1
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Xiang J, Cao J, Shen J, Wang X, Liang J, Li X, Zhang L, Tang B. Bioinformatics analysis reveals the potential common genes and immune characteristics between atrial fibrillation and periodontitis. J Periodontal Res 2024; 59:104-118. [PMID: 37971162 DOI: 10.1111/jre.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Atrial fibrillation (AF) and periodontitis, both classified under chronic inflammatory diseases, share common etiologies, including genetic factors and immune pathways. However, the exact mechanisms are still poorly understood. This study aimed to explore the potential common genes and immune characteristics between AF and periodontitis. METHODS Gene expression datasets for AF and periodontitis were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to identify common genes in the training set. Functional analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, were conducted to elucidate the underlying mechanisms. Hub genes were further screened based on expression levels, receiver operating characteristic (ROC) curves, and least absolute shrinkage and selection operator (LASSO) regression. Then, based on the expression levels and ROC values of the hub genes in the validation set, the target genes were identified. Finally, immune cell infiltration analysis was performed on the AF and periodontitis datasets in the training set using the "CIBERSORT" R package. The relationships between target genes, infiltrating immune cells, and inflammatory factors were also investigated. In addition, AF susceptibility, atrial fibrosis, inflammatory infiltration, and RGS1 protein expression in rat models of periodontitis were assessed through in vivo electrophysiology experiments, Masson's trichrome staining, hematoxylin-eosin staining, immunohistochemistry, and western blotting, respectively. RESULTS A total of 21 common genes were identified between AF and periodontitis among the differentially expressed genes. After evaluating gene expression levels, ROC curves, and LASSO analysis, four significant genes between AF and periodontitis were identified, namely regulator of G-protein signaling 1 (RGS1), annexin A6 (ANXA6), solute carrier family 27 member 6 (SLC27A6), and ficolin 1 (FCN1). Further validation confirmed that RGS1 was the optimal shared target gene for AF and periodontitis. Immune cell infiltration analysis revealed that neutrophils and T cells play an important role in the pathogenesis of both diseases. RGS1 showed a significant positive correlation with activated memory CD4 T cells and gamma-delta T cells and a negative correlation with CD8 T cells and regulatory T cells in both training sets. Moreover, RGS1 was positively correlated with classical pro-inflammatory cytokines IL1β and IL6. In periodontitis rat models, AF susceptibility, atrial fibrosis, and inflammatory infiltration were significantly increased, and RGS1 expression in the atrial tissue was upregulated. CONCLUSION A common gene between AF and periodontitis, RGS1 appears central in linking the two conditions. Immune and inflammatory responses may underlie the interaction between AF and periodontitis.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jiaru Cao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Xinshang Li
- Department of General and Emergency Dentistry, The First Affiliated Hospital (The Affiliated S Tomato Logical Hospital) of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, Urumqi, China
| |
Collapse
|
3
|
Patil S, Joda T, Soffe B, Awan KH, Fageeh HN, Tovani-Palone MR, Licari FW. Efficacy of artificial intelligence in the detection of periodontal bone loss and classification of periodontal diseases: A systematic review. J Am Dent Assoc 2023; 154:795-804.e1. [PMID: 37452813 DOI: 10.1016/j.adaj.2023.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Artificial intelligence (AI) can aid in the diagnosis and treatment planning of periodontal disease by means of reducing subjectivity. This systematic review aimed to evaluate the efficacy of AI models in detecting radiographic periodontal bone loss (PBL) and accuracy in classifying lesions. TYPES OF STUDIES REVIEWED The authors conducted an electronic search of PubMed, Scopus, and Web of Science for articles published through August 2022. Articles evaluating the efficacy of AI in determining PBL were included. The authors assessed the articles using the Quality Assessment for Studies of Diagnostic Accuracy tool. They used the Grading of Recommendations Assessment, Development and Evaluation criteria to evaluate the certainty of evidence. RESULTS Of the 13 articles identified through electronic search, 6 studies met the inclusion criteria, using a variety of AI algorithms and different modalities, including panoramic and intraoral radiographs. Sensitivity, specificity, accuracy, and pixel accuracy were the outcomes measured. Although some studies found no substantial difference between AI and dental clinicians' performance, others showed AI's superiority in detecting PBL. Evidence suggests that AI has the potential to aid in the detection of PBL and classification of periodontal diseases. However, further research is needed to standardize AI algorithms and validate their clinical usefulness. PRACTICAL IMPLICATIONS Although the use of AI may offer some benefits in the detection and classification of periodontal diseases, the low level of evidence and the inconsistent performance of AI algorithms suggest that caution should be exercised when considering the use of AI models in diagnosing PBL. This review was registered at PROSPERO (CRD42022364600).
Collapse
|
4
|
Gualtero DF, Lafaurie GI, Buitrago DM, Castillo Y, Vargas-Sanchez PK, Castillo DM. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med 2023; 10:1250263. [PMID: 37711554 PMCID: PMC10498784 DOI: 10.3389/fcvm.2023.1250263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The dysbiosis of the oral microbiome and vascular translocation of the periodontopathic microorganism to peripheral blood can cause local and systemic extra-oral inflammation. Microorganisms associated with the subgingival biofilm are readily translocated to the peripheral circulation, generating bacteremia and endotoxemia, increasing the inflammation in the vascular endothelium and resulting in endothelial dysfunction. This review aimed to demonstrate how the dysbiosis of the oral microbiome and the translocation of oral pathogen-induced inflammation to peripheral blood may be linked to cardiovascular diseases (CVDs). The dysbiosis of the oral microbiome can regulate blood pressure and activate endothelial dysfunction. Similarly, the passage of periodontal microorganisms into the peripheral circulation and their virulence factors have been associated with a vascular compartment with a great capacity to activate endothelial cells, monocytes, macrophages, and plaquettes and increase interleukin and chemokine secretion, as well as oxidative stress. This inflammatory process is related to atherosclerosis, hypertension, thrombosis, and stroke. Therefore, oral diseases could be involved in CVDs via inflammation. The preclinic and clinical evidence suggests that periodontal disease increases the proinflammatory markers associated with endothelial dysfunction. Likewise, the evidence from clinical studies of periodontal treatment in the long term evidenced the reduction of these markers and improved overall health in patients with CVDs.
Collapse
|
5
|
Debertin J, Teles F, Martin LM, Lu J, Koestler DC, Kelsey KT, Beck JD, Platz EA, Michaud DS. Antibodies to oral pathobionts and colon cancer risk in the CLUE I cohort study. Int J Cancer 2023; 153:302-311. [PMID: 36971101 PMCID: PMC10389748 DOI: 10.1002/ijc.34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis has been associated with an increased risk for gastrointestinal cancers. The objective of our study was to investigate the association of antibodies to oral bacteria and the risk of colon cancer in a cohort setting. Using the CLUE I cohort, a prospective cohort initiated in 1974 in Washington County, Maryland, we conducted a nested case-control study to examine the association of levels of IgG antibodies to 11 oral bacterial species (13 total strains) with risk of colon cancer diagnosed a median of 16 years later (range: 1-26 years). Antibody response was measured using checkerboard immunoblotting assays. We included 200 colon cancer cases and 200 controls matched on age, sex, cigarette smoking status, time of blood draw and pipe or cigar smoking status. Controls were selected using incidence density sampling. Conditional logistic regression models were used to assess the association between antibody levels and colon cancer risk. In the overall analysis, we observed significant inverse associations for 6 of the 13 antibodies measured (P-trends <.05) and one positive association for antibody levels to Aggregatibacter actinomycetemcomitans (ATCC 29523; P-trend = .04). While we cannot rule out a role for periodontal disease in colon cancer risk, findings from our study suggest that a strong adaptive immune response may be associated with a lower risk of colon cancer. More studies will need to examine whether the positive associations we observed with antibodies to A. actinomycetemcomitans reflect a true causal association for this bacterium.
Collapse
Affiliation(s)
- Julia Debertin
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Martin
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
- University of Kansas Cancer Center, Kansas City, KS
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - James D. Beck
- Division of Comprehensive Oral Health/Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
6
|
Tomova Z, Tomov D, Chonin A, Stoeva I, Vlahova A, Vasileva E. Oxidative Stress in the Oral Cavity before and After Prosthetic Treatment. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Metal ions emitted from dental alloys may induce oxidative stress leading to numerous pathological changes. Lipid peroxidation may cause disturbance of structure and function of cell membranes, apoptosis, autophagy, and formation of potentially mutagenic compounds. Products of interaction between reactive oxygen species and biomolecules may be used for evaluation of oxidative stress level.
AIM: The aim of this study was to evaluate the influence of the prosthetic dental treatment with metal ceramic restorations on the level of oxidative stress in the oral cavity.
MATERIALS AND METHODS: Metal ceramic crowns with copings fabricated by direct metal laser sintering were produced for 35 patients. CoCr dental alloy EOS CobaltChrome SP2 (EOS) was used. Non-stimulated and stimulated saliva samples were collected from the patients before and after the prosthetic treatment. For evaluation of oxidative stress concentration of 8-isoPGF2-alpha was measured by liquid chromatography tandem mass spectrometry. For statistical processing, non-parametric Wilcoxon signed-rank test and Mann–Whitney test were applied.
RESULTS: The concentration of isoprostane 8-isoPGF2-alpha in non-stimulated saliva was lower 2 h after fixing the crowns compared to the initial level and statistically significant difference was observed. On the 7th day the concentration of isoprostanes remained significantly lower than the initial one. No significant differences were found in isoprostane concentration in stimulated saliva before and after prosthetic treatment.
CONCLUSION: Prosthetic dental treatment leads to decrease in oral oxidative stress.
Collapse
|
7
|
Zhou M, Xu X, Li J, Zhou J, He Y, Chen Z, Liu S, Chen D, Li H, Li G, Huang J, Yang G, Zhang T, Song J. C-reactive protein perturbs alveolar bone homeostasis: an experimental study of periodontitis and diabetes in the rat. J Clin Periodontol 2022; 49:1052-1066. [PMID: 35634690 DOI: 10.1111/jcpe.13667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
AIMS To explore the role of C-reactive protein (CRP) in periodontitis and diabetes and its mechanism in alveolar bone homeostasis. MATERIALS AND METHODS In vivo, normal and Crp knockout rats were randomly divided into: control, diabetes, periodontitis, and diabetes and periodontitis (DP) groups respectively. The diabetes model was established using a high-fat diet combined with streptozotocin (STZ) injection. The periodontitis model was established by ligature combined with lipopolysaccharide injection. Alveolar bones were analyzed using microCT, histology, and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were treated with lipopolysaccharide and high glucose. CRP knockdown lentivirus or CRP overexpression adenovirus combined with a PI3K/AKT signaling inhibitor or agonist were used to explore the regulatory mechanism of CRP in osteogenesis and osteoclastogenesis of hPDLCs, as evidenced by ALP staining, WB and qPCR. RESULTS In periodontitis and diabetes, CRP knockout decreased the alveolar bone loss and the expression levels of osteoclastogenic markers, while increasing the expression levels of osteogenic markers. CRP constrained osteogenesis while promoting the osteoclastogenesis of hPDLCs via PI3K/AKT signaling under high glucose and pro-inflammatory conditions. CONCLUSIONS CRP inhibits osteogenesis and promotes osteoclastogenesis via PI3K/AKT signaling under diabetic and pro-inflammatory conditions, thus perturbing alveolar bone homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ziqi Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Duanjing Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Guangyue Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Palathingal P, Mahendra J, Annamalai PT, Varma SS, Mahendra L, Thomas L, Baby D, Jose A, Srinivasan S, R A. A Cross-Sectional Study of Serum Glutathione Peroxidase: An Antioxidative Marker in Chronic Periodontitis and Chronic Kidney Disease. Cureus 2022; 14:e22016. [PMID: 35340502 PMCID: PMC8913512 DOI: 10.7759/cureus.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background and aim: Oxidative stress as an individual risk for periodontitis and chronic kidney disease (CKD) has been elaborated through various mechanical pathways, yet its role in association with both diseases remains unexplored. Thus, the current study aims in evaluating serum glutathione peroxidase, an oxidative stress marker in CKD patients with periodontitis, and compare it with the healthy controls. Methodology: One hundred and twenty subjects were divided into four groups as control (C=30 subjects), periodontitis and non-CKD patients (CP=30 patients), non-periodontitis and CKD patients (CKD=30 patients), and periodontitis and CKD patients (CKD+CP=30 patients). Demographic variables, periodontal parameters, such as plaque index (PI), gingival index (GI), probing pocket depth (PPD), percentage proportion of sites with probing pocket depth more than 5 mm, clinical attachment loss (CAL), percentage proportion of sites with clinical attachment loss more than 3 mm and serum stress marker, and glutathione peroxidase were compared between the groups and the results were statistically analyzed. Results: The demographic variables did not differ significantly between the groups, except for age. The means PI, GI, PPD, percentage proportion of sites with probing pocket depth more than 5 mm, CAL, percentage proportion of sites with clinical attachment loss were higher in CKD+CP. The glutathione peroxidase was significantly higher in CP group (p=0.001) and significantly correlated with periodontal parameters. Conclusion: The oxidative stress marker glutathione peroxidase was higher in CP, followed by the CKD groups. This could pave a strong link of oxidative stress as a risk factor for chronic periodontitis, as well as chronic kidney disease.
Collapse
|
9
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
10
|
Vo TTT, Wu CZ, Lee IT. Potential effects of noxious chemical-containing fine particulate matter on oral health through reactive oxygen species-mediated oxidative stress: Promising clues. Biochem Pharmacol 2020; 182:114286. [PMID: 33069666 DOI: 10.1016/j.bcp.2020.114286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, air pollution which is dominated by fine particulate matter with aerodynamic diameter less than or equal to 2.5 µm resulting from rapid industrialization and urbanization combined with population explosion has become more and more severe problem to mankind and the whole planet because of its diversity of deleterious effects. The latest data estimated that exposure to fine particulate matter, or PM2.5, contributes to approximately 4 million deaths worldwide due to cardiopulmonary conditions such as heart disease and stroke, respiratory infections, chronic lung disease and lung cancer. During recent years, there has been growing concern about the adverse effects of this global threat on oral health which is one of key components of general health and quality of life. Although a few studies have reported such possible association, the findings are still far from conclusion. Moreover, the underlying mechanisms remain unclear. To our knowledge, the analysis of literature regarding this scope has yet been published. Thus, current work systematically assesses existing evidences on the potential association between exposure to PM2.5 and the development of various oral diseases as well as figures out the plausible paradigm of PM2.5-induced damages in the oral cavity through its toxic chemical constituents along with its ability to induce oxidative stress via reactive oxygen species production. This might partially provide the clues for new research ideas and progression in the field of oral health.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Zong Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol 2000 2020; 83:90-106. [PMID: 32385879 DOI: 10.1111/prd.12304] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is central to the pathology of cardiovascular diseases, a group of diseases in which arteries become occluded with atheromas that may rupture, leading to different cardiovascular events, such as myocardial infarction or ischemic stroke. There is a large body of epidemiologic and animal model evidence associating periodontitis with atherosclerotic disease, and many potential mechanisms linking these diseases have been elucidated. This chapter will update knowledge on these mechanisms, which generally fall into 2 categories: microbial invasion and infection of atheromas; and inflammatory and immunologic. With respect to the invasion and infection of atheromas, it is well established that organisms from the subgingival biofilm can enter the circulation and lodge in most distant tissues. Bacteremias resulting from oral interventions, and even oral hygiene activities, are well documented. More recently, indirect routes of entry of oral organisms (via phagocytes or dendritic cells) have been described for many oral organisms, into many tissues. Such organisms include the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Tannerella forsythia, and Fusobacterium nucleatum. Intracellular survival of these organisms with dissemination to distant sites (The Trojan Horse approach) has been described. Their relative contribution to atheroma formation and progression has been studied mainly in experimental research, with results demonstrating that these organisms can invade endothelial cells and phagocytic cells within the atheroma, leading to pathogenic changes and progression of the atheroma lesion. The second category of mechanisms potentially linking periodontitis to atherosclerosis includes the dumping of inflammatory mediators originating from periodontal lesions into the systemic circulation. These inflammatory mediators, such as C-reactive protein, matrix metalloproteinases, fibrinogen, and other hemostatic factors, would further accelerate atheroma formation and progression, mainly through oxidative stress and inflammatory dysfunction. Moreover, direct effects on lipid oxidation have also been described. In summary, the evidence supports the concept that periodontitis enhances the levels of systemic mediators of inflammation that are risk factors for atherosclerotic diseases.
Collapse
Affiliation(s)
- Harvey A Schenkein
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, NewYork, New York, USA
| | - Robert Genco
- Departments of Oral Biology, and Microbiology and Immunology, Center for Microbiome Research, University at Buffalo, Buffalo, New York, USA
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
12
|
Chopra A, Sivaraman K. An update on possible pathogenic mechanisms of periodontal pathogens on renal dysfunction. Crit Rev Microbiol 2019; 45:514-538. [PMID: 30729832 DOI: 10.1080/1040841x.2018.1553847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is a potential source of permanent systemic inflammation that initiates renal dysfunction and contributes to the development of chronic kidney diseases (CKDs). Although numerous studies have confirmed the bidirectional role of periodontal infection and renal inflammation, no literature has yet highlighted the sophisticated pathogenic mechanisms by which periodontal pathogens, particularly Porphynomonas Gingivalis, induce renal dysfunction and contributed in the development of CKDs. The present review aims to critically analyze and highlight the novel pathogenesis of periodontitis induced CKDs.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik Sivaraman
- Department of Prosthodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
13
|
Tóthová L, Celec P. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis. Front Physiol 2017; 8:1055. [PMID: 29311982 PMCID: PMC5735291 DOI: 10.3389/fphys.2017.01055] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.
Collapse
Affiliation(s)
- L'ubomíra Tóthová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.,Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia.,Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
14
|
Aoyama N, Suzuki JI, Kumagai H, Ikeda Y, Akazawa H, Komuro I, Minabe M, Izumi Y, Isobe M. Specific periodontopathic bacterial infection affects hypertension in male cardiovascular disease patients. Heart Vessels 2017; 33:198-204. [DOI: 10.1007/s00380-017-1042-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
|
15
|
França LFC, Vasconcelos ACCG, da Silva FRP, Alves EHP, Carvalho JS, Lenardo DD, de Souza LKM, Barbosa ALR, Medeiros JVR, de Oliveira JS, Vasconcelos DFP. Periodontitis changes renal structures by oxidative stress and lipid peroxidation. J Clin Periodontol 2017; 44:568-576. [DOI: 10.1111/jcpe.12729] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Luiz Felipe C. França
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| | - Any Carolina C. G. Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
- Medicine School; Education Institute of Parnaiba Valley (IESVAP); Parnaiba PI Brazil
| | - Felipe R. P. da Silva
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| | - Even H. P. Alves
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| | - Joaquina S. Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| | - David D. Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| | - Luan K. M. de Souza
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piauí; Parnaíba PI Brazil
| | - André L. R. Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piauí; Parnaíba PI Brazil
| | - Jand-Venes R. Medeiros
- Laboratory of Experimental Physiopharmacology (LAFFEX); Federal University of Piauí; Parnaíba PI Brazil
| | - Jefferson S. de Oliveira
- Laboratory of Biology and Biochemistry Plants (BIOqPLANT); Federal University of Piauí; Parnaíba PI Brazil
| | - Daniel F. P. Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHIS); Federal University of Piauí; Parnaíba PI Brazil
| |
Collapse
|
16
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|