1
|
van Vliet K, van Splunter A, de Lange J, Lobbezoo F, Brand H. Protein Deposition on Sport Mouthguards and the Effectiveness of Two Different Cleaning Protocols. J Clin Med 2024; 13:3023. [PMID: 38892734 PMCID: PMC11172541 DOI: 10.3390/jcm13113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Objective: To determine which salivary proteins adhere onto sport mouthguards, and to evaluate the effectiveness of different cleaning strategies in removing deposited protein. Methods: Fifteen healthy volunteers used a mouthguard for 1 h. The deposited salivary proteins were analyzed using gel electrophoresis and Western blotting techniques and compared with the protein composition of unstimulated saliva. In addition, the effectiveness of two different cleaning strategies to remove proteins from the mouthguards were compared: rinsing the mouthguards after use with cold tap water and cleaning the mouthguard with a soluble effervescent tablet. Results: Gel electrophoresis showed deposition of proteins of 50-60 kDa and 14 kDa on the mouthguards used in the mouth for 1 h. Western blotting identified these bands as amylase and lysozyme, respectively. Rinsing the mouthguard with cold tap water after use removed 91% of the total amount of deposited proteins, while cleaning with an effervescent tablet removed 99%. Conclusions: During the use of mouthguards, salivary proteins are deposited on their surface. Because salivary proteins can potentially affect bacterial adhesion to mouthguards, proper cleaning after use is recommended. Cleaning the mouthguard with cold tap water or using an effervescent tablet both seem to be effective strategies to remove proteins deposited on sport mouthguards.
Collapse
Affiliation(s)
- Kirsten van Vliet
- Academic Centre for Dentistry (ACTA)—Academic Medical Center Amsterdam (UMC), Department of Oral and Maxillofacial Surgery, 1081 HV Amsterdam, The Netherlands
| | - Annina van Splunter
- Academic Centre for Dentistry (ACTA), Department of Oral Biochemistry, 1081 LA Amsterdam, The Netherlands
| | - Jan de Lange
- Academic Centre for Dentistry (ACTA)—Academic Medical Center Amsterdam (UMC), Department of Oral and Maxillofacial Surgery, 1081 HV Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Academic Centre for Dentistry (ACTA), Department of Orofacial Pain and Dysfunction, 1081 LA Amsterdam, The Netherlands
| | - Henk Brand
- Academic Centre for Dentistry (ACTA), Department of Oral Biochemistry, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
2
|
Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids Surf B Biointerfaces 2024; 233:113608. [PMID: 37925866 DOI: 10.1016/j.colsurfb.2023.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Antioxidant nutraceuticals can be found in several dietary sources and have been utilized for various medical benefits including health promotion, disease prevention, and support for treatment of acute and/or chronic diseases. Nonetheless, there are some limitations in delivering antioxidants via oral administration such as low solubility and permeability, pH and enzyme degradation, and instability of the compounds along the gastrointestinal tract leading to low bioavailability. In order to tackle these challenges, the utilization of lipid nanoparticles has numerous advantages to the escalating delivery system of antioxidants in nutraceuticals across the gastrointestinal tract barrier. Nowadays, several types of lipid nanoparticles can be used in antioxidant nutraceutical delivery systems through the oral route, namely solid lipid nanoparticles and nanostructured lipid carriers. This review article aims to provide notable information on the importance and applications of lipid nanoparticles in antioxidant delivery systems from nutraceuticals by an oral route. The mechanism in enhancing antioxidant compound transport across the gastrointestinal tract can occur by elevating loading capacity, improving chemical and physical stability, and increasing its bioavailability. To date, lipid nanoparticle vehicles have been developed to improve the delivery of antioxidant compounds to enhance bioavailability via oral routes. Lipid nanoparticles have remarkable benefits in delivering antioxidant nutraceuticals via oral administration. Hence, scale-up and commercialization of antioxidant nutraceutical-loaded lipid nanoparticles have been a potential technology in recent years. Subsequently, several vegetable and natural oils with antioxidant activity can also be utilized for nanoparticle formulation lipid components to increase nutraceuticals' antioxidant properties and bioavailability.
Collapse
Affiliation(s)
- Maxius Gunawan
- Graduate Program of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Bustos-Lobato L, Rus MJ, Saúco C, Simon-Soro A. Oral microbial biomap in the drought environment: Sjogren's syndrome. Mol Oral Microbiol 2023; 38:400-407. [PMID: 37767604 DOI: 10.1111/omi.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Sjogren's syndrome (SS) is an autoimmune disease that affects primarily the salivary glands, making perturbations in the oral ecosystem and potential factors of salivary flow that influence the onset and development of the disease. The oral cavity contains diverse microorganisms that inhabit various niches such as the oral microbial "biomap." It does not seem specific enough to establish a characteristic microbiome, given the diversity of clinical manifestations, variable rates of salivary secretion, and influential risk factors in patients with SS. This review discusses the biogeography of the oral microbiome in patients with SS such as saliva, tongue, tooth, mucosa, and gum. The microorganisms that were more abundant in the different oral niches were Gram-positive species, suggesting a higher survival of cell wall bacteria in this arid oral environment. Reduced salivary flow appears not to be linked to the cause of dysbiosis alone but influences host-associated risk factors. However, much work remains to be done to establish the role of the microbiome in the etiopathogenesis of autoimmune diseases such as SS. Future studies of the microbiome in autoimmunity will shed light on the role of specific microorganisms that have never been linked before with SS.
Collapse
Affiliation(s)
- Laura Bustos-Lobato
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Maria J Rus
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Carlos Saúco
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| | - Aurea Simon-Soro
- Facultad de Odontología, Departamento de Estomatología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Li Y, Liu J, Guan T, Zhang Y, Cheng Q, Liu H, Liu C, Luo W, Chen H, Chen L, Zhao T. The submandibular and sublingual glands maintain oral microbial homeostasis through multiple antimicrobial proteins. Front Cell Infect Microbiol 2023; 12:1057327. [PMID: 36704102 PMCID: PMC9872150 DOI: 10.3389/fcimb.2022.1057327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Oral microbial homeostasis is a key factor affecting oral health, and saliva plays a significant role in maintaining oral microbial homeostasis. The submandibular gland (SMG) and sublingual gland (SLG) together produce the most saliva at rest. Organic ingredients, including antimicrobial proteins, are rich and distinctive and depend on the type of acinar cells in the SMG and SLG. However, the functions of the SMG and SLG in maintaining oral microbial homeostasis have been difficult to identify and distinguish, given their unique anatomical structures. Methods In this study, we independently removed either the SMG or SLG from mouse models. SMGs were aseptically removed in three mice in the SMG-removal group, and SLGs were aseptically removed in three mice in the SLG-removal group. Three mice from the sham-operated group were only anesthetized and incised the skin. After one month, we analyzed their oral microbiome through 16S rRNA sequencing. And then, we analyzed each gland using proteomics and single-cell RNA sequencing. Results Our study revealed that the microbiome balance was significantly disturbed, with decreased bacterial richness, diversity, and uniformity in the groups with the SMG or SLG removed compared with the sham-operated group. We identified eight secreted proteins in the SMG and two in the SLG that could be involved in maintaining oral microbial homeostasis. Finally, we identified multiple types of cells in the SMG and SLG (including serous acinar, mucinous acinar, ductal epithelial, mesenchymal, and immune cells) that express potential microbiota homeostasis regulatory proteins. Our results suggest that both the SMG and SLG play crucial roles in maintaining oral microbial homeostasis via excretion. Furthermore, the contribution of the SMG in maintaining oral microbial homeostasis appears to be superior to that of the SLG. These findings also revealed the possible antimicrobial function of gland secreta. Discussion Our results suggest that control of oral microbial dysbiosis is necessary when the secretory function of the SMG or SLG is impaired. Our study could be the basis for further research on the prevention of oral diseases caused by microbial dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Guan
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China,*Correspondence: Tianyu Zhao, ; Liang Chen,
| |
Collapse
|
5
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
6
|
Novel Evaluation of Submandibular Salivary Gland Tissue for Use as an Alternative Postmortem Toxicology Specimen. Am J Forensic Med Pathol 2021; 42:328-334. [PMID: 34475318 DOI: 10.1097/paf.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The collection of blood and tissue provides an opportunity for an objective comparison of autopsy results. Occasionally, a viable tissue sample is not available during autopsy. Expanding upon collected tissues to include a tissue that is accessible, is a possible drug depot, and is amendable to various analytical techniques may complement information obtained from other specimens. Given its absorption of ions, nutrients, and likely drugs via its rich blood supply, we evaluated the use of submandibular salivary gland tissue as an alternative postmortem specimen. The submandibular salivary glands of 52 decedents were excised. The tissue was homogenized, extracted, and analyzed via liquid chromatography tandem mass spectrometry for 43 opioids and 5 nonopioids. Liquid chromatography tandem mass spectrometry salivary tissue results were compared with the decedent's blood results. Results revealed that opioids were detected in salivary gland tissue at a sensitivity and specificity of 94.4% and 94.1%, respectively. Nonopioid drugs were detected at a sensitivity and specificity of 88.2% and 100.0%, respectively. This study suggests a comparable correlation exists between salivary gland tissue and blood results for certain drugs. Further evaluation is warranted. To our knowledge, this is the first report of salivary gland tissue being used for postmortem toxicology testing in humans.
Collapse
|
7
|
Metabolic activity of hydro-carbon-oxo-borate on a multispecies subgingival periodontal biofilm: a short communication. Clin Oral Investig 2021; 25:5945-5953. [PMID: 33774716 PMCID: PMC8443475 DOI: 10.1007/s00784-021-03900-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Objective This study evaluated the metabolic activity of hydro-carbon-oxo-borate complex (HCOBc) on a multispecies subgingival biofilm as well as its effects on cytotoxicity. Materials and methods The subgingival biofilm with 32 species related to periodontitis was formed in the Calgary Biofilm Device (CBD) for 7 days. Two different therapeutic schemes were adopted: (1) treatment with HCOBc, 0.12% chlorhexidine (CHX), and negative control group (without treatment) from day 3 until day 6, two times a day for 1 min each time, totaling 8 treatments and (2) a 24-h treatment on a biofilm grown for 6 days. After 7 days of formation, biofilm metabolic activity was determined by colorimetry assay, and bacterial counts and proportions of complexes were determined by DNA-DNA hybridization. Both substances’ cytotoxicity was evaluated by cell viability (XTT assay) and clonogenic survival assay on ovary epithelial CHO-K1 cells and an osteoblast precursor from calvaria MC3T3-E1 cells. Results The first treatment scheme resulted in a significant reduction in biofilm’s metabolic activity by means of 77% by HCOBc and CHX treatments versus negative control. The total count of 11 and 25 species were decreased by treatment with hydro-carbon-oxo-borate complex and CHX, respectively, compared with the group without treatment (p < 0.05), highlighting a reduction in the levels of Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Fusobacterium periodontium. CHX significantly reduced the count of 10 microorganisms compared to the group treated with HCOBc (p < 0.05). HCOBc and CHX significantly decreased the pathogenic red-complex proportion compared with control-treated biofilm, and HCOBc had even a more significant effect on the red complex than CHX had (p ≤ 0.05). For the second treatment scheme, HCOBc complex and CHX significantly decreased 61 and 72% of control biofilms’ metabolic activity and the counts of 27 and 26 species, respectively. HCOBc complex did not significantly affect the proportions of formed biofilms, while CHX significantly reduced red, orange, and yellow complexes. Both substances exhibited similar cytotoxicity results. Conclusions This short communication suggested that the HCOBc complex reduced a smaller number of bacterial species when compared to chlorhexidine during subgingival biofilm formation, but it was better than chlorhexidine in reducing red-complex bacterial proportions. Although HCOBc reduced the mature 6-day-old subgingival multispecies biofilms, it did not modify bacterial complexes’ ratios as chlorhexidine did on the biofilms mentioned above. Future in vivo studies are needed to validate these results. Clinical relevance HCOBc complex could be used to reduce red-complex periodontal bacterial proportions.
Collapse
|
8
|
Salazar VA, Arranz-Trullén J, Prats-Ejarque G, Torrent M, Andreu D, Pulido D, Boix E. Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. Int J Mol Sci 2019; 20:ijms20184558. [PMID: 31540052 PMCID: PMC6770517 DOI: 10.3390/ijms20184558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a polymorphic fungus responsible for mucosal and skin infections. Candida cells establish themselves into biofilm communities resistant to most currently available antifungal agents. An increase of severe infections ensuing in fungal septic shock in elderly or immunosuppressed patients, along with the emergence of drug-resistant strains, urge the need for the development of alternative antifungal agents. In the search for novel antifungal drugs our laboratory demonstrated that two human ribonucleases from the vertebrate-specific RNaseA superfamily, hRNase3 and hRNase7, display a high anticandidal activity. In a previous work, we proved that the N-terminal region of the RNases was sufficient to reproduce most of the parental protein bactericidal activity. Next, we explored their potency against a fungal pathogen. Here, we have tested the N-terminal derived peptides that correspond to the eight human canonical RNases (RN1-8) against planktonic cells and biofilms of C. albicans. RN3 and RN7 peptides displayed the most potent inhibitory effect with a mechanism of action characterized by cell-wall binding, membrane permeabilization and biofilm eradication activities. Both peptides are able to eradicate planktonic and sessile cells, and to alter their gene expression, reinforcing its role as a lead candidate to develop novel antifungal and antibiofilm therapies.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
9
|
Laheij AMGA, Rasch CN, Brandt BW, de Soet JJ, Schipper RG, Loof A, Silletti E, van Loveren C. Proteins and peptides in parotid saliva of irradiated patients compared to that of healthy controls using SELDI-TOF-MS. BMC Res Notes 2015; 8:639. [PMID: 26530239 PMCID: PMC4632372 DOI: 10.1186/s13104-015-1641-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
Background Radiotherapy to the head and neck area damages the salivary glands. As a consequence hyposalivation may occur, but also the protein composition of saliva may be affected possibly compromising oral health. The aim of our study was to compare the relative abundance of proteins and peptides in parotid saliva of irradiated patients to that of healthy controls. Methods Using Lashley cups and citric acid, saliva from the parotid glands was collected from nine irradiated patients and ten healthy controls. The samples were analyzed with SELDI-TOF-MS using a NP20 and IMAC-30 chip in the molecular weight range of 1–30 kDa. Results On the NP20 chip 61 (out of 217) and on the IMAC-30 chip 32 (out of 218) peaks differed significantly in intensity between the saliva of the irradiated patients and healthy controls. 55 % of the significant peaks showed higher intensity and 45 % showed lower intensity in the saliva of irradiated patients. The peaks may represent, amongst others, the salivary proteins lysozyme, histatins, cystatin, protein S100 and PRP’s. Conclusions Large differences were found in the relative abundance of a wide range of proteins and peptides in the parotid saliva of irradiated patients compared to healthy controls. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1641-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexa M G A Laheij
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Coen N Rasch
- Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Johannes J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | - Raymond G Schipper
- Top Institute Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands.
| | - Arnoud Loof
- Central Laboratory for Haematology, Radboud University Nijmegen Medical Centre Post 476, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Erika Silletti
- NIZO Food Research B.V., P.O. Box 20, 6710 BA, Ede, The Netherlands.
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Doğan MS, Callea M, Yavuz Ì, Aksoy O, Clarich G, Günay A, Günay A, Güven S, Maglione M, Akkuş Z. An evaluation of clinical, radiological and three-dimensional dental tomography findings in ectodermal dysplasia cases. Med Oral Patol Oral Cir Bucal 2015; 20:e340-6. [PMID: 25662550 PMCID: PMC4464922 DOI: 10.4317/medoral.20303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clinical examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. MATERIAL AND METHODS In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. RESULTS The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. CONCLUSIONS Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved.
Collapse
Affiliation(s)
- Mehmet-Sinan Doğan
- Department of Pediatric Dentistry, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey,
| | | | | | | | | | | | | | | | | | | |
Collapse
|