1
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
2
|
Wang C, Liu X, Zhou J, Zhang X, Zhou Z, Zhang Q. Sensory nerves drive migration of dental pulp stem cells via the CGRP-Ramp1 axis in pulp repair. Cell Mol Life Sci 2024; 81:373. [PMID: 39196292 PMCID: PMC11358583 DOI: 10.1007/s00018-024-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.
Collapse
Affiliation(s)
- Chunmeng Wang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaochen Liu
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Jiani Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Zihao Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
3
|
Huang X, Ge X, Fu W, Zhang Z, Xiao K, Lv H. Effects of Novel Nanoparticulate Bioceramic Endodontic Material on Human Dental Pulp Stem Cells In Vitro. Int Dent J 2024; 74:482-491. [PMID: 38431469 PMCID: PMC11123531 DOI: 10.1016/j.identj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the in vitro effects of root canal filling and repair paste (nRoot BP) on human dental pulp stem cells (hDPSCs). METHODS The effects of nRoot BP and iRoot BP Plus on the adhesion, proliferation, migration, and differentiation of hDPSCs were examined in vitro for 72 hours. The adhesion of cells was observed using immunofluorescence rhodamine ghost pen cyclic peptide staining and scanning electron microscopy (SEM). Cell density and changes in migration area were measured under a fluorescence inverted microscope. Fluorescent quantitative PCR was performed to detect genes related to odontogenesis and osteogenesis. RESULTS Cells adhering to the surfaces of nRoot BP and iRoot BP Plus exhibited similar irregular polygonal morphologies, with cells extending irregular pseudopods to adhere to the materials. CCK-8 results indicated that the density of living cells for nRoot BP and iRoot BP Plus was lower than that of the blank control group at 3 and 5 days of culture. There was no significant difference in cell migration between the groups (P > .05). The migration ability of iRoot BP Plus and nRoot BP was similar to that of the control group. Both nRoot BP and iRoot BP Plus increased the expression of the RUNX2 gene, but there was no significant difference between the groups (P < .05). Furthermore, both nRoot BP and iRoot BP Plus downregulated the expression of the DSPP gene, with no significant difference between them (P > .05). CONCLUSIONS nRoot BP exhibited a slight inhibition of hDPSC proliferation but did not affect the adhesion and migration of hDPSCs. The impact of nRoot BP on the osteogenic and odontogenic differentiation of hDPSCs was similar to that of iRoot BP Plus.
Collapse
Affiliation(s)
- Xinhui Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xinting Ge
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Weihao Fu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Zonghao Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Kuancheng Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; School and Hospital of Stomatology, Fujian Medical University, China.
| |
Collapse
|
4
|
Wang Z, Zhang J, Sun X, Yu J, Liu B, Peng B, Wang L, Yang J, Zhu L. Nanoparticulate bioceramic putty suppresses osteoclastogenesis and inflammatory bone loss in mice via inhibition of TRAF6-mediated signalling pathways: A laboratory investigation. Int Endod J 2024; 57:682-699. [PMID: 38403990 DOI: 10.1111/iej.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
AIM This study aimed to determine the effects of iRoot BP Plus on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and inflammation-mediated bone resorption in vivo and investigated the underlying molecular mechanisms. METHODOLOGY CCK-8 was performed to test cell viability in RANKL-induced RAW 264.7 cells and BMDMs in response to iRoot BP Plus. The effect of iRoot BP Plus on osteoclastogenesis was determined using TRAP staining and phalloidin staining, respectively. Pit formation assay was conducted to measure osteoclast resorptive capacity. Western blot and qPCR were performed to examine osteoclast-related proteins and gene expression, respectively. Western blot was also used to investigate the signalling pathways involved. For in vivo experiments, an LPS-induced mouse calvarial bone resorption model was established to analyse the effect of iRoot BP Plus on bone resorption (n = 6 per group). At 7 days, mouse calvaria were collected and prepared for histological analysis. RESULTS We identified that iRoot BP Plus extracts significantly attenuated RANKL-induced osteoclastogenesis, reduced sealing zone formation, restrained osteolytic capacity and decreased osteoclast-specific gene expression (p < .01). Mechanistically, iRoot BP Plus extracts reduced TRAF6 via proteasomal degradation, then suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), blocked the nuclear translocation of c-Fos and diminished nuclear factor-κB (NF-κB) p65 and NFATc1 accumulation. Consistent with the in vitro results, iRoot BP Plus extracts attenuated osteoclast activity thus protecting against inflammatory bone resorption in vivo (p < .05), which was accompanied by a suppression of TRAF6, c-Fos, NFATc1 and cathepsin K expression. CONCLUSION These findings provide valuable insights into the signalling mechanisms underlying nanoparticulate bioceramic putty-mediated bone homeostasis.
Collapse
Affiliation(s)
- Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bingqian Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Yang N, Yang W, Shen R, Zhang S, Ma T, Liu Y. In vitro and in vivo evaluation of iRoot BP Plus as a coronal sealing material for regenerative endodontic procedures. Clin Oral Investig 2024; 28:70. [PMID: 38170260 PMCID: PMC10764398 DOI: 10.1007/s00784-023-05468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES To investigate in vitro effects of a nanoparticle bioceramic material, iRoot BP Plus, on stem cells from apical papilla (SCAP) and in vivo capacity to induce pulp-dentin complex formation. MATERIALS AND METHODS The sealing ability of iRoot BP Plus was measured via scanning electron microscopy (SEM). SCAP were isolated and treated in vitro by iRoot BP Plus conditioned medium, with mineral trioxide aggregate (MTA) conditioned medium and regular medium used as controls, respectively. Cell proliferation was assessed by BrdU labeling and MTT assay and cell migration was evaluated with wound healing and transwell assays. Osteo/odontogenic potential was evaluated by Alizarin red S staining and qPCR. Pulp-dentin complex formation in vivo was assessed by a tooth slice subcutaneous implantation model. RESULTS iRoot BP Plus was more tightly bonded with the dentin. There was no difference in SCAP proliferation between iRoot BP Plus and control groups (P > 0.05). iRoot BP Plus had a greater capacity to elevated cell migration (P < 0.05) and osteo/odontogenic marker expression and mineralization nodule formation of SCAP compared with MTA groups (P < 0.05). Furthermore, the new continuous dentine layer and pulp-like tissue was observed in the iRoot BP Plus group in vivo. CONCLUSIONS iRoot BP Plus showed excellent sealing ability, promoted the migration and osteo/odontogenesis of SCAP and induced pulp-dentin complex formation without affecting the cell proliferation, which indicated iRoot BP Plus was a promising coronal sealing material in REPs. CLINICAL RELEVANCE The coronal sealing materials play crucial roles for the outcomes of REPs. This study showed that iRoot BP Plus has good coronal sealing and promote pulp-dentin complex formation compared with MTA, providing experimental evidences for the clinical application of iRoot BP Plus as a promising coronal seal material in REPs.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxiao Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Rou Shen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shengcai Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Tianchi Ma
- Department of Orthodontics, Shenyang Stomatology Hospital, 138 Zhongshan Road, Shenyang, 110004, China.
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang, 110002, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
6
|
Yan Y, Li Y, Chi Y, Ji M, Shen Y, Zou L. A comparative study of biological properties of three root canal sealers. Clin Oral Investig 2023; 28:11. [PMID: 38129367 DOI: 10.1007/s00784-023-05402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of Hiflow with other two kinds of root canal sealers on the biological behavior of stem cells from the apical papilla (SCAP), the influence on inflammatory cytokines release and its antibacterial effects. MATERIALS AND METHODS Material extracts of Hiflow, iRoot SP, and AH Plus were prepared. Then, SCAP was incubated with extracts. The effects were evaluated by CCK-8, wound healing assay, ALP staining, alizarin red staining, and qRT-PCR. Meanwhile, polymorphonuclears (PMNs) and monocytes were isolated and treated with extracts for 4 h and 24 h respectively. Cell viability was analyzed by Annexin-V/PI double staining flow cytometry. The effects on the release of cytokines were observed by ELISA. The antibacterial effects of different sealers were tested against three kinds of bacteria found in chronic apical periodontitis. RESULTS A series of results of SCAP showed that Hiflow and iRoot SP could promote cell proliferation, migration, and osteogenesis (p < 0.05). Although Hiflow was associated with greater cell apoptosis and necrosis when incubated with PMNs and monocytes (p < 0.05), it had an approximate release of anti-inflammatory cytokines with iRoot SP, which was higher than AH plus (p < 0.05). The co-culture showed that Hiflow and iRoot SP inhibited the colony formation of F. nucleatum (p < 0.05). However, both sealers had no obvious antibacterial effect on E. faecalis and P. gingivalis (p > 0.05). CONCLUSIONS In summary, Hiflow and iRoot SP both had positive biological stimulus on SCAP. Meanwhile, Hiflow showed a better induction on anti-inflammatory cytokines over the others. All the properties mentioned above and its antibacterial effect of F. nucleatum promise Hiflow a bright application prospect in endodontic uses. CLINICAL RELEVANCE References for clinical work to use BC Sealer Hiflow as a good biological root canal sealer.
Collapse
Affiliation(s)
- Yujia Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yaqi Chi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ling Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Wang X, Xiao Y, Song W, Ye L, Yang C, Xing Y, Yuan Z. Clinical application of calcium silicate-based bioceramics in endodontics. J Transl Med 2023; 21:853. [PMID: 38007432 PMCID: PMC10676601 DOI: 10.1186/s12967-023-04550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/21/2023] [Indexed: 11/27/2023] Open
Abstract
Pulp treatment is extremely common in endodontics, with the main purpose of eliminating clinical symptoms and preserving tooth physiological function. However, the effect of dental pulp treatment is closely related to the methods and materials used in the process of treatment. Plenty of studies about calcium silicate-based bioceramics which are widely applied in various endodontic operations have been reported because of their significant biocompatibility and bioactivity. Although most of these materials have superior physical and chemical properties, the differences between them can also have an impact on the success rate of different clinical practices. Therefore, this review is focused on the applications of several common calcium silicate-based bioceramics, including Mineral trioxide aggregate (MTA), Biodentine, Bioaggregate, iRoot BP Plus in usual endodontic treatment, such as dental pulp capping, root perforation repair, regenerative endodontic procedures (REPs), apexification, root-end filling and root canal treatment (RCT). Besides, the efficacy of these bioceramics mentioned above in human trials is also compared, which aims to provide clinical guidance for their clinical application in endodontics.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yizhi Xiao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chen Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuzhen Xing
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
8
|
Yousefi-Koma AA, Assadian H, Mohaghegh S, Nokhbatolfoghahaei H. Comparative Biocompatibility and Odonto-/Osteogenesis Effects of Hydraulic Calcium Silicate-Based Cements in Simulated Direct and Indirect Approaches for Regenerative Endodontic Treatments: A Systematic Review. J Funct Biomater 2023; 14:446. [PMID: 37754860 PMCID: PMC10532331 DOI: 10.3390/jfb14090446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Regenerative dentistry is the operation of restoring dental, oral and maxillofacial tissues. Currently, there are no guidelines for the ideal cement/material in regenerative endodontic treatments (RET). Hydraulic calcium silicate-based cements (hCSCs) are currently the material of choice for RET. OBJECTIVES This systematic review was conducted to gather all of the different direct and indirect approaches of using hCSCs in RET in vitro and in vivo, and to ascertain if there are any superiorities to indirect approaches. METHODS AND MATERIALS This systematic review was conducted according to the 2020 PRISMA guidelines. The study question according to the PICO format was as follows: Comparison of the biological behavior (O) of stem cells (P) exposed to hCSCs through direct and indirect methods (I) with untreated stem cells (C). An electronic search was executed in Scopus, Google Scholar, and PubMed. RESULTS A total of 78 studies were included. Studies were published between 2010 and 2022. Twenty-eight commercially available and eighteen modified hCSCs were used. Seven exposure methods (four direct and three indirect contacts) were assessed. ProRoot MTA and Biodentine were the most used hCSCs and had the most desirable results. hCSCs were either freshly mixed or set before application. Most studies allowed hCSCs to set in incubation for 24 h before application, which resulted in the most desirable biological outcomes. Freshly mixed hCSCs had the worst outcomes. Indirect methods had significantly better viability/proliferation and odonto-/osteogenesis outcomes. CONCLUSION Biodentine and ProRoot MTA used in indirect exposure methods result in desirable biological outcomes.
Collapse
Affiliation(s)
- Amir-Ali Yousefi-Koma
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hadi Assadian
- Department of Endodontics, Tehran University of Medical Sciences, Tehran 1417614418, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
9
|
Chai R, Yang X, Zhang AS. Different endodontic treatments induced root development of two nonvital immature teeth in the same patient: A case report. World J Clin Cases 2023; 11:2567-2575. [PMID: 37123304 PMCID: PMC10130992 DOI: 10.12998/wjcc.v11.i11.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Pulp revascularization is a novel way to treat immature teeth with periapical disease, and the technique has become increasingly well established in recent years. By puncturing the periapical tissue, bleeding is induced, and a blood clot is formed in the root canal. The blood clot acts as a natural bioscaffold onto which mesenchymal stem cells from periapical tissue can be seeded and restore pulp vascularity, thus promoting root development as well as apical closure. Although the effect of pulp revascularization is ideal, there are certain requirements for the apical condition of the teeth. The apical barrier technique and apexification are still indispensable for teeth that cannot achieve ideal blood clot formation. In addition, a meta-analysis of several clinical studies concluded that pulp revascularization has no significant advantages over other treatments.
CASE SUMMARY A 10-year-old girl complained of pain in the right upper and lower posterior teeth for 2 d. Clinical and radiological examinations revealed that both the right maxillary and mandibular second premolars were immature with periapical radiolucency. The right maxillary second premolar was treated by pulp revascularization, while the right mandibular second premolar was treated by conventional apical barrier surgery after revascularization failed. The purpose of this report is to compare the different root maturation processes induced by the pulp revascularization and apical barrier techniques in the same patient in homonymous teeth from different jaws. Twelve months of follow-up showed that the apical foramen of both teeth presented a clear tendency to close; however, the tooth treated with pulp revascularization showed a significant increase in root length as well as root canal wall thickness.
CONCLUSION For the treatment of nonvital immature teeth, pulp revascularization showed a superior therapeutic effect in comparison with the apical barrier technique.
Collapse
Affiliation(s)
- Rong Chai
- Department of Stomatology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710061, Shaanxi Province, China
| | - Xiu Yang
- Department of Stomatology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710061, Shaanxi Province, China
| | - An-Sheng Zhang
- Department of Stomatology, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
10
|
Yin H, Yang X, Peng L, Xia C, Zhang D, Cui F, Huang H, Li Z. Trends of calcium silicate biomaterials in medical research and applications: A bibliometric analysis from 1990 to 2020. Front Pharmacol 2022; 13:991377. [PMID: 36313285 PMCID: PMC9614043 DOI: 10.3389/fphar.2022.991377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Calcium silicate biomaterials (CSB) have witnessed rapid development in the past 30 years. This study aimed to accomplish a comprehensive bibliometric analysis of the published research literature on CSB for biomedical applications and explore the research hotspot and current status. Methods: Articles related to CSB published in the last three decades (1990–2020) were retrieved from Web of Science Core Collection. The R bibliometrix package and VOSviewer were used to construct publication outputs and collaborative networking among authors, their institutes, countries, journals’ matrices and keywords plus. Results: A total of 872 publications fulfilling the search criteria were included. CSB is mainly reported for bone tissues and dental applications. Among researchers, Chang J from Chinese Academy of Sciences and Gandolfi MG from the University of Bologna are the most productive author in these two fields, respectively. China was the leading contributor to the research on CSB in the medical field. A total of 130 keywords appeared more ten or more times were identified. The term “mineral trioxide aggregate” ranked first with 268 occurrences. The co-occurrence analysis identified three major clusters: CSB in dentistry, bone tissue and vitro bioactivity. Conclusion: Calcium silicate biomaterials have a promising scope for various biomedical applications ranging from regeneration of hard tissues (bone and teeth) to skin, tumor, cardiac muscle and other soft tissues. This study may help researchers further understand the frontiers of the field.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Haojie Huang, ; Zhaoshen Li,
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Haojie Huang, ; Zhaoshen Li,
| |
Collapse
|
11
|
[Evaluation of bioceramic putty repairmen iRoot and mineral trioxide aggregate in mature permanent teeth pulpotomy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022. [PMID: 35165477 PMCID: PMC8860637 DOI: 10.19723/j.issn.1671-167x.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate the clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot and mineral trioxide aggregate (MTA). METHODS Pulpotomy was performed on mature permanent premolars and molars with carious exposures at the Department of General Dentistry of Peking University School and Hospital of Stomatology, from November 2017 to September 2019. The patients were randomly divided into 2 groups, Group iRoot (n=22) and Group MTA (n=21). In Group iRoot, bioceramic putty repairmen iRoot was used as pulp capping agent, while in Group MTA, mineral trioxide aggregate was used as pulp capping agent. All the patients had signed informed consent forms. The clinical efficacy was evaluated by clinical examinations (temperature and electrical activity test) and imaging examinations 3, 6, and 12 months after surgery. Blinding was used for the patients and evaluators, but due to the obvious differences in the properties of the two pulp capping agents, the blinding method was not used for the treatment provider (the attending physician). RESULTS There was no significant difference in gender, average age, dentition and tooth position distribution between the two groups (P>0.05). In the study, 7 cases were lost to follow-up 12 months after operation (4 cases in Group iRoot, and 3 cases in Group MTA). One case in each of the two groups had transient sensitivity at the end of the 3-month follow-up, and the pulp vitality was normal at the end of the 6-month follow-up. One case in Group iRoot showed sensitivity at the end of the 12-month follow-up. The success rates of the two groups at the end of 12-month follow-up were 100%, and the cure rates were 94.4% (Group iRoot) and 100% (Group MTA), respectively, and the difference was not statistically significant (P>0.05). No cases in Group iRoot had obvious crown discoloration, while 3 cases in Group MTA had. CONCLUSION The clinical characteristics and effectiveness of pulpotomy in mature permanent teeth with bioceramic putty repairmen iRoot were similar with MTA. Bioceramic putty repairmen iRoot is an acceptable material when used in pulpotomy of mature permanent teeth. Because it is not easy to cause tooth discoloration after treatment and is convenient to operate, bioceramic putty repairmen iRoot has a better clinical application prospect.
Collapse
|
12
|
Oliveira LV, de Souza GL, da Silva GR, Magalhães TEA, Freitas GAN, Turrioni AP, de Rezende Barbosa GL, Moura CCG. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J 2021; 54:2133-2144. [PMID: 34418112 DOI: 10.1111/iej.13616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
AIM To analyse the discolouration, radiopacity, pH and calcium ion release of Biodentine (BD), Bio-C repair (BCR) and Bio-C temp (BCT), as well as their biological effects on human dental pulp cells (hDPCs). METHODOLOGY Sixty-four extracted bovine incisors were prepared to simulate crown fractures with pulp exposure and open root apex. The roots were filled using a mixture of agar and blood (control), and BD, BCR or BCT were placed over this mixture. Colour assessment analyses of the samples were performed before and immediately after material insertion and repeated at 30 and 90 days, using a spectrophotometer. The colour change of each specimen was evaluated at the crown and calculated based on the CIELab colour space. Digital radiographs were acquired for radiopacity analysis. hDPCs were placed in contact with different dilutions of culture media previously exposed to such materials and tested for cell viability using the MTT assay. The pH and calcium ion release of all materials were measured after 24 h; the data were assessed using one-way analysis of variance (ANOVA). Cell viability was analysed by two-way ANOVA. Differences in colour parameters and wound-healing data were assessed by two-way repeated measures ANOVA (α = 0.05). Tukey's and Dunnett's tests were used to compare the experimental groups with the control group. RESULTS BCR had grater radiopacity and smaller colour alteration (ΔEab/ΔE00) than the other materials tested (p < .005; p < .001). No significant differences in pH were found amongst the tested materials (p > .05). BCT was associated with the largest release of calcium ions (p < .0001). BD had cell viability similar to that of the control at the lowest dilutions, and BCR was similar to that of the control, regardless of the dilution tested (p > .05). BCT had a lower percentage of viability than that of the control at all tested dilutions (p < .0001). Cell migration rates in BD and BCR were similar to those in the control group after 24 h and 48 h (p > .05), whilst BCT had larger voids than the control in both periods (p < .0001). CONCLUSIONS BCR, BCT and BD were associated with tooth discolouration. BCR had the lowest staining values, the highest radiopacity and viability greater than 80% hDPCs.
Collapse
Affiliation(s)
- Lilian Vieira Oliveira
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gisele Rodrigues da Silva
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
13
|
Wu L, Xue K, Hu G, Du H, Gan K, Zhu J, Du T. Effects of iRoot SP on osteogenic differentiation of human stem cells from apical papilla. BMC Oral Health 2021; 21:407. [PMID: 34407774 PMCID: PMC8371802 DOI: 10.1186/s12903-021-01769-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Research shows that nano-bioceramics can modulate the differentiation of dental stem cells. The novel ready-to-use calcium-silicate-based root-canal sealer iRoot SP is widely used in root filling. Accordingly, the aim of this study was to evaluate the effects of iRoot SP on proliferation and osteogenic differentiation in human stem cells from the apical papilla (hSCAPs). METHODS hSCAPs were isolated and characterized in vitro, then cultured with various concentrations of iRoot SP extract. Cell proliferation was assessed by CCK-8 assay, and scratch-wound-healing assays were performed to evaluate cell-migration capacity. hSCAPs were then cultured in osteogenic medium supplemented with iRoot SP extracts. Alkaline phosphatase (ALP) activity assay was used to evaluate ALP enzyme levels. Alizarin red staining and cetylpyridinium chloride (CPC) assays were performed to assess calcified-nodule formation and matrix-calcium accumulation of hSCAPs. The mRNA and protein expression levels of the osteogenic markers OCN, OSX, Runx2, and DSPP were determined by qRT-PCR and Western blotting. The data were analyzed using one-way ANOVA and LSD-t tests. RESULTS iRoot SP at low concentrations (2, 0.2, and 0.02 mg/mL) is nontoxic to hSCAPs. iRoot SP at concentrations of 0.02 and 0.2 mg/mL significantly increases cell-migration capacity. In terms of osteogenic differentiation, 0.2 mg/mL iRoot SP promotes intracellular ALP activity and the formation of mineralized nodules. Moreover, the expression of osteogenic markers at the mRNA and protein levels are upregulated by iRoot SP. CONCLUSION iRoot SP is an effective filling material for periapical bone regeneration.
Collapse
Affiliation(s)
- Laidi Wu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Kaiyang Xue
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Guang Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Hanman Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Kang Gan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Juanfang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Tianfeng Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
14
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
15
|
Wang MC, Tu HF, Chang KW, Lin SC, Yeh LY, Hung PS. The molecular functions of Biodentine and mineral trioxide aggregate in lipopolysaccharide-induced inflamed dental pulp cells. Int Endod J 2021; 54:1317-1327. [PMID: 33711171 DOI: 10.1111/iej.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
AIM To explore the proliferation, adhesion and differentiation response and the underlying mechanisms that occur in lipopolysaccharide (LPS)-induced inflamed dental pulp cells (DPCs) in contact with Biodentine and mineral trioxide aggregate (MTA). METHODOLOGY The DPCs were isolated from three healthy donors and named DPC-H1 to DPC-H3. The DPCs were pre-cultured with 2 or 5 μg mL-1 LPS for 24 h to induce inflammation. The expression of inflammation marker miR-146a was detected by q-PCR. The normal and LPS-induced DPCs were further treated with 0.14 mg mL-1 Biodentine or 0.13 mg mL-1 MTA for 24 h. MTT assay and adhesion assay were used to analyse the changes of cell phenotypes. DSPP, AKT and ERK expressions were detected by Western blotting. The data were analysed by Mann-Whitney test or two-way anova. Differences were considered statistically significant when P < 0.05. RESULTS In LPS-induced DPCs, Biodentine and MTA treatment neither induced nor aggravated LPS-induced inflammation, but their presence did increase the expression of the odontogenic differentiation marker DSPP. Under 2 or 5 μg mL-1 LPS-induced inflammation, Biodentine and MTA promoted the proliferation of DPC cells, and significantly in DPC-H2 (P < 0.0001 for both reagents). With the treatment of 2 μg mL-1 LPS, the cell adhesion of DPCs on the fibronectin-coated culture plates was increased significantly by Biodentine (P = 0.0413) and MTA (P < 0.0001). Biodentine and MTA regulated cell adhesion on the fibronectin-coated culture plates (P < 0.0001 for both reagents) and proliferation (P < 0.0001 for both reagents) via the AKT pathway. However, the AKT pathway was not involved in the expression of DSPP induced by Biodentine and MTA. CONCLUSION Biodentine and MTA enhanced the proliferation, adhesion and differentiation of LPS-induced DPCs. The proliferation and adhesion process induced by Biodentine and MTA was via the AKT pathway. However, the cellular differentiation process might not use the same pathway, and this needs to be explored in future studies.
Collapse
Affiliation(s)
- M C Wang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Dentistry, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan.,Taipei Municipal WanFang Hospital, Taipei, Taiwan
| | - H F Tu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dentistry, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - K W Chang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - S C Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - L Y Yeh
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - P S Hung
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| |
Collapse
|
16
|
Abou ElReash A, Hamama H, Grawish M, Saeed M, Zaen El-Din AM, Shahin MA, Zhenhuan W, Xiaoli X. A laboratory study to test the responses of human dental pulp stem cells to extracts from three dental pulp capping biomaterials. Int Endod J 2021; 54:1118-1128. [PMID: 33567103 DOI: 10.1111/iej.13495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
AIM This laboratory study aimed to investigate the effects of three endodontic biomaterials; MTA-HP, iRoot-BP-Plus and ACTIVA on the proliferation, adhesion and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). METHODOLOGY The hDPSCs were isolated from the dental pulps of 21 patients scheduled for surgical extraction of their impacted third molars. The MTT assay was used for assessing cellular proliferation. Ninety-six-well plates were used and the experiment was repeated four times under the same condition and the assay was done in triplicate. Four groups were assigned in which the hDPSCs were cultured in complete media only and considered as negative control. Whilst in the 2nd , 3rd and 4th groups, the cells were treated with CM supplemented with 1.5 μl MTA-HP (CM-MTA, iRoot-BP-Plus (CM-BP), and ACTIVA(CM-AC) extracts, respectively. Attachment adhesion and growth morphology of hDPSCs were observed using SEM and the osteogenic differentiation assay was evaluated by Alizarin red stain test (ARS). The data of proliferation and osteogenic differentiation were analysed using two-way ANOVA followed by Tukey's post hoc multiple comparison test. A p-value < 0.05 was considered significant to analyse the differences amongst the means of groups. RESULTS Both CM-MTA and CM-BP groups were associated with a significant increase in hDPSC proliferation in comparison with CM-AC and CM groups (p = 0.001). hDPSCs exhibited a greater cellular attachment to iRoot-BP-Plus surfaces followed by MTA-HP, whilst less attachment was observed in the ACTIVA group. Moreover, at day 7 there was a significant difference in formation of mineralizing nodules; CM-BP, CM-MTA and CM-AC groups respectively (p = 0.001). Whilst there was no significance of difference between CM-AC and CM groups (p > 0.05). CONCLUSIONS In a laboratory setting, ACTIVA, MTA-HP and iRoot-BP-Plus promoted hDPSCs proliferation, mineralization and attachment, which may explain their in-situ success as endodontic biomaterials.
Collapse
Affiliation(s)
- A Abou ElReash
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - H Hamama
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - M Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - M Saeed
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - A M Zaen El-Din
- Restorative Dental Sciences Department, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - M A Shahin
- Electron Microscope Unit, Mansoura University, Mansoura, Egypt
| | - W Zhenhuan
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - X Xiaoli
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
17
|
Sanz JL, Rodríguez-Lozano FJ, Lopez-Gines C, Monleon D, Llena C, Forner L. Dental stem cell signaling pathway activation in response to hydraulic calcium silicate-based endodontic cements: A systematic review of in vitro studies. Dent Mater 2021; 37:e256-e268. [PMID: 33573840 DOI: 10.1016/j.dental.2021.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present a qualitative synthesis of in vitro studies which analyzed human dental stem cell (DSC) molecular signaling pathway activation in response to hydraulic calcium silicate-based cements (HCSCs). METHODS A systematic electronic search was performed in Medline, Scopus, Embase, Web of Science and SciELO databases on January 20 and last updated on March 20, 2020. In vitro studies assessing the implication of signaling pathways in activity related marker (gene/protein) expression and mineralization induced by HCSCs in contact with human DSCs were included. RESULTS The search identified 277 preliminary results. After discarding duplicates, and screening of titles, abstracts, and full texts, 13 articles were considered eligible. All of the materials assessed by the included studies showed positive results in cytocompatibility and/or bioactivity assays. ProRoot MTA and Biodentine were the modal HCSCs studied, hDPSCs were the modal cell variant used, and the most studied signaling pathway was MAPK. In vitro assays measuring the expression of activity-related markers and mineralized nodule formation evidenced the involvement of MAPK (and its subfamilies ERK, JNK and P38), NF-κB, Wnt/β-catenin, BMP/Smad and CAMKII pathways in the biological response of DSCs to HCSCs. SIGNIFICANCE HCSCs considered in the present review elicited a favorable biological response from a variety of DSCs in vitro, thus supporting their use in biologically-based endodontic procedures. MAPK, NF-κβ, Wnt/β-catenin, BMP/Smad and CAMKII signaling pathways have been proposed as potential mediators in the biological interaction between DSCs and HCSCs. Understanding the signaling processes involved in tissue repair could lead to the development of new biomaterial compositions targeted at enhancing these mechanisms through biologically-based procedures.
Collapse
Affiliation(s)
- José Luis Sanz
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Francisco Javier Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Concha Lopez-Gines
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Daniel Monleon
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Carmen Llena
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain.
| |
Collapse
|
18
|
Călin C, Sajin M, Moldovan VT, Coman C, Stratul SI, Didilescu AC. Immunohistochemical expression of non-collagenous extracellular matrix molecules involved in tertiary dentinogenesis following direct pulp capping: a systematic review. Ann Anat 2021; 235:151674. [PMID: 33400977 DOI: 10.1016/j.aanat.2020.151674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Extracellular matrix molecules (ECMM) expression during tertiary dentinogenesis provides useful information for regenerative applications and efficacy of pulp capping materials. AIM To identify and review the expression and roles of non-collagenous ECMM after successful direct pulp capping (DPC), following mechanical pulp exposures, via immunohistochemistry (IHC). The study addressed the question of where will successful DPC impact the IHC expression of these molecules. DATA SOURCES In vivo animal and human original clinical studies reporting on ECMM in relation to different follow-up periods were screened and evaluated via descriptive analysis. The electronic literature search was carried out in three databases (MEDLINE/PubMed, Web of Science, Scopus), followed by manual screening of relevant journals and cross-referencing, up to December 2018. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS Randomized and non-randomized controlled trials, conducted in humans and animals, were selected. Histological evidence for tertiary dentine formation was a prerequisite for IHC evaluation. STUDY APPRAISAL AND SYNTHESIS METHODS The methodological quality of the included articles was independently assessed using the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) and the Cochrane risk of bias tool (RoB 1), respectively. RESULTS From a total of 1534 identified studies, 18 were included. Thirteen papers evaluated animal subjects and five studies were carried out on humans. In animals and humans, fibronectin and tenascin expressions were detected in pulp and odontoblast-like cells (OLC); dentine sialoprotein was expressed in both soft and newly-formed mineralized tissue. In animals, bone sialoprotein was early expressed, in association with OLC and predentin; the immunoreactivity for dentine sialophosphoprotein and dentine matrix protein-1 was associated with the OLC and dentine bridge; osteopontin was expressed in OLC, predentine and reparative dentine. A considerable heterogeneity was found in the methodologies of the included studies, as well as interspecies variability of results in terms of time. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Within the limited scientific evidence, all non-collagenous ECMM expressions during tertiary dentinogenesis are active and related to soft and hard tissues. There is a shortage of human studies, and future research directions should focus more on them. PROSPERO Protocol: CRD42019121304.
Collapse
Affiliation(s)
- C Călin
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - M Sajin
- Chair of Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Romania
| | - V T Moldovan
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - C Coman
- Preclinical Testing Unit, Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - S I Stratul
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - A C Didilescu
- Division of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Romania.
| |
Collapse
|
19
|
Song W, Sun W, Chen L, Yuan Z. In vivo Biocompatibility and Bioactivity of Calcium Silicate-Based Bioceramics in Endodontics. Front Bioeng Biotechnol 2020; 8:580954. [PMID: 33195142 PMCID: PMC7658386 DOI: 10.3389/fbioe.2020.580954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endodontic therapy aims to preserve or repair the activity and function of pulp and periapical tissues. Due to their excellent biological features, a substantial number of calcium silicate-based bioceramics have been introduced into endodontics and simultaneously increased the success rate of endodontic treatment. The present manuscript describes the in vivo biocompatibility and bioactivity of four types of calcium silicate-based bioceramics in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
20
|
Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B. Cytotoxicity and Bioactivity of Dental Pulp-Capping Agents towards Human Tooth-Pulp Cells: A Systematic Review of In-Vitro Studies and Meta-Analysis of Randomized and Controlled Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2670. [PMID: 32545425 PMCID: PMC7345102 DOI: 10.3390/ma13122670] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Background. In the era of biology-driven endodontics, vital pulp therapies are regaining popularity as a valid clinical option to postpone root-canal treatment. In this sense, many different materials are available in the market for pulp-capping purposes. Objectives. The main aim of this systematic review and meta-analysis was to examine literature regarding cytotoxicity and bioactivity of pulp-capping agents by exposure of human dental pulp cells of primary origin to these materials. A secondary objective was to evaluate the inflammatory reaction and reparative dentin-bridge formation induced by the different pulp-capping agents on human pulp tissue. Data sources. A literature search strategy was carried out on PubMed, EMBASE and the Web of Science databases. The last search was done on 1 May 2020. No filters or language restrictions were initially applied. Two researchers independently selected the studies and extracted the data. Study selection included eligibility criteria, participants and interventions, study appraisal and synthesis methods. In vitro studies were included when human dental pulp cells of primary origin were (in)directly exposed to pulp-capping agents. Parallel or split-mouth randomized or controlled clinical trials (RCT or CCT) were selected to investigate the effects of different pulp-capping agents on the inflammation and reparative bridge-formation capacity of human pulp tissue. Data were synthesized via odds ratios (95% confidence interval) with fixed or random effects models, depending on the homogeneity of the studies. The relative risks (95% confidence interval) were presented for the sake of interpretation. Results. In total, 26 in vitro and 30 in vivo studies were included in the systematic review and meta-analysis, respectively. The qualitative analysis of in vitro data suggested that resin-free hydraulic calcium-silicate cements promote cell viability and bioactivity towards human dental pulp cells better than resin-based calcium-silicate cements, glass ionomers and calcium-hydroxide cements. The meta-analysis of the in vivo studies indicated that calcium-hydroxide powder/saline promotes reparative bridge formation better than the popular commercial resin-free calcium-silicate cement Pro-Root MTA (Dentsply-Sirona), although the difference was borderline non-significant (p = 0.06), and better than calcium-hydroxide cements (p < 0.0001). Moreover, resin-free pulp-capping agents fostered the formation of a complete reparative bridge better than resin-based materials (p < 0.001). On the other hand, no difference was found among the different materials tested regarding the inflammatory effect provoked at human pulp tissue. Conclusions. Calcium-hydroxide (CH) powder and Pro-Root MTA (Dentsply-Sirona) have shown excellent biocompatibility in vitro and in vivo when tested on human cells and teeth. Their use after many years of research and clinical experience seems safe and proven for vital pulp therapy in healthy individuals, given that an aseptic environment (rubber dam isolation) is provided. Although in vitro evidence suggests that most modern hydraulic calcium-silicate cements promote bioactivity when exposed to human dental pulp cells, care should be taken when these new materials are clinically applied in patients, as small changes in their composition might have big consequences on their clinical efficacy. Key findings (clinical significance). Pure calcium-hydroxide powder/saline and the commercial resin-free hydraulic calcium-silicate cement Pro-Root MTA (Dentsply-Sirona) are the best options to provide a complete reparative bridge upon vital pulp therapy. Systematic review registration number. PROSPERO registration number: CRD42020164374.
Collapse
Affiliation(s)
- Mariano S. Pedano
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Xin Li
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-Cho, Takamaysu, Kagawa 761-0395, Japan;
- Department of Pathology & Experimental Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kirsten Van Landuyt
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, KU Leuven (University of Leuven), BIOMAT—Biomaterials Research Group & UZ Leuven, University Hospitals Leuven, 3000 Leuven, Belgium; (M.S.P.); (X.L.); (K.V.L.)
| |
Collapse
|
21
|
Mahgoub N, Alqadasi B, Aldhorae K, Assiry A, Altawili ZM, Tao Hong. Comparison between iRoot BP Plus (EndoSequence Root Repair Material) and Mineral Trioxide Aggregate as Pulp-capping Agents: A Systematic Review. J Int Soc Prev Community Dent 2019; 9:542-552. [PMID: 32039073 PMCID: PMC6905310 DOI: 10.4103/jispcd.jispcd_249_19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION iRoot BP Plus, also known as EndoSequence root repair material (EERM) is a premixed bioceramic thick/putty. According to its instruction manual, iRoot BP Plus is composed of tricalcium silicate, zirconium oxide, tantalum pentoxide, dicalcium silicate, calcium sulfate, calcium phosphate monobasic, and filler agents. This systematic review was carried out to evaluate and present the iRoot BP Plus material as a pulp-capping agent. MATERIALS AND METHODS A systematic search for articles with the scope of the selection criteria undergoing for data extraction was conducted through electronic databases. Studies on evaluation of the cytotoxicity, bioactivity, and dentinal bridge formation of iRoot BP, iRoot BP Plus, ERRM putty, or ERRM paste (ERRM) on variant human cells were selected for in vitro models, and dentinal bridge formation on human and animals teeth for in vivo models were selected. RESULTS A total of 22 articles were discussed in the review, 14 in vitro studies, five in vivo studies, and three articles with both studies. Methyl thiazol tetrazolium was the most used method for evaluating cytotoxicity. As for dentinal bridge formation, histological assessment and micro-Computed tomography were used. Human dental pulp cells (hDPCs) were the most investigated for in vitro models and rats for in vivo models. Except for one study, all studies involved in this review were primarily examining the material and comparing it to different types of mineral trioxide aggregate. CONCLUSION iRoot BP, iRoot BP Plus, and ERRM are biocompatible materials that enhance hDPCs and other variant human cells proliferation, migration, attachment adhesion, mineralization, and dentinal bridge formation.
Collapse
Affiliation(s)
- Nasrin Mahgoub
- Department of General Dentistry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Basema Alqadasi
- Orthodontic Department Hospital of Stomatology Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Khalid Aldhorae
- Department of Orthodontics, College of Dentistry, Thamar University, Thamar, Yemen, China
| | - Ali Assiry
- Department of Preventive Dental Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Tao Hong
- Department of General Dentistry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
22
|
Surface Pre-Reacted Glass Filler Contributes to Tertiary Dentin Formation through a Mechanism Different Than That of Hydraulic Calcium-Silicate Cement. J Clin Med 2019; 8:jcm8091440. [PMID: 31514356 PMCID: PMC6780685 DOI: 10.3390/jcm8091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
The induction of tissue mineralization and the mechanism by which surface pre-reacted glass-ionomer (S-PRG) cement influences pulpal healing remain unclear. We evaluated S-PRG cement-induced tertiary dentin formation in vivo, and its effect on the pulp cell healing process in vitro. Induced tertiary dentin formation was evaluated with micro-computed tomography (μCT) and scanning electron microscopy (SEM). The distribution of elements from the S-PRG cement in pulpal tissue was confirmed by micro-X-ray fluorescence (μXRF). The effects of S-PRG cement on cytotoxicity, proliferation, formation of mineralized nodules, and gene expression in human dental pulp stem cells (hDPSCs) were assessed in vitro. μCT and SEM revealed that S-PRG induced tertiary dentin formation with similar characteristics to that induced by hydraulic calcium-silicate cement (ProRoot mineral trioxide aggregate (MTA)). μXRF showed Sr and Si ion transfer into pulpal tissue from S-PRG cement. Notably, S-PRG cement and MTA showed similar biocompatibility. A co-culture of hDPSCs and S-PRG discs promoted mineralized nodule formation on surrounding cells. Additionally, S-PRG cement regulated the expression of genes related to osteo/dentinogenic differentiation. MTA and S-PRG regulated gene expression in hDPSCs, but the patterns of regulation differed. S-PRG cement upregulated CXCL-12 and TGF-β1 gene expression. These findings showed that S-PRG and MTA exhibit similar effects on dental pulp through different mechanisms.
Collapse
|
23
|
Lu J, Li Z, Wu X, Chen Y, Yan M, Ge X, Yu J. iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy. Stem Cell Res Ther 2019; 10:222. [PMID: 31358050 PMCID: PMC6664598 DOI: 10.1186/s13287-019-1345-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND iRoot BP Plus is a novel bioceramic endodontic material. Recently, it has been considered as an alternative to MTA which is the most popular scaffold cover during regenerative endodontic therapy. This study aimed to evaluate the effects of iRoot BP Plus on the osteo/odontogenic capacity of bone marrow mesenchymal stem cells (BMMSCs), including the underlying mechanisms. METHODS BMMSCs were collected by a whole marrow method and treated with iRoot BP Plus-conditioned medium (BP-CM). The proliferation ability was evaluated by cell counting kit 8 and flow cytometry. Complete medium was used as a blank control, and 2 mg/ml MTA-conditioned medium was served as a positive control. Alkaline phosphatase (ALP) activity assay, ALP staining, western blot, real-time RT-PCR, Alizarin Red S staining, and immunofluorescence staining were performed to explore the osteo/odontogenic potential and the involvement of MAPK pathways. Besides, autophagy was investigated by western blot, immunofluorescence staining, and transmission electron microscopy. RESULTS
Collapse
Affiliation(s)
- Jiamin Lu
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Xiao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yan Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
24
|
雷 玥, 杨 颖, 战 园. [Evaluation of bioceramic putty repairment in primary molars pulpotomy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:70-74. [PMID: 30773547 PMCID: PMC7433541 DOI: 10.19723/j.issn.1671-167x.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the clinical characteristics and effectiveness of bioceramic putty repairment (iroot BP Plus) used as pulp capping agents on pulpotomy in primary molars. METHODS Forty primary molars were treated by pulpotomy with bioceramic putty repairmen as the pulp capping agents at the Third Clinical Division of Peking University School and Hospital of Stomatology, from September 2016 to September 2017. The children who were followed up over one year were selected as the subjects of this study. The teeth were checked clinically and radiographically during fixed intervals, and classified into one of five outcomes: N, H, P0, PX, PY. N, absence of clinical symptoms, and absence of apical radiolucency; H, absence of clinical symptoms, and nonpathologic radiographic change present; P0, absence of clinical symptoms, and pathologic change present, no need for treatment; PX, present or absence of clinical symptoms, pathologic change present treatment or extract immediately; PY, premature loss of deciduous tooth. Molars classified into N and H were regarded as successful, classified into P0, PX and PY were regarded as failed. RESULTS Followed up for 12-24 months (the average follow up time was 16months), thirty four children were finally included, aged from 3.1 years to 8.5 yaers (the average age was 4.3 years), forty primary molars were included. Thirty four primary molars were included into N group, with absence of clinical symptoms, absence of apical radiolucency. Two molars were included into H group with physiological root absorption. One molar was included into P0group with absence of clinical symptoms butinternal absorption of the root. Three molars were included into PX group, with gingival fistula and apical radiolucency. None was included into PY group. Thirty six teeth got successful treatment, four molars failed. One year success rate of pulpotomy of primary molars using bioceramic putty repairment was 95%. CONCLUSION Current evidence suggests that bioceramic putty repairment as a pulpotomy medicament showed satisfied clinical and radiographic result in pulpotomy of primary molars. Bioceramic putty repairment is an acceptable material when used in pulpotomy of primary molars.
Collapse
Affiliation(s)
- 玥 雷
- />北京大学口腔医学院·口腔医院,第三门诊部 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100083Third Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100083, China
| | - 颖婷 杨
- />北京大学口腔医学院·口腔医院,第三门诊部 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100083Third Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100083, China
| | - 园 战
- />北京大学口腔医学院·口腔医院,第三门诊部 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100083Third Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100083, China
| |
Collapse
|
25
|
Guan Z, Lan H, Sun D, Wang X, Jin K. A potential novel therapy for FGFR1-amplified pancreatic cancer with bone metastasis, screened by next-generation sequencing and a patient-derived xenograft model. Oncol Lett 2018; 17:2303-2307. [PMID: 30719110 PMCID: PMC6350188 DOI: 10.3892/ol.2018.9876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
Abstract
Effective therapies are limited for pancreatic cancer, particularly for those with distant tumour metastases. Therefore, more individualised drug screening is urgently required. Next-generation sequencing (NGS) is a powerful tool to investigate the genomic landscape of patients and the mechanism of drug response, which may provide a broader vision for potential clinical drug screening. Patient-derived xenograft (PDX) models may have a significant advantage in predicting clinical treatment response. In our previous study, a PDX of pancreatic cancer bone metastasis was established, and NGS was conducted to investigate the molecular information. In the present study, these data were further analysed and fibroblast growth factor receptor 1 (FGFR1) amplification was identified in a panel of 416 cancer-associated genes. Thus, AZD4547, an inhibitor against FGFR, was selected as a potential therapy, and was evaluated using the PDX model. AZD4547 was shown to exhibit antitumor activity by reducing the expression of FGFR1 and its targets. The present study also demonstrated the high potential of the novel NGS/PDX-based drug screening platform to improve individualised cancer treatment.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China.,Department of Pediatric Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Dan Sun
- Zhejiang Center of Medical Academic Exchange, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Ketao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
26
|
Emara R, Elhennawy K, Schwendicke F. Effects of calcium silicate cements on dental pulp cells: A systematic review. J Dent 2018; 77:18-36. [DOI: 10.1016/j.jdent.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
|
27
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
28
|
Dentinogenic effects of extracted dentin matrix components digested with matrix metalloproteinases. Sci Rep 2018; 8:10690. [PMID: 30013085 PMCID: PMC6048071 DOI: 10.1038/s41598-018-29112-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2018] [Indexed: 01/28/2023] Open
Abstract
Dentin is primarily composed of hydroxyapatite crystals within a rich organic matrix. The organic matrix comprises collagenous structural components, within which a variety of bioactive molecules are sequestered. During caries progression, dentin is degraded by acids and enzymes derived from various sources, which can release bioactive molecules with potential reparative activity towards the dentin-pulp complex. While these molecules’ repair activities in other tissues are already known, their biological effects are unclear in relation to degradation events during disease in the dentin-pulp complex. This study was undertaken to investigate the effects of dentin matrix components (DMCs) that are partially digested by matrix metalloproteinases (MMPs) in vitro and in vivo during wound healing of the dentin-pulp complex. DMCs were initially isolated from healthy dentin and treated with recombinant MMPs. Subsequently, their effects on the behaviour of primary pulp cells were investigated in vitro and in vivo. Digested DMCs modulated a range of pulp cell functions in vitro. In addition, DMCs partially digested with MMP-20 stimulated tertiary dentin formation in vivo, which exhibited a more regular tubular structure than that induced by treatment with other MMPs. Our results indicate that MMP-20 may be especially effective in stimulating wound healing of the dentin-pulp complex.
Collapse
|
29
|
Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, García-Bernal D, Oñate-Sánchez RE, Llena C, Forner L, Rosa V, Rodríguez-Lozano FJ. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dent Mater 2018; 34:932-943. [PMID: 29650250 DOI: 10.1016/j.dental.2018.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/08/2018] [Accepted: 03/23/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To evaluate the in vitro cytotoxicity of Equia Forte (GC, Tokyo, Japan) and Ionostar Molar (Voco, Cuxhaven, Germany) on human dental pulp stem cells (hDPSCs). METHODS hDPSCs isolated from third molars were exposed to several dilutions of Equia Forte and Ionostar Molar eluates (1/1, 1/2 and 1/4). These eluates were obtained by storing material samples in respective cell culture medium for 24h (n=40). hDPSCs in basal growth culture medium were the control. Cell viability and cell migration assays were performed using the MTT and wound-healing assays, respectively. Also, induction of apoptosis and changes in cell phenotype were evaluated by flow cytometry. Changes in cell morphology were analysed by immunocytofluorescence staining. To evaluate cell attachment to the different materials, hDPSCs were directly seeded onto the material surfaces and analyzed by scanning electron microscopy (SEM). The chemical composition of the materials was determined by energy dispersive X-ray (EDX) and eluates were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed with analysis of variance (ANOVA) and Student's t-test (α<0.05). RESULTS Undiluted Equia Forte extracts led to a similar cell proliferation rates than the control group from 72h onwards. There were no significance differences between Equia Forte and Ionostar Molar in terms of cell apoptosis and phenotype. However, in presence of Equia extracts the migration capacity of hDPSCs was higher than in presence of Ionostar Molar (p<0.05). Also, SEM studies showed a higher degree of cell attachment when Equia Forte extracts were used. Finally, EDX analysis pointed to different weight percentages of C, O and Ca ions in glass ionomer cements, while other elements such as La, Al, Si, W, Mo and F were also detected. SIGNIFICANCE In summary, Equia Forte promoted better biological responses in hDPSCs than Ionostar Molar.
Collapse
Affiliation(s)
- Mar Collado-González
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | | | - Christopher J Tomás-Catalá
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain; School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | | | - Carmen Llena
- Department of Stomatology, University of Valencia, Valencia, Spain
| | - Leopoldo Forner
- Department of Stomatology, University of Valencia, Valencia, Spain
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Francisco J Rodríguez-Lozano
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain; School of Dentistry, Faculty of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|
30
|
da Rosa WLO, Piva E, da Silva AF. Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 2018; 51:829-846. [DOI: 10.1111/iej.12906] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/30/2018] [Indexed: 12/23/2022]
Affiliation(s)
- W. L. O. da Rosa
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - E. Piva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| | - A. F. da Silva
- Department of Restorative Dentistry; School of Dentistry; Federal University of Pelotas; Pelotas Brazil
| |
Collapse
|
31
|
Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clin Oral Investig 2018; 22:2879-2887. [DOI: 10.1007/s00784-018-2374-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
32
|
Sun Y, Luo T, Shen Y, Haapasalo M, Zou L, Liu J. Effect of iRoot Fast Set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One 2017; 12:e0186848. [PMID: 29059236 PMCID: PMC5653327 DOI: 10.1371/journal.pone.0186848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the effect of iRoot Fast Set root repair material (iRoot FS) on the proliferation, migration and differentiation of human dental pulp stem cells (hDPSCs). The hDPSCs were treated with eluates of iRoot FS at concentrations of 0.2 and 2 mg/mL, referred to as FS0.2 and FS2, respectively, and Biodentine (BD; Septodont, Saint Maur des Faussés, France) eluates at the corresponding concentrations as positive controls. A CCK8 assay was performed to determine cell proliferation. Wound healing and transwell assays were conducted to examine cell migration. Osteogenic differentiation was evaluated based on alkaline phosphatase activity, Alizarin Red S staining and quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) to analyze the mRNA expression of differentiation gene markers. Cell proliferation was higher in the FS and BD groups than in the blank controls at 3 and 7 days. Moreover, FS0.2 enhanced cell migration and significantly promoted the osteogenic differentiation of hDPSCs. These findings suggested that iRoot FS is a bioactive material that promotes the proliferation, migration and osteogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ling Zou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (JL); ) (LZ)
| | - Jun Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: (JL); ) (LZ)
| |
Collapse
|
33
|
Tomás-Catalá CJ, Collado-González M, García-Bernal D, Oñate-Sánchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM, Rodríguez-Lozano FJ. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017; 50 Suppl 2:e63-e72. [DOI: 10.1111/iej.12859] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. J. Tomás-Catalá
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - M. Collado-González
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - D. García-Bernal
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - R. E. Oñate-Sánchez
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| | - L. Forner
- Department of Stomatology; University de Valencia; Valencia Spain
| | - C. Llena
- Department of Stomatology; University de Valencia; Valencia Spain
| | - A. Lozano
- Department of Stomatology; University de Valencia; Valencia Spain
| | - P. Castelo-Baz
- University of Santiago de Compostela; Santiago de Compostela Spain
| | - J. M. Moraleda
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
| | - F. J. Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital; IMIB-Arrixaca; University of Murcia; Murcia Spain
- Faculty of Medicine; School of Dentistry; University of Murcia; Murcia Spain
| |
Collapse
|
34
|
Ruan X, Chen T, Wang X, Li Y. Suxiao Jiuxin Pill protects cardiomyocytes against mitochondrial injury and alters gene expression during ischemic injury. Exp Ther Med 2017; 14:3523-3532. [PMID: 29042943 PMCID: PMC5639384 DOI: 10.3892/etm.2017.4964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Suxiao Jiuxin Pill (SX), a traditional Chinese medicine compound consisting primarily of tetramethylpyrazine and borneol, has been reported to protect against ischemic heart disease. However, the effects of SX on mitochondrial injury and gene expression in various signaling pathways are unclear. The aim of the present study was to investigate the effects of SX on mitochondrial injury and to screen the expression of genes potentially altered by SX using a cell culture model of ischemic injury. Simulated ischemia was established by culturing HL-1 cardiomyocytes in Dulbecco's modified Eagle medium without glucose or serum in a hypoxic chamber containing 95% N2 and 5% CO2 for 24 h. HL-1 cardiomyocytes were divided into 3 groups: Control, ischemic injury and ischemic injury + SX (100 µg/ml; n=3 wells/group). Mitochondrial membrane potential was detected by staining with JC-1 dye. The mRNA expression levels of adenylyl cyclase (Adcy) 1–9, adrenoceptor β1, Akt1, ATPase Na+/K+ transporting subunit β2, calcium voltage-gated channel auxiliary subunit α2δ (Cacna2d)2, Cacna2d3, calcium channel voltage-dependent γ subunit 8, cytochrome C oxidase subunit 6A2 (Cox6a2), fibroblast growth factor receptor (Fgfr) 4, Fgf8, Fgf12, Gnas complex locus, glycogen synthase kinase 3β (Gsk3b), mitogen-activated protein kinase (Mapk)11-14, Mapk kinase kinase kinase 1 (Map4k1), Mas1, nitric oxide synthase 3 (Nos3), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (Pik3ca), phospholipase A2 group 4A, rap guanine nucleotide exchange factor 4 and ryanodine receptor 2 were detected using reverse transcription-quantitative polymerase chain reaction. The protein expression levels of phosphoinositide 3-kinase (PI3K), MAS-1 and phosphorylated-endothelial NOS were also examined by immunofluorescence staining. The decrease in mitochondrial membrane potential in the cell culture model of ischemic injury (P<0.001) was significantly attenuated by SX treatment (P<0.001). Furthermore, increases in the mRNA expression levels of Adcy2 (P<0.05), 3 (P<0.01) and 8 (P<0.05) in the ischemic injury model were significantly attenuated by SX treatment (P<0.01), and SX treatment significantly decreased the mRNA expression levels of Adcy1 (P<0.01) and 6 (P<0.05) in ischemic cells. Decreases in the mRNA expression levels of Cox6a2 (P<0.001), Gsk3b (P<0.01) and Pik3ca (P<0.001) in the ischemic injury model were also significantly attenuated by SX treatment (P<0.05, P<0.01 and P<0.001, respectively). In addition, the decrease in the protein expression of PI3K (P<0.001) was significantly attenuated by SX treatment (P<0.001). The present findings indicate that SX may protect cardiomyocytes against mitochondrial injury and attenuate alterations in the gene expression of Adcy2, 3 and 8, Cox6a2, Gsk3b and Pik3ca during ischemic injury.
Collapse
Affiliation(s)
- Xiaofen Ruan
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tiejun Chen
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiaolong Wang
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiping Li
- Cardiovascular Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
35
|
Yu JJ, Zhu LX, Zhang J, Liu S, Lv FY, Cheng X, Liu GJ, Peng B. From the Cover: Activation of NF-κB-Autophagy Axis by 2-Hydroxyethyl Methacrylate Commits Dental Mesenchymal Cells to Apoptosis. Toxicol Sci 2017; 157:100-111. [DOI: 10.1093/toxsci/kfx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
36
|
Calcium Hydroxide–induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells. J Endod 2016; 42:1355-61. [DOI: 10.1016/j.joen.2016.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
|
37
|
Dental Pulp Stem Cell Recruitment Signals within Injured Dental Pulp Tissue. Dent J (Basel) 2016; 4:dj4020008. [PMID: 29563450 PMCID: PMC5851269 DOI: 10.3390/dj4020008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
The recruitment of dental pulp stem cells (DPSC) is a prerequisite for the regeneration of dentin damaged by severe caries and/or mechanical injury. Understanding the complex process of DPSC recruitment will benefit future in situ tissue engineering applications based on the stimulation of endogenous DPSC for dentin pulp regeneration. The current known mobilization signals and subsequent migration of DPSC towards the lesion site, which is influenced by the pulp inflammatory state and the application of pulp capping materials, are reviewed. The research outcome of migration studies may be affected by the applied methodology, which should thus be chosen with care. Both the advantages and disadvantages of commonly used assays for investigating DPSC migration are discussed. This review highlights the fact that DPSC recruitment is dependent not only on the soluble chemotactic signals, but also on their interaction with neighboring cells and the extracellular matrix, which can be modified under pathological conditions. These are discussed to explain how these modifications lead to the stimulation of DPSC recruitment.
Collapse
|
38
|
Chen I, Salhab I, Setzer FC, Kim S, Nah HD. A New Calcium Silicate–based Bioceramic Material Promotes Human Osteo- and Odontogenic Stem Cell Proliferation and Survival via the Extracellular Signal-regulated Kinase Signaling Pathway. J Endod 2016; 42:480-6. [DOI: 10.1016/j.joen.2015.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
|
39
|
Tziafas D, Kodonas K. Dentinogenic Specificity in the Preclinical Evaluation of Vital Pulp Treatment Strategies: A Critical Review. Dent J (Basel) 2015; 3:133-156. [PMID: 29567934 PMCID: PMC5851195 DOI: 10.3390/dj3040133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 11/17/2022] Open
Abstract
Reviews on the clinical performance of vital pulp treatment strategies and capping materials repeatedly showed an insufficient grade of evidence concerning their therapeutic validity. The biological mechanisms underlying the regenerative potential of pulp-dentin complex have attracted much attention during the last two decades, since new pulp treatment modalities have been designed and tested at the preclinical level. It has been recognized that evaluation should be based on the specific ability of therapeutic interventions to signal recruitment and differentiation of odontoblast-like cells forming a matrix in a predentin-like pattern, rather than uncontrolled hard tissue deposition in a scar-like form. The aim of the present article was to critically review data from histological experimental studies on pulp capping, published during the last 7 decades. A comprehensive literature search covering the period from 1949 to 2015 was done using the Medline/Pubmed database. Inclusion of a study was dependent on having sufficient data regarding the type of capping material used and the unit of observation (human permanent tooth in vivo or animal permanent dentition; primary teeth were excluded). The post-operatively deposited matrix was categorized into three types: unspecified, osteotypic, or dentin-like matrix. One hundred fifty-two studies were included in the final evaluation. Data from the present systematic review have shown that only 30.2% of the 152 experimental histological pulp capping studies described the heterogenic nature of the hard tissue bridge formation, including osteotypic and tubular mineralized tissue. Structural characteristics of the new matrix and the associated formative cells were not provided by the remaining 106 studies. Analysis showed that more careful preclinical evaluation with emphasis on the evidence regarding the dentinogenic specificity of pulp therapies is required. It seems that selection of appropriate vital pulp treatment strategies and pulp capping materials would be further facilitated in terms of their therapeutic validity if international consensus could be reached on a select number of mandatory criteria for tissue-specific dentinogenic events.
Collapse
Affiliation(s)
- Dimitrios Tziafas
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
- Department of Restorative Dentistry, Endodontic Program, European University College, Ibn Sina 27D Building, DHCC Dubai, UAE.
| | - Konstantinos Kodonas
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
40
|
Shen Y, Peng B, Yang Y, Ma J, Haapasalo M. What do different tests tell about the mechanical and biological properties of bioceramic materials? ACTA ACUST UNITED AC 2015. [DOI: 10.1111/etp.12076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Zhu L, Zhang J, Xiao L, Liu S, Yu J, Chen W, Zhang X, Peng B. Autophagy in resin monomer-initiated toxicity of dental mesenchymal cells: a novel therapeutic target of N-acetyl cysteine. J Mater Chem B 2015; 3:6820-6836. [PMID: 32262475 DOI: 10.1039/c5tb00894h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proposed schematic model of autophagy involvement in resin monomer-initiated toxicity of dental mesenchymal cells and as a novel therapeutic target of NAC.
Collapse
Affiliation(s)
- Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Lan Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Shan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| | - Weihai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan
- China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education
- School & Hospital of Stomatology
- Wuhan University
- Wuhan 430079
- China
| |
Collapse
|