1
|
Chen YY, Tan L, Su XL, Chen NX, Liu Q, Feng YZ, Guo Y. NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis. Mol Oral Microbiol 2024; 39:446-460. [PMID: 38757737 DOI: 10.1111/omi.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide-binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2. METHODS We collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high-throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro-computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin-12 (IL-6) were detected by western blot. RESULTS The relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL-6. CONCLUSIONS The results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.
Collapse
MESH Headings
- Animals
- Nod2 Signaling Adaptor Protein/metabolism
- Periodontitis/microbiology
- Periodontitis/metabolism
- Rats
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/metabolism
- Alveolar Bone Loss/microbiology
- Alveolar Bone Loss/metabolism
- Male
- Osteoblasts/metabolism
- Humans
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/microbiology
- Interleukin-6/metabolism
- Female
- Disease Models, Animal
- Middle Aged
- Osteogenesis
- Rats, Sprague-Dawley
- X-Ray Microtomography
- RNA, Ribosomal, 16S
- Dental Plaque/microbiology
- Adult
- Interleukin-12/metabolism
Collapse
Affiliation(s)
- Ying-Yi Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Stomatology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences(Qingdao Central Hospital), Qingdao, China
| | - Li Tan
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Lin Su
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning-Xin Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Zhi Feng
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Pan J, Luo L, Jiang Z, Huang H, Jiang B. The effect of injectable platelet-rich fibrin and platelet-rich fibrin in regenerative endodontics: a comparative in vitro study. J Appl Oral Sci 2024; 32:e20230449. [PMID: 38896639 PMCID: PMC11178352 DOI: 10.1590/1678-7757-2023-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE To explore the feasibility of injectable platelet-rich fibrin (i-PRF) in regenerative endodontics by comparing the effect of i-PRF and platelet-rich fibrin (PRF) on the biological behavior and angiogenesis of human stem cells from the apical papilla (SCAPs). METHODOLOGY i-PRF and PRF were obtained from venous blood by two different centrifugation methods, followed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). Enzyme-linked immunosorbent assay (ELISA) was conducted to quantify the growth factors. SCAPs were cultured with different concentrations of i-PRF extract (i-PRFe) and PRF extract (PRFe), and the optimal concentrations were selected using the Cell Counting Kit-8 (CCK-8) assay. The cell proliferation and migration potentials of SCAPs were then observed using the CCK-8 and Transwell assays. Mineralization ability was detected by alizarin red staining (ARS), and angiogenesis ability was detected by tube formation assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of genes related to mineralization and angiogenesis. The data were subjected to statistical analysis. RESULTS i-PRF and PRF showed a similar three-dimensional fibrin structure, while i-PRF released a higher concentration of growth factors than PRF ( P <.05). 1/4× i-PRFe and 1/4× PRFe were selected as the optimal concentrations. The cell proliferation rate of the i-PRFe group was higher than that of the PRFe group ( P <.05), while no statistical difference was observed between them in terms of cell mitigation ( P >.05). More importantly, our results showed that i-PRFe had a stronger effect on SCAPs than PRFe in facilitating mineralization and angiogenesis, with the consistent result of RT-qPCR ( P <.05). CONCLUSION This study revealed that i-PRF released a higher concentration of growth factors and was superior to PRF in promoting proliferation, mineralization and angiogenesis of SCAPs, which indicates that i-PRF could be a promising biological scaffold for application in pulp regeneration.
Collapse
Affiliation(s)
- Jing Pan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Linjuan Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Zhen Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Haiyan Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Stomatological Hospital and Dental School of Tongji University , Department of Pediatric Dentistry, Shanghai , China
| |
Collapse
|
3
|
Xu H, Chen G, Zhou J, Zhou X, Wang P, Chen C, Xu Z, Lv F, Li X. Identification and validation of m 6A RNA regulatory network in pulpitis. BMC Oral Health 2023; 23:878. [PMID: 37978362 PMCID: PMC10656916 DOI: 10.1186/s12903-023-03578-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA modification regulators play an important role in many human diseases, and its abnormal expression can lead to the occurrence and development of diseases. However, their significance in pulpitis remains largely unknown. Here, we sought to identify and validate the m6A RNA regulatory network in pulpitis. METHODS Gene expression data for m6A regulators in human pulpitis and normal pulp tissues from public GEO databases were analyzed. Bioinformatics analysis including Gene ontology (GO) functional, and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed by R package, and Cytoscape software was used to study the role of m6A miRNA-mRNA regulatory network in pulpitis. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of key m6A regulators in collected human pulpitis specimens. RESULTS Differential genes between pulpitis and normal groups were found from the GEO database, and further analysis found that there were significant differences in the m6A modification-related genes ALKBH5, METTL14, METTL3, METTL16, RBM15B and YTHDF1. And their interaction relationships and hub genes were determined. The hub m6A regulator targets were enriched in immune cells differentiation, glutamatergic synapse, ephrin receptor binding and osteoclast differentiation in pulpitis. Validation by qRT-PCR showed that the expression of methylases METTL14 and METTL3 was decreased, thus these two genes may play a key role in pulpitis. CONCLUSION Our study identified and validated the m6A RNA regulatory network in pulpitis. These findings will provide valuable resource to guide the mechanistic and therapeutic analysis of the role of key m6A modulators in pulpitis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiaying Zhou
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
- College of Medicine, Huzhou University, Huzhou, 313000, China
| | - Xukang Zhou
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
- Department of Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
| | - Pengcheng Wang
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
| | - Chunhui Chen
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Fengyuan Lv
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Xiaofang Li
- Department of Stomatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua Municipal Central Hospital, JinHua, China.
| |
Collapse
|
4
|
Sobieszczański J, Mertowski S, Sarna-Boś K, Stachurski P, Grywalska E, Chałas R. Root Canal Infection and Its Impact on the Oral Cavity Microenvironment in the Context of Immune System Disorders in Selected Diseases: A Narrative Review. J Clin Med 2023; 12:4102. [PMID: 37373794 DOI: 10.3390/jcm12124102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The oral cavity has a specific microenvironment, and structures such as teeth are constantly exposed to chemical and biological factors. Although the structure of the teeth is permanent, due to exposure of the pulp and root canal system, trauma can have severe consequences and cause the development of local inflammation caused by external and opportunistic pathogens. Long-term inflammation can affect not only the local pulp and periodontal tissues but also the functioning of the immune system, which can trigger a systemic reaction. This literature review presents the current knowledge on root canal infections and their impact on the oral microenvironment in the context of immune system disorders in selected diseases. The result of the analysis of the literature is the statement that periodontal-disease-caused inflammation in the oral cavity may affect the development and progression of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, or Sjogren's syndrome, as well as affecting the faster progression of conditions in which inflammation occurs such as, among others, chronic kidney disease or inflammatory bowel disease.
Collapse
Affiliation(s)
- Jarosław Sobieszczański
- Preclinical Dentistry Lab, Medical University of Lublin, Chodźki 6 Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, Chodźki 6 Street, 20-093 Lublin, Poland
| | - Piotr Stachurski
- Department of Pediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, Chodźki 6 Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
He Y, Wu Z, Chen S, Wang J, Zhu L, Xie J, Zhou C, Zou S. Activation of the pattern recognition receptor NOD1 in periodontitis impairs the osteogenic capacity of human periodontal ligament stem cells via p38/MAPK signalling. Cell Prolif 2022; 55:e13330. [PMID: 36043447 DOI: 10.1111/cpr.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Nucleotide oligomerization domain receptor 1 (NOD1) mediates host recognition of pathogenic bacteria in periodontium. However, the specific role of NOD1 in regulating osteogenesis is unclear. Therefore, this study focused on the activation status of NOD1 in periodontitis and its effect on the osteogenic capacity of human periodontal ligament stem cells (hPDLSCs) as well as the underlying mechanism. METHODS Histological staining and Western blot were utilized to assess NOD1 expression in the periodontium of people with or without periodontitis. HPDLSCs were cultured under NOD1 agonist or antagonist treatment. Q-PCR and Western blot were employed to assess the expression of osteogenic marker genes and proteins. Alizarin red staining and alkaline phosphatase staining were used to determine the osteogenic capability of hPDLSCs. The activation of downstream signalling was determined and specific inhibitors were utilized to confirm the signalling pathway in NOD1-regulated osteogenesis. RESULTS NOD1 expression is significantly elevated in periodontitis. With NOD1 activated by particular agonist tri-DAP, the osteogenic potential of hPDLSCs was impaired. NOD1 antagonist co-incubation partially restored the decreased osteogenesis in hPDLSCs. P38/MAPK was phosphorylated in tri-DAP-induced NOD1 activation. The inhibitor of p38 rescued the suppression of osteogenesis induced by tri-DAP in hPDLSCs. CONCLUSIONS Our study revealed the expression status of NOD1 in periodontitis. Its activation greatly decreased the osteogenic capacity of hPDLSCs which was mediated by the phosphorylation of p38 downstream signalling.
Collapse
Affiliation(s)
- Yuying He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sirui Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yu F, Huo F, Li F, Zuo Y, Wang C, Ye L. Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption. Int J Oral Sci 2022; 14:6. [PMID: 35082271 PMCID: PMC8791990 DOI: 10.1038/s41368-022-00159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation-associated proteinase functions are key determinants of inflammatory stromal tissues deconstruction. As a specialized inflammatory pathological process, dental internal resorption (IR) includes both soft and hard tissues deconstruction within the dentin-pulp complex, which has been one of the main reasons for inflammatory tooth loss. Mechanisms of inflammatory matrix degradation and tissue resorption in IR are largely unclear. In this study, we used a combination of Cre-loxP reporter, flow cytometry, cell transplantation, and enzyme activities assay to mechanistically investigate the role of regenerative cells, odontoblasts (ODs), in inflammatory mineral resorption and matrices degradation. We report that inflamed ODs have strong capabilities of matrix degradation and tissue resorption. Traditionally, ODs are regarded as hard-tissue regenerative cells; however, our data unexpectedly present ODs as a crucial population that participates in IR-associated tissue deconstruction. Specifically, we uncovered that nuclear factor-kappa b (NF-κB) signaling orchestrated Tumor necrosis factor α (TNF-α)-induced matrix metalloproteinases (Mmps) and Cathepsin K (Ctsk) functions in ODs to enhance matrix degradation and tissue resorption. Furthermore, TNF-α increases Rankl/Opg ratio in ODs via NF-κB signaling by impairing Opg expression but increasing Rankl level, which utterly makes ODs cell line 17IIA11 (A11) become Trap+ and Ctsk+ multinucleated cells to perform resorptive actions. Blocking of NF-κB signaling significantly rescues matrix degradation and resorptive functions of inflamed ODs via repressing vital inflammatory proteinases Mmps and Ctsk. Utterly, via utilizing NF-κB specific small molecule inhibitors we satisfactorily attenuated inflammatory ODs-associated human dental IR in vivo. Our data reveal the underlying mechanisms of inflammatory matrix degradation and resorption via proteinase activities in IR-related pathological conditions.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Fengli Huo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Lou Z, Lin W, Zhao H, Jiao X, Wang C, Zhao H, Liu L, Liu Y, Xie Q, Huang X, Huang H, Zhao L. Alkaline phosphatase downregulation promotes lung adenocarcinoma metastasis via the c-Myc/RhoA axis. Cancer Cell Int 2021; 21:217. [PMID: 33858415 PMCID: PMC8050923 DOI: 10.1186/s12935-021-01919-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) metastasis significantly reduces patient survival; hence inhibiting the metastatic ability of lung cancer cells will greatly prolong patient survival. Alkaline phosphatase (ALPL), a homodimeric cell surface phosphohydrolase, is reported to play a controversial role in prostate cancer and ovarian cancer cell migration; however, the function of ALPL in LUAD and the related mechanisms remain unclear. METHODS TCGA database was used to analysis the expression of ALPL, and further verification was performed in a cohort of 36 LUAD samples by qPCR and western blot. Soft-agar assay, transwell assay and lung metastasis assay were employed to detect the function of ALPL in LUAD progression. The qPCR, luciferase promoter reporter assay and western blot were used to clarify the molecular mechanisms of ALPL in promoting metastasis in LUAD. RESULTS ALPL was downregulated in LUAD, and the disease-free survival rate of patients with low ALPL was significantly reduced. Further studies showed that overexpression of ALPL in LUAD cell lines did not significantly affect cell proliferation, but it did significantly attenuate lung metastasis in a mouse model. ALPL downregulation in LUAD led to a decrease in the amount of phosphorylated (p)-ERK. Because p-ERK promotes the classical c-Myc degradation pathway, the decrease in p-ERK led to the accumulation of c-Myc and therefore to an increase in RhoA transcription, which enhanced LUAD cell metastasis. CONCLUSION ALPL specially inhibits the metastasis of LUAD cells by affecting the p-ERK/c-Myc/RhoA axis, providing a theoretical basis for the targeted therapy of clinical LUAD.
Collapse
Affiliation(s)
- Zhefeng Lou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weiwei Lin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huirong Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xueli Jiao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - He Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yu Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
8
|
Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, Gadalla M, Albargasy H, Zahra N, Mokhtar S, El Nahhas N, El Kaliouby Y, Dörfer CE. The Dental Pulp Stem/Progenitor Cells-Mediated Inflammatory-Regenerative Axis. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:445-460. [DOI: 10.1089/ten.teb.2019.0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | | | | | | | - Nehal Zahra
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | | | | | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
9
|
Kim JY, Kim DS, Auh QS, Yi JK, Moon SU, Kim EC. Role of Protein Phosphatase 1 in Angiogenesis and Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod 2018; 43:417-424. [PMID: 28231980 DOI: 10.1016/j.joen.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The aims of this study were to examine the immunolocalization of protein phosphatase 1 (PP1) in developing mouse pulp tissue and to explore the role of PP1 in odontoblastic differentiation and in vitro angiogenesis in human dental pulp cells (HDPCs). METHODS Immunolocalization of PP1 was assessed in developing mouse pulp tissue. Odontogenic differentiation was examined by alkaline phosphatase activity, alizarin red staining, and reverse transcriptase polymerase chain reaction. Angiogenesis was evaluated by endothelial cell migration and capillary tube formation. Signaling pathways were analyzed by Western blotting and confocal immunofluorescence. RESULTS PP1 expression was detected in preodontoblasts, odontoblasts, dental pulp cells, and endothelial cells within pulp tissue during the crown formed, root formation, and root completion stages. PP1 messenger RNA (mRNA) and protein levels were up-regulated at the late mineralization stage during odontogenic differentiation of HDPCs. The PP1 activator C2 ceramide increased alkaline phosphatase activity, mineralized nodule formation, and mRNA expression of dentin matrix protein 1 and dentin sialophosphoprotein. In contrast, knockdown by PP1 small interfering RNA inhibited odontoblastic differentiation. Moreover, PP1 activator up-regulated mRNA expression of angiogenic genes in HDPCs and increased the migration and capillary tube formation of endothelial cells, whereas PP1 small interfering RNA showed opposite effects. C2 ceramide increased levels of bone morphogenetic protein 2, phosphorylation of Smad 1/5/8, and mRNA expression of runt-related transcription factor 2 and osterix. CONCLUSIONS This study provides the first evidence that PP1 might be a potent regulator of developing pulp tissue in vivo and odontoblastic differentiation and angiogenesis in HDPCs in vitro and may have clinical implications for pulp/dentin regeneration or reparative dentinogenesis.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth and Periodontal Regeneration, Kyung Hee University, Seoul, Republic of Korea
| | - Duk-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Q-Schick Auh
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Kyu Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Ung Moon
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth and Periodontal Regeneration, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth and Periodontal Regeneration, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and in vivo bone healing. Oncotarget 2018; 7:78320-78330. [PMID: 27713171 PMCID: PMC5346641 DOI: 10.18632/oncotarget.12460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/13/2016] [Indexed: 11/25/2022] Open
Abstract
Although sulfuretin, the major flavonoid of Rhus verniciflua Stokes, has a variety of biological actions, its in vitro and in vivo effects on osteogenic potential remain poorly understood. The objective of the present study was to investigate the effects of sulfuretin on in vitro osteoblastic differentiation and the underlying signal pathway mechanisms in primary cultured osteoblasts and on in vivo bone formation using critical-sized calvarial defects in mice. Sulfuretin promoted osteogenic differentiation of primary osteoblasts, with increased ALP activity and mineralization, and upregulated differentiation markers, including ALP, osteocalcin, and osteopontin, in a concentration-dependent manner. The expression levels of Runx2, BMP-2, and phospho-Smad1/5/8 were upregulated by sulfuretin. Moreover, sulfuretin increased phosphorylation of Akt, mTOR, ERK, and JNK. Furthermore, sulfuretin treatment increased mRNA expression of Wnt ligands, phosphorylation of GSK3, and nuclear β-catenin protein expression. In vivo studies with calvarial bone defects revealed that sulfuretin significantly enhanced new bone formation by micro-computed tomography and histologic analysis. Collectively, these data suggest that sulfuretin acts through the activation of BMP, mTOR, Wnt/β-catenin, and Runx2 signaling to promote in vitro osteoblast differentiation and facilitate in vivo bone regeneration, and might be have therapeutic benefits in bone disease and regeneration.
Collapse
|
11
|
Ni G, Chen Y, Wu F, Zhu P, Song L. NOD2 promotes cell proliferation and inflammatory response by mediating expression of TSLP in human airway smooth muscle cells. Cell Immunol 2016; 312:35-41. [PMID: 27889082 DOI: 10.1016/j.cellimm.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
The newly discovered intracytosolic pattern recognition receptor nucleotide-binding oligomerization domain 2 (NOD2) has been studied as an important indicator of T helper 2 (Th2) inflammation, and its effect on regulatory T (Treg) cells is likely to modulate the immune response. In this study, we attempted to study the expression of NOD2 and its impact in human airway smooth muscle cells (HASMC). Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of NOD2 in HASMC and comparisons were made between those from asthmatic and non-asthmatic donors; we found that NOD2 was significantly upregulated in asthma patient tissues and cell lines. In addition, overexpression of NOD2 apparently promotes cell proliferation and migration in HASMC. Gain-of-function in vitro experiments further showed that NOD2 overexpression significantly promotes pro-inflammatory cytokine release in HASMC. Subsequent experimental analysis indicated that thymic stromal lymphopoietin (TSLP) is involved in NOD2-mediated cellular effects in HASMC. Therefore, our results indicate that NOD2 is an asthma-related factor that can promote cell proliferation and inflammatory response by mediated expression of TSLP in HASMC. Taken together, our results indicate that NOD2 could serve as a potential diagnostic biomarker and therapeutic option for human asthma in the near future.
Collapse
Affiliation(s)
- Gaoshun Ni
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Yang Chen
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Fengqin Wu
- Nursing Department, Shangluo Vocational and Technical College, Shangzhou District, Shangluo City 726000, China
| | - Pengxian Zhu
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an City 710032, China.
| |
Collapse
|
12
|
Herencia C, Diaz-Tocados JM, Jurado L, Montes de Oca A, Rodríguez-Ortiz ME, Martín-Alonso C, Martínez-Moreno JM, Vergara N, Rodríguez M, Almadén Y, Muñoz-Castañeda JR. Procaine Inhibits Osteo/Odontogenesis through Wnt/β-Catenin Inactivation. PLoS One 2016; 11:e0156788. [PMID: 27257912 PMCID: PMC4892678 DOI: 10.1371/journal.pone.0156788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/19/2016] [Indexed: 11/26/2022] Open
Abstract
Introduction Periodontitis is a complex pathology characterized by the loss of alveolar bone. The causes and the mechanisms that promote this bone resorption still remain unknown. The knowledge of the critical regulators involved in the alteration of alveolar bone homeostasis is of great importance for developing molecular therapies. Procaine is an anesthetic drug with demethylant properties, mainly used by dentists in oral surgeries. The inhibitor role of Wnt signaling of procaine was described in vitro in colon cancer cells. Methods In this work we evaluated the role of procaine (1 uM) in osteo/odontogenesis of rat bone marrow mesenchymal stem cells. Similarly, the mechanisms whereby procaine achieves these effects were also studied. Results Procaine administration led to a drastic decrease of calcium content, alkaline phosphatase activity, alizarin red staining and an increase in the expression of Matrix Gla Protein. With respect to osteo/odontogenic markers, procaine decreased early and mature osteo/odontogenic markers. In parallel, procaine inhibited canonical Wnt/β-catenin pathway, observing a loss of nuclear β-catenin, a decrease in Lrp5 and Frizzled 3, a significant increase of sclerostin and Gsk3β and an increase of phosphorylated β-catenin. The combination of osteo/odontogenic stimuli and Lithium Chloride decreased mRNA expression of Gsk3β, recovered by Procaine. Furthermore it was proved that Procaine alone dose dependently increases the expression of Gsk3β and β-catenin phosphorylation. These effects of procaine were also observed on mature osteoblast. Interestingly, at this concentration of procaine no demethylant effects were observed. Conclusions Our results demonstrated that procaine administration drastically reduced the mineralization and osteo/odontogenesis of bone marrow mesenchymal stem cells inhibiting Wnt/β-catenin pathway through the increase of Gsk3β expression and β-catenin phosphorylation.
Collapse
Affiliation(s)
- Carmen Herencia
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Juan Miguel Diaz-Tocados
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Lidia Jurado
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Addy Montes de Oca
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | | | - Carmen Martín-Alonso
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Julio M. Martínez-Moreno
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Noemi Vergara
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Mariano Rodríguez
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
| | - Yolanda Almadén
- Lipids and Atherosclerosis Unit, (CIBEROBN), Hosp Univ Reina Sofia, IMIBIC, REDinREN, Córdoba, Spain
| | - Juan R. Muñoz-Castañeda
- Instituto Maimónides para la Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Serv Nefrologia, Córdoba, Spain
- * E-mail:
| |
Collapse
|
13
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
14
|
Ghadakzadeh S, Mekhail M, Aoude A, Hamdy R, Tabrizian M. Small Players Ruling the Hard Game: siRNA in Bone Regeneration. J Bone Miner Res 2016; 31:475-87. [PMID: 26890411 DOI: 10.1002/jbmr.2816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
Abstract
Silencing gene expression through a sequence-specific manner can be achieved by small interfering RNAs (siRNAs). The discovery of this process has opened the doors to the development of siRNA therapeutics. Although several preclinical and clinical studies have shown great promise in the treatment of neurological disorders, cancers, dominant disorders, and viral infections with siRNA, siRNA therapy is still gaining ground in musculoskeletal tissue repair and bone regeneration. Here we present a comprehensive review of the literature to summarize different siRNA delivery strategies utilized to enhance bone regeneration. With advancement in understanding the targetable biological pathways involved in bone regeneration and also the rapid progress in siRNA technologies, application of siRNA for bone regeneration has great therapeutic potential. High rates of musculoskeletal injuries and diseases, and their inevitable consequences, impose a huge financial burden on individuals and healthcare systems worldwide.
Collapse
Affiliation(s)
- Saber Ghadakzadeh
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Mina Mekhail
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Ahmed Aoude
- Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Reggie Hamdy
- Experimental Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, Canada.,Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Lee SI, Yi JK, Bae WJ, Lee S, Cha HJ, Kim EC. Thymosin Beta-4 Suppresses Osteoclastic Differentiation and Inflammatory Responses in Human Periodontal Ligament Cells. PLoS One 2016; 11:e0146708. [PMID: 26789270 PMCID: PMC4720371 DOI: 10.1371/journal.pone.0146708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Background Recent reports suggest that thymosin beta-4 (Tβ4) is a key regulator for wound healing and anti-inflammation. However, the role of Tβ4 in osteoclast differentiation remains unclear. Purpose The purpose of this study was to evaluate Tβ4 expression in H2O2-stimulated human periodontal ligament cells (PDLCs), the effects of Tβ4 activation on inflammatory response in PDLCs and osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs), and identify the underlying mechanism. Methods Reverse transcription-polymerase chain reactions and Western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages (BMMs) using conditioned medium (CM) from H2O2-treated PDLCs. Results Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it. Conclusion In conclusion, this study demonstrated, for the first time, that Tβ4 was down-regulated in ROS-stimulated PDLCs as well as Tβ4 activation exhibited anti-inflammatory effects and anti-osteoclastogenesis in vitro. Thus, Tβ4 activation might be a therapeutic target for inflammatory osteolytic disease, such as periodontitis.
Collapse
Affiliation(s)
- Sang-Im Lee
- Department of Dental Hygiene, School of Health Sciences, Dankook University, Cheonan, Republic of Korea
| | - Jin-Kyu Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Won-Jung Bae
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Soojung Lee
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University Busan, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp. Mediators Inflamm 2015; 2015:794143. [PMID: 26576076 PMCID: PMC4630409 DOI: 10.1155/2015/794143] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Pathogen recognition receptors (PRRs) are a class of germ line-encoded receptors that recognize pathogen-associated molecular patterns (PAMPs). The activation of PRRs is crucial for the initiation of innate immunity, which plays a key role in first-line defense until more specific adaptive immunity is developed. PRRs differ in the signaling cascades and host responses activated by their engagement and in their tissue distribution. Currently identified PRR families are the Toll-like receptors (TLRs), the C-type lectin receptors (CLRs), the nucleotide-binding oligomerization domain-like receptors (NLRs), the retinoic acid-inducible gene-I-like receptors (RLRs), and the AIM2-like receptor (ALR). The environment of the dental pulp is substantially different from that of other tissues of the body. Dental pulp resides in a low compliance root canal system that limits the expansion of pulpal tissues during inflammatory processes. An understanding of the PRRs in dental pulp is important for immunomodulation and hence for developing therapeutic targets in the field of endodontics. Here we comprehensively review recent finding on the PRRs and the mechanisms by which innate immunity is activated. We focus on the PRRs expressed on dental pulp and periapical tissues and their role in dental pulp inflammation.
Collapse
|
17
|
Bae WJ, Shin MR, Kang SK, Zhang-Jun, Kim JY, Lee SC, Kim EC. HIF-2 Inhibition Supresses Inflammatory Responses and Osteoclastic Differentiation in Human Periodontal Ligament Cells. J Cell Biochem 2015; 116:1241-55. [DOI: 10.1002/jcb.25078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 12/18/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology; Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| | - Mee-Ran Shin
- Department of Prosthodontics; Dongatn Sacred Heart Hospital; Hallym University; Dongtan South Korea
| | - Soo-Kyung Kang
- Department of Oral Medicine; School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| | - Zhang-Jun
- Department of Oral and Maxillofacial Pathology; Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| | - Jun-Yeol Kim
- Department of Oral and Maxillofacial Pathology; Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| | - Sang-Cheon Lee
- Department of Maxillofacial Biomedical Engineering; School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology; Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Republic of Korea
| |
Collapse
|
18
|
Zheng Y, Chen M, He L, Marão HF, Sun DM, Zhou J, Kim SG, Song S, Wang SL, Mao JJ. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis. J Dent Res 2015; 94:821-7. [PMID: 25762594 DOI: 10.1177/0022034515575347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal resorption in the root canal, pulp/dentin regeneration, and root resorption in orthodontic tooth movement.
Collapse
Affiliation(s)
- Y Zheng
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - M Chen
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - H F Marão
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - D M Sun
- Department of Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - J Zhou
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S G Kim
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S Song
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - S L Wang
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - J J Mao
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Cho YA, Jue SS, Bae WJ, Heo SH, Shin SI, Kwon IK, Lee SC, Kim EC. PIN1 inhibition suppresses osteoclast differentiation and inflammatory responses. J Dent Res 2014; 94:371-80. [PMID: 25512367 DOI: 10.1177/0022034514563335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inflammatory responses and osteoclast differentiation play pivotal roles in the pathogenesis of osteolytic bone diseases such as periodontitis. Although overexpression or inhibition of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) offers a possible therapeutic strategy for chronic inflammatory diseases, the role of PIN1 in periodontal disease is unclear. The aim of the present study was to evaluate PIN1 expression in periodontitis patients as well as the effects of PIN1 inhibition by juglone or PIN1 small-interfering RNA (siRNA) and of PIN1 overexpression using a recombinant adenovirus encoding PIN1 (Ad-PIN1) on the inflammatory response and osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (PDLCs). PIN1 was up-regulated in chronically inflamed PDLCs from periodontitis patients and in LPS- and nicotine-exposed PDLCs. Inhibition of PIN1 by juglone or knockdown of PIN1 gene expression by siRNA markedly attenuated LPS- and nicotine-stimulated prostaglandin E2 (PGE2) and nitric oxide (NO) production, as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, whereas PIN1 overexpression by Ad-PIN1 increased it. LPS- and nicotine-induced nuclear factor (NF)-κB activation was blocked by juglone and PIN1 siRNA but increased by Ad-PIN1. Conditioned medium prepared from LPS- and nicotine-treated PDLCs increased the number of tartrate-resistant acid phosphatase-stained osteoclasts and osteoclast-specific gene expression. These responses were blocked by PIN1 inhibition and silencing but stimulated by Ad-PIN1. Furthermore, juglone and PIN1 siRNA inhibited LPS- and nicotine-induced osteoclastogenic cytokine expression in PDLCs. This study is the first to demonstrate that PIN1 inhibition exhibits anti-inflammatory effects and blocks osteoclastic differentiation in LPS- and nicotine-treated PDLCs. PIN1 inhibition may be a therapeutic strategy for inflammatory osteolysis in periodontal disease.
Collapse
Affiliation(s)
- Y-A Cho
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-S Jue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-H Heo
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - S-I Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - I-K Kwon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - S-C Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Muramyl dipeptide activates human beta defensin 2 and pro-inflammatory mediators through Toll-like receptors and NLRP3 inflammasomes in human dental pulp cells. Clin Oral Investig 2014; 19:1419-28. [PMID: 25467233 DOI: 10.1007/s00784-014-1361-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE The expression levels of intracellular pyrin domain-containing 3 (NLRP3) and microbial pattern-recognition receptors, such as nucleotide-binding oligomerization domain 2 (NOD2), have been reported in human dental pulp cells (HDPCs) and inflamed dental pulp tissue, but the role of NLRP3 and Toll-like receptors (TLRs) in the production of human beta defensin 2 (hBD2) and inflammatory cytokines against invading pathogens remains poorly defined. The aim of this study was to determine whether the NOD2 ligand muramyl dipeptide (MDP) upregulates hBD2 and inflammatory cytokines and whether this response is dependent on TLRs and NLRP inflammasomes in HDPCs. METHODOLOGY The effects of MDP on the expression of hBD2, TLRs, inflammasomes, and pro-inflammatory mediators in HDPCs were examined using Western blotting and reverse transcription-polymerase chain reaction. Levels of pro-inflammatory cytokines, such as nitric oxide (NO) and prostaglandin E2 (PGE2), were determined by enzyme-linked immunosorbent assay. RESULTS MDP upregulated hBD2, TLR2, and TLR4 mRNAs and protein levels in a dose- and time-dependent manner. TLR2 and TLR4 neutralizing blocking antibodies and NOD2- and hBD2-specific small interfering RNAs (siRNAs) attenuated the MDP-induced production of NO, PGE2, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 and upregulated inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) in HDPCs. Additionally, MDP activated inflammasome-related genes, such as NLRP3, caspase 1, apoptotic speck protein containing a caspase recruitment domain, and IL-1β. Furthermore, silencing of the NLRP3 gene using a siRNA significantly decreased the MDP-induced expression of hBD2 and cytokines, such as iNOS-derived NO, COX2, PGE2, TNF-α, IL-6, and IL-8. CONCLUSION These results suggest that NOD2 activates the TLR2, TLR4, and NLRP3 inflammasome-signaling pathways in HDPCs to induce the production of multiple inflammatory mediators and antimicrobial peptides, which in turn promote pulp immune defense against microbial challenge. CLINICAL RELEVANCE The TLR and NLRP3 inflammasome pathways may represent an important modulatory mechanism of immune defense responses during the progression of pulpitis. Our results suggest that local inhibition of NLRP3 and TLRs may reduce the impact of cytokine-mediated host destructive processes in pulpitis.
Collapse
|
21
|
Manokawinchoke J, Ritprajak P, Osathanon T, Pavasant P. Estradiol induces osteoprotegerin expression by human dental pulp cells. Odontology 2014; 104:10-8. [PMID: 25255977 DOI: 10.1007/s10266-014-0178-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023]
Abstract
Estrogen deficiency is associated with increased inflammation related periapical bone resorption. The present study aimed to evaluate the effect and intracellular mechanism(s) of estrogen on osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) expression in human dental pulp cells (HDPs). HDPs were treated with estradiol at a concentration of 0.1-10 μM. The results showed that estradiol induced OPG expression at both the mRNA and protein levels in a dose-dependent manner. However, no influence on RANKL expression was observed. An estrogen receptor (ER) inhibitor failed to attenuate the estradiol-induced OPG expression. Furthermore, ER-α and ER-β agonists did not simulate estradiol's effects on OPG expression by HDPs. However, a significant OPG upregulation was observed in HDPs treated with an estradiol-BSA conjugate or a GPR30 agonist. An ERK inhibitor significantly enhanced estradiol-induced OPG expression, whereas a p38 inhibitor markedly attenuated this expression. In conclusion, OPG expression by HDPs may be regulated by estradiol binding a membrane receptor and the balance between the ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Patcharee Ritprajak
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology and Immunology, and DRU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. .,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Prates TP, Taira TM, Holanda MC, Bignardi LA, Salvador SL, Zamboni DS, Cunha FQ, Fukada SY. NOD2 contributes to Porphyromonas gingivalis-induced bone resorption. J Dent Res 2014; 93:1155-62. [PMID: 25239844 DOI: 10.1177/0022034514551770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The NOD-like receptors are cytoplasmic proteins that sense microbial by-products released by invasive bacteria. Although NOD1 and NOD2 are functionally expressed in cells from oral tissues and play a role triggering immune responses, the role of NOD2 receptor in the bone resorption and in the modulation of osteoclastogenesis is still unclear. We show that in an experimental model of periodontitis with Porphyromonas gingivalis W83, NOD2(-/-) mice showed lower bone resorption when compared to wild type. Quantitative polymerase chain reaction analysis revealed that wild-type infected mice showed an elevated RANKL/OPG ratio when compared to NOD2(-/-) infected mice. Moreover, the expression of 2 osteoclast activity markers-cathepsin K and matrix metalloproteinase 9-was significantly lower in gingival tissue from NOD2(-/-) infected mice compared to WT infected ones. The in vitro study reported an increase in the expression of the NOD2 receptor 24 hr after stimulation of hematopoietic bone marrow cells with M-CSF and RANKL. We also evaluated the effect of direct activation of NOD2 receptor on osteoclastogenesis, by the activation of this receptor in preosteoclasts culture, with different concentrations of muramyl dipeptide. The results show no difference in the number of TRAP-positive cells. Although it did not alter the osteoclasts differentiation, the activation of NOD2 receptor led to a significant increase of cathepsin K expression. We confirm that this enzyme was active, since the osteoclasts resorption capacity was enhanced by muramyl dipeptide stimulation, evaluated in osteoassay plate. These results show that the lack of NOD2 receptor impairs the bone resorption, suggesting that NOD2 receptor could contribute to the progression of bone resorption in experimental model of periodontitis. The stimulation of NOD2 by its agonist, muramyl dipeptide, did not affect osteoclastogenesis, but it does favor the bone resorption capacity identified by increased osteoclast activity.
Collapse
Affiliation(s)
- T P Prates
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - T M Taira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - M C Holanda
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - L A Bignardi
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - S L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - D S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo
| | - F Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo
| | - S Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| |
Collapse
|