1
|
Qi J, Matsumoto Y, Xie C, Rashed F, Ono T, Aoki K. Prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. Sci Rep 2024; 14:15749. [PMID: 38977767 PMCID: PMC11231170 DOI: 10.1038/s41598-024-66617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Although bone dehiscence may occur during orthodontic tooth movement into the narrow alveolar ridge, a non-invasive prevention method is yet to be fully established. We show for the first time prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. In this study, we established a bone dehiscence mouse model by applying force application and used the granular type of scaffold materials encapsulated with bone morphogenetic protein (BMP)-2 and OP3-4, the receptor activator of NF-κB ligand (RANKL)-binding peptide, for the prophylactic injection to the alveolar bone. In vivo micro-computed tomography revealed bone dehiscence with decreased buccal alveolar bone thickness and height after force application, whereas no bone dehiscence was observed with the prophylactic injection after force application, and alveolar bone thickness and height were kept at similar levels as those in the control group. Bone histomorphometry analyses revealed that both bone formation and resorption parameters were significantly higher in the injection with force application group than in the force application without the prophylactic injection group. These findings suggest that the prophylactic local delivery of bone anabolic reagents can prevent bone dehiscence with increased bone remodelling activity.
Collapse
Affiliation(s)
- Jia Qi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Cangyou Xie
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fatma Rashed
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral Biology, Faculty of Dentistry, Damanhour University, Damanhour, 22511, Egypt
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Zou X, Xie B, Peng X, Lu M, Xu D, Yuan H, Zhang Y, Wang D, Zhao M, Liu R, Wen X. p75NTR antibody-conjugated microspheres: an approach to guided tissue regeneration by selective recruitment of endogenous periodontal ligament cells. Front Bioeng Biotechnol 2024; 12:1338029. [PMID: 38357709 PMCID: PMC10864659 DOI: 10.3389/fbioe.2024.1338029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Repairing defects in alveolar bone is essential for regenerating periodontal tissue, but it is a formidable challenge. One promising therapeutic approach involves using a strategy that specifically recruits periodontal ligament cells (PDLCs) with high regenerative potential to achieve in situ regeneration of alveolar bone. In this study, we have created a new type of microsphere conjugated with an antibody to target p75 neurotrophin receptor (p75NTR), which is made of nano-hydroxyapatite (nHA) and chitosan (CS). The goal of this design is to attract p75NTR+hPDLCs selectively and promote osteogenesis. In vitro experiments demonstrated that the antibody-conjugated microspheres attracted significantly more PDLCs compared to non-conjugated microspheres. Incorporating nHA not only enhances cell adhesion and proliferation on the surface of the microsphere but also augments its osteoinductive properties. Microspheres effectively recruited p75NTR+ cells at bone defect sites in SD rats, as observed through immunofluorescent staining of p75NTR antibodies. This p75NTR antibody-conjugated nHA/CS microsphere presents a promising approach for selectively recruiting cells and repairing bone defects.
Collapse
Affiliation(s)
- Xuqiang Zou
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Bo Xie
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xuelian Peng
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Xu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hongyan Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Di Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiujie Wen
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wang H, Luo Y, Wang H, Li F, Yu F, Ye L. Mechanistic advances in osteoporosis and anti-osteoporosis therapies. MedComm (Beijing) 2023; 4:e244. [PMID: 37188325 PMCID: PMC10175743 DOI: 10.1002/mco2.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoporosis is a type of bone loss disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. With the intensification of global aging, this disease is now regarded as one of the major public health problems that often leads to unbearable pain, risk of bone fractures, and even death, causing an enormous burden at both the human and socioeconomic layers. Classic anti-osteoporosis pharmacological options include anti-resorptive and anabolic agents, whose ability to improve bone mineral density and resist bone fracture is being gradually confirmed. However, long-term or high-frequency use of these drugs may bring some side effects and adverse reactions. Therefore, an increasing number of studies are devoted to finding new pathogenesis or potential therapeutic targets of osteoporosis, and it is of great importance to comprehensively recognize osteoporosis and develop viable and efficient therapeutic approaches. In this study, we systematically reviewed literatures and clinical evidences to both mechanistically and clinically demonstrate the state-of-art advances in osteoporosis. This work will endow readers with the mechanistical advances and clinical knowledge of osteoporosis and furthermore present the most updated anti-osteoporosis therapies.
Collapse
Affiliation(s)
- Haiwei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuchuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haisheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Tavasolian F, Inman RD. Biology and therapeutic potential of mesenchymal stem cell extracellular vesicles in axial spondyloarthritis. Commun Biol 2023; 6:413. [PMID: 37059822 PMCID: PMC10104809 DOI: 10.1038/s42003-023-04743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 04/16/2023] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic, inflammatory, autoimmune disease that predominantly affects the joints of the spine, causes chronic pain, and, in advanced stages, may result in spinal fusion. Recent developments in understanding the immunomodulatory and tissue-differentiating properties of mesenchymal stem cell (MSC) therapy have raised the possibility of applying such treatment to AxSpA. The therapeutic effectiveness of MSCs has been shown in numerous studies spanning a range of diseases. Several studies have been conducted examining acellular therapy based on MSC secretome. Extracellular vesicles (EVs) generated by MSCs have been proven to reproduce the impact of MSCs on target cells. These EVs are associated with immunological regulation, tissue remodeling, and cellular homeostasis. EVs' biological effects rely on their cargo, with microRNAs (miRNAs) integrated into EVs playing a particularly important role in gene expression regulation. In this article, we will discuss the impact of MSCs and EVs generated by MSCs on target cells and how these may be used as unique treatment strategies for AxSpA.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Bone Formation on Murine Cranial Bone by Injectable Cross-Linked Hyaluronic Acid Containing Nano-Hydroxyapatite and Bone Morphogenetic Protein. Polymers (Basel) 2022; 14:polym14245368. [PMID: 36559734 PMCID: PMC9783206 DOI: 10.3390/polym14245368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
New injection-type bone-forming materials are desired in dental implantology. In this study, we added nano-hydroxyapatite (nHAp) and bone morphogenetic protein (BMP) to cross-linkable thiol-modified hyaluronic acid (tHyA) and evaluated its usefulness as an osteoinductive injectable material using an animal model. The sol (ux-tHyA) was changed to a gel (x-tHyA) by mixing with a cross-linker. We prepared two sol−gel (SG) material series, that is, x-tHyA + BMP with and without nHAp (SG I) and x-tHyA + nHAp with and without BMP (SG II). SG I materials in the sol stage were injected into the cranial subcutaneous connective tissues of mice, followed by in vivo gelation, while SG II materials gelled in Teflon rings were surgically placed directly on the cranial bones of rats. The animals were sacrificed 8 weeks after implantation, followed by X-ray analysis and histological examination. The results revealed that bone formation occurred at a high rate (>70%), mainly as ectopic bone in the SG I tests in mouse cranial connective tissues, and largely as bone augmentation in rat cranial bones in the SG II experiments when x-tHyA contained both nHAp and BMP. The prepared x-tHyA + nHAp + BMP SG material can be used as an injection-type osteoinductive bone-forming material. Sub-periosteum injection was expected.
Collapse
|
6
|
Zhou X, Liu C, Han Y, Li C, Liu S, Li X, Zhao G, Jiang Y. An antibacterial chitosan-based hydrogel as a potential degradable bio-scaffold for alveolar ridge preservation. RSC Adv 2022; 12:32219-32229. [PMID: 36425700 PMCID: PMC9650614 DOI: 10.1039/d2ra05151f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Post-extraction, preventing the absorption of alveolar ridge to retain the supporting construction for implanted teeth is still a challenge. Herein, we developed modified chitosan (CS)-based hydrogel using N-hydroxysuccinimide-terminated 4-arm poly (ethylene glycol) (4-arm-PEG-NHS) as the crosslinking agent, after introducing it to the polyhexamethyleneguanidine hydrochloride (PHMB) solution, CS/PEG/PHMB hydrogel with the enhanced antibacterial properties was obtained. The CS/PEG hydrogel and CS/PEG/PHMB hydrogel prepared here showed excellent mechanical strength and their compressive strength could reach 440 kPa and 450 kPa, respectively. The composite hydrogel was designed to be directional porous, low cytotoxic, pH-sensitive, and degradable. The weight of the hydrogel was reduced by ∼30% after 28 days of incubation, and it swelled significantly in the acidic condition while it did not swell in the neutral and weakly alkaline environments, indicating an excellent biodegradability in the inflammation site. In vitro antibacterial experiments showed that the bacteriostatic rate of the CS/PEG/PHMB hydrogel against S. aureus was above 90%, which could effectively inhibit the spread of the bacteria and inflammation in the alveolar ridge. Additionally, the hybrid hydrogels demonstrated good biocompatibility with the NIH 3T3 fibroblast cells. Overall, the CS/PEG/PHMB hydrogel is a promising biological scaffold for maintaining the alveolar ridge and subsequently improving the success rate of the dental implant.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Congrui Liu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 P. R. China
| | - Yijun Han
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Sida Liu
- Institute for Advanced Technology, Shandong University Jinan 250061 P. R. China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 P. R. China
| | - Guoqing Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University Jinan 250061 P. R. China
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 P. R. China
| |
Collapse
|
7
|
Klein Y, Levin-Talmor O, Berkstein JG, Wald S, Meirow Y, Maimon A, Leibovich A, Barenholz Y, Polak D, Chaushu S. Resolvin D1 shows osseous-protection via RANK reduction on monocytes during orthodontic tooth movement. Front Immunol 2022; 13:928132. [PMID: 36275768 PMCID: PMC9585452 DOI: 10.3389/fimmu.2022.928132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to investigate the role of RvD1 in acute and prolonged sterile inflammation and bone remodeling. A mouse model of sterile inflammation that involves bone resorption was used to examine endogenous RvD1 kinetics during inflammation. Application of exogenous RvD1 significantly inhibited bone remodeling via osteoclast reduction, alongside an anti-inflammatory secretome shift, increased macrophages recruitment and reduction of T-cytotoxic cells. In vitro and in vivo, RvD1 led to significant reduction in RANK expression which reduce osteoclastogenesis in a dose-dependent manner. Taken together, the data shows a dual role for RvD1, as a potent immunoresolvent agent alongside an osteoresolvent role, showing a potential therapeutic agent in bone resorption associated inflammatory conditions.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offir Levin-Talmor
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Garber Berkstein
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon Wald
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Maimon
- The Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Leibovich
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Israel–Canada Medical Research Institute, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. Int J Mol Sci 2022; 23:ijms23147768. [PMID: 35887115 PMCID: PMC9316061 DOI: 10.3390/ijms23147768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
The receptor activator of NF-κB ligand (RANKL)-binding peptide, OP3-4, is known to stimulate bone morphogenetic protein (BMP)-2-induced bone formation, but peptides tend to aggregate and lose their bioactivity. Cholesterol-bearing pullulan (CHP) nanogel scaffold has been shown to prevent aggregation of peptides and to allow their sustained release and activity; however, the appropriate design of CHP nanogels to conduct local bone formation needs to be developed. In the present study, we investigated the osteoconductive capacity of a newly synthesized CHP nanogel, CHPA using OP3-4 and BMP-2. We also clarified the difference between perforated and nonperforated CHPA impregnated with the two signaling molecules. Thirty-six, five-week-old male BALB/c mice were used for the calvarial defect model. The mice were euthanized at 6 weeks postoperatively. A higher cortical bone mineral content and bone formation rate were observed in the perforated scaffold in comparison to the nonperforated scaffold, especially in the OP3-4/BMP-2 combination group. The degradation rate of scaffold material in the perforated OP3-4/BMP-2 combination group was lower than that in the nonperforated group. These data suggest that perforated CHPA nanogel could lead to local bone formation induced by OP3-4 and BMP–2 and clarified the appropriate degradation rate for inducing local bone formation when CHPA nanogels are designed to be perforated.
Collapse
|
9
|
Huang M, Huang Y, LIU H, Tang Z, Chen Y, Huang Z, Xu S, Du J, Jia B. Hydrogels for Treatment of Oral and Maxillofacial Diseases: Current Research, Challenge, and Future Directions. Biomater Sci 2022; 10:6413-6446. [DOI: 10.1039/d2bm01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oral and maxillofacial diseases such as infection and trauma often involve various organs and tissues, resulting in structural defects, dysfunctions and/or adverse effects on facial appearance. Hydrogels have been applied...
Collapse
|
10
|
The polypeptide OP3-4 induced osteogenic differentiation of bone marrow mesenchymal stem cells via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway and promoted mandibular defect bone regeneration. Arch Oral Biol 2021; 130:105243. [PMID: 34416564 DOI: 10.1016/j.archoralbio.2021.105243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The aims of this study were to explore: (ⅰ) the effect of the polypeptide OP 3-4 on bone regeneration in vivo; (ⅱ) the effect of OP 3-4 on osteogenic differentiation of bone marrow mesenchymal stem cells in vitro; and (ⅲ) the potential mechanism of OP 3-4 in promoting osteogenic differentiation of bone marrow mesenchymal stem cells. DESIGNS 30 Wistar rats (8-week, male) were randomly divided into Control group (n = 5), Hydrogel group (n = 5), and Hydrogel loaded OP 3-4 group (n = 5). Hematoxylin and eosin staining was used to evaluate the level of bone regeneration in mandibular defect. Immunohistochemistry staining was used to evaluate the expression of alkaline phosphatase, runt-related transcription factor 2, and type Ⅰ collagen. Flow cytometry was applied to identify the phenotype of bone marrow mesenchymal stem cells. Furthermore, LY294002, the inhibitor of protein kinase B, was applied to verify the role of OP 3-4 in promoting osteogenic differentiation via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway through western blot. RESULTS OP 3-4 promoted bone regeneration of rat mandibular defect. The expression of osteogenic differentiation related markers were increased after adding OP 3-4 to bone marrow mesenchymal stem cells. OP 3-4 promoted osteogenic differentiation of bone marrow mesenchymal stem cells via protein kinase B/glycogen synthase kinase 3β/β-catenin pathway. CONCLUSION OP 3-4 could promote bone regeneration of mandibular defect and improve osteogenic differentiation through protein kinase B/glycogen synthase kinase 3β/β-catenin pathway.
Collapse
|
11
|
Keo P, Matsumoto Y, Shimizu Y, Nagahiro S, Ikeda M, Aoki K, Ono T. A pilot study to investigate the histomorphometric changes of murine maxillary bone around the site of mini-screw insertion in regenerated bone induced by anabolic reagents. Eur J Orthod 2021; 43:86-93. [PMID: 32202621 DOI: 10.1093/ejo/cjaa018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the histomorphometric changes around the site of mini-screw insertion in the regenerated bone which was induced by an anabolic-injection method using both anabolic peptide and bone morphogenetic protein 2 (BMP-2). METHODS Twenty-seven eight-week-old C57BL/6J male mice were used. Some mice received submucosal co-injections of anabolic peptide and BMP-2 just in front of the maxillary first molar. Screw insertion was then performed 4 weeks after injection. All mice underwent a weekly in vivo micro-focal X-ray computed tomography (µCT) analysis before being sacrificed at week 8. The bone formation activity was evaluated using fluorescent labelling in the undecalcified sections. The analyses, including screw insertion, were performed in the frontal plane, in front of the site of screw insertion. RESULTS Reconstructed µCT images revealed that the co-injection of anabolic reagents could lead to a gradual increase in the bone mineral density (BMD) of the injection-induced thickened bone by week 8. Both radiological and histomorphometric analyses indicated that screw insertion did not have any deleterious effects on either the BMD or the bone formation activity of the induced bone. Furthermore, the injection of anabolic reagents also led to an increase in the BMD of the underlying maxillary bone at the injection site. CONCLUSION Our histomorphometric analyses suggest that performing such anabolic injection to thicken bone could stimulate bone formation in the basal bone as well as in the induced bone. Similar augmentation of bone formation could be obtained even after subsequent screw insertion at the site of the induced bone.
Collapse
Affiliation(s)
- Preksa Keo
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiro Matsumoto
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Shimizu
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Nagahiro
- Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Rashed F, Kamijyo S, Shimizu Y, Hirohashi Y, Khan M, Sugamori Y, Murali R, Aoki K. The Effects of Receptor Activator of NF-κB Ligand-Binding Peptides on Bone Resorption and Bone Formation. Front Cell Dev Biol 2021; 9:648084. [PMID: 34295889 PMCID: PMC8290838 DOI: 10.3389/fcell.2021.648084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Receptor activator of NF-κB ligand (RANKL)-binding peptides inhibit bone resorption and were recently shown to activate bone formation. The stimulatory mechanism underlying bone formation associated with these peptides was explained as RANKL-reverse signaling, wherein RANKL molecules on osteoblasts work as receptors to stimulate osteoblast differentiation. However, why RANKL-binding peptides stimulate osteoblast differentiation while osteoprotegerin (OPG), which is well known to bind to RANKL, cannot activate osteoblast differentiation has remained unclear. In this mini-review, we introduce three main issues: (1) The inhibitory effects of two RANKL-binding peptides (W9 and OP3-4) on bone resorption; (2) The stimulatory effects of the RANKL-binding peptides on osteoblast differentiation; and (3) The accumulation and membrane clustering of RANKL molecules at the cell surface of osteoblasts as a potential molecular switch stimulating osteoblast differentiation by RANKL-binding peptides.
Collapse
Affiliation(s)
- Fatma Rashed
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oral Biology, Faculty of Dentistry, Damanhour University, El Behera, Egypt
| | - Shingo Kamijyo
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuri Shimizu
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuna Hirohashi
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masud Khan
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasutaka Sugamori
- Department of Dentistry and Oral Surgery, Saitama Medical University, Saitama, Japan
| | - Ramachandran Murali
- Biomedical Sciences, Research Division of Immunology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kazuhiro Aoki
- Graduate School of Medical and Dental Sciences, Institute X, Department of Basic Oral Health Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Pan Y, Zhao Y, Kuang R, Liu H, Sun D, Mao T, Jiang K, Yang X, Watanabe N, Mayo KH, Lin Q, Li J. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111158. [DOI: 10.1016/j.msec.2020.111158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
|
14
|
Klein Y, Fleissig O, Polak D, Barenholz Y, Mandelboim O, Chaushu S. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci Rep 2020; 10:8172. [PMID: 32424121 PMCID: PMC7235241 DOI: 10.1038/s41598-020-65089-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 02/04/2023] Open
Abstract
Orthodontic tooth movement (OTM) is a “sterile” inflammatory process. The present study aimed to reveal the underlying biological mechanisms, by studying the force associated-gene expression changes, in a time-dependent manner. Ni-Ti springs were set to move the upper 1st-molar in C57BL/6 mice. OTM was measured by μCT. Total-RNA was extracted from tissue blocks at 1,3,7 and 14-days post force application, and from two control groups: naïve and inactivated spring. Gene-expression profiles were generated by next-generation-RNA-sequencing. Gene Set Enrichment Analysis, K-means algorithm and Ingenuity pathway analysis were used for data interpretation. Genes of interest were validated with qRT-PCR. A total of 3075 differentially expressed genes (DEGs) were identified, with the greatest number at day 3. Two distinct clusters patterns were recognized: those in which DEGs peaked in the first days and declined thereafter (tissue degradation, phagocytosis, leukocyte extravasation, innate and adaptive immune system responses), and those in which DEGs were initially down-regulated and increased at day 14 (cell proliferation and migration, cytoskeletal rearrangement, tissue homeostasis, angiogenesis). The uncovering of novel innate and adaptive immune processes in OTM led us to propose a new term “Immunorthodontics”. This genomic data can serve as a platform for OTM modulation future approaches.
Collapse
Affiliation(s)
- Yehuda Klein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Omer Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel. .,Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.
| | - David Polak
- Department of Periodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
15
|
Sone E, Noshiro D, Ikebuchi Y, Nakagawa M, Khan M, Tamura Y, Ikeda M, Oki M, Murali R, Fujimori T, Yoda T, Honma M, Suzuki H, Ando T, Aoki K. The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochem Biophys Res Commun 2018; 509:435-440. [PMID: 30594398 DOI: 10.1016/j.bbrc.2018.12.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
We recently found that the membrane-bound receptor activator of NF-κB ligand (RANKL) on osteoblasts works as a receptor to stimulate osteoblast differentiation, however, the reason why the RANKL-binding molecules stimulate osteoblast differentiation has not been well clarified. Since the induction of cell-surface receptor clustering is known to lead to cell activation, we hypothesized that the induction of membrane-RANKL clustering on osteoblasts might stimulate osteoblast differentiation. Immunoblotting showed that the amount of RANKL on the membrane was increased by the RANKL-binding peptide OP3-4, but not by osteoprotegerin (OPG), the other RANKL-binding molecule, in Gfp-Rankl-transfected ST2 cells. Observation under a high-speed atomic force microscope (HS-AFM) revealed that RANKL molecules have the ability to form clusters. The induction of membrane-RANKL-OPG-Fc complex clustering by the addition of IgM in Gfp-Rankl-transfected ST2 cells could enhance the expression of early markers of osteoblast differentiation to the same extent as OP3-4, while OPG-Fc alone could not. These results suggest that the clustering-formation of membrane-RANKL on osteoblasts could stimulate early osteoblast differentiation.
Collapse
Affiliation(s)
- Eri Sone
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuki Ikebuchi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mami Nakagawa
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukihiko Tamura
- Department of Bio-Matrix (Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masaomi Ikeda
- Department of Oral Prosthetic Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tetsuya Yoda
- Department of Oral Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
16
|
RANKL-RANK signaling regulates osteoblast differentiation and bone formation. Bone Res 2018; 6:35. [PMID: 30510840 PMCID: PMC6255775 DOI: 10.1038/s41413-018-0040-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
|