagenase I/hyaluronidase mixture and hyaluronidase were used to extract mature human odontoblasts from the pulp chamber. Detachment of odontoblasts from dentine was determined with field emission scanning electron microscopy (FESEM) and to analyse the significance of differences in tubular diameter, and the t-test was used. MTT-reaction was used to analyse cell viability, and nonparametric Kruskal-Wallis and Mann-Whitney post hoc tests were used to analyse the data. Immunofluorescent staining of dentine sialoprotein (DSP), aquaporin-4 (AQP4) and matrix metalloproteinase-20 (MMP-20) and quantitative PCR (qPCR) of dentine sialophosphoprotein (DSPP) were used to confirm the odontoblastic nature of the cells. RESULTS MTT-reaction and FESEM demonstrated collagenase I/hyaluronidase resulted in more effective detachment and higher viability than collagenase I alone. Hyaluronidase alone was not able to detach odontoblasts. Immunofluorescence revealed the typical odontoblastic-morphology with one process, and DSP, AQP4 and MMP-20 were detected. Quantitative PCR of DSPP confirmed that the isolated cells expressed this odontoblast-specific gene. CONCLUSION The isolation of viable human odontoblasts was successful. The cells demonstrated morphology typical for odontoblasts and expressed characteristic odontoblast-type genes and proteins. This method will enable new approaches, such as apoptosis analysis, for studies using fully differentiated odontoblasts.
Collapse
Affiliation(s)
- H M Cuffaro
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - V Pääkkönen
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | - L Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
24
|
Huckert M, Stoetzel C, Morkmued S, Laugel-Haushalter V, Geoffroy V, Muller J, Clauss F, Prasad MK, Obry F, Raymond JL, Switala M, Alembik Y, Soskin S, Mathieu E, Hemmerlé J, Weickert JL, Dabovic BB, Rifkin DB, Dheedene A, Boudin E, Caluseriu O, Cholette MC, Mcleod R, Antequera R, Gellé MP, Coeuriot JL, Jacquelin LF, Bailleul-Forestier I, Manière MC, Van Hul W, Bertola D, Dollé P, Verloes A, Mortier G, Dollfus H, Bloch-Zupan A. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum Mol Genet 2015; 24:3038-49. [PMID: 25669657 PMCID: PMC4424950 DOI: 10.1093/hmg/ddv053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/06/2015] [Indexed: 01/27/2023] Open
Abstract
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder.
Collapse
Affiliation(s)
- Mathilde Huckert
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Corinne Stoetzel
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Supawich Morkmued
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Véronique Geoffroy
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Jean Muller
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France Université de Strasbourg, Laboratoire ICube UMR 7357, CNRS, LBGI, Strasbourg, France Hôpitaux Universitaires de Strasbourg, Laboratoire de Diagnostic Génétique, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - François Clauss
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Université de Strasbourg, Osteoarticular and Dental Regenerative NanoMedicine, Inserm UMR 1109, 11 rue Humann 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Megana K Prasad
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Frédéric Obry
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Jean Louis Raymond
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France
| | - Marzena Switala
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Yves Alembik
- Hôpitaux Universitaires de Strasbourg, Service de Génétique Médicale, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Sylvie Soskin
- Hôpitaux Universitaires de Strasbourg, Service de Pédiatrie 1, Endocrinologie Pédiatrique, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Eric Mathieu
- Université de Strasbourg, Biomaterials and Bioengineering, Inserm UMR 1121, 11 rue Humann, 67000 Strasbourg, France
| | - Joseph Hemmerlé
- Université de Strasbourg, Biomaterials and Bioengineering, Inserm UMR 1121, 11 rue Humann, 67000 Strasbourg, France
| | - Jean-Luc Weickert
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | | | - Daniel B Rifkin
- Department of Cell Biology, NYU Langone Medical Centre, New York, USA
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Oana Caluseriu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Marie-Claude Cholette
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Ross Mcleod
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | | | - Marie-Paule Gellé
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France Laboratoire EA 4691 'BIOS', 1, rue du Maréchal Juin, Reims 51100, France
| | - Jean-Louis Coeuriot
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France
| | - Louis-Frédéric Jacquelin
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France
| | - Isabelle Bailleul-Forestier
- Faculty of Dentistry, Paul Sabatier University, LU51, Pôle Odontologie, Hôpitaux de Toulouse, 3 Chemin des Maraîchers, Toulouse, France
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Debora Bertola
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil and
| | - Pascal Dollé
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Alain Verloes
- Département de Génétique - Hôpital Robert Debré, CRMR 'Anomalies du Développement & Syndromes Malformatifs', CRMR 'Déficiences Intellectuelles de Causes Rares', 48 bd Sérurier, Paris 75019, France
| | - Geert Mortier
- Center for Medical Genetics, Ghent University, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Hélène Dollfus
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Service de Génétique Médicale, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Agnès Bloch-Zupan
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| |
Collapse
|