1
|
de Carvalho LD, Peres BU, Shen Y, Haapasalo M, Maezono H, Manso AP, Ko F, Jackson J, Carvalho RM. Chlorhexidine-Containing Electrospun Polymeric Nanofibers for Dental Applications: An In Vitro Study. Antibiotics (Basel) 2023; 12:1414. [PMID: 37760711 PMCID: PMC10526102 DOI: 10.3390/antibiotics12091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chlorhexidine is the most commonly used anti-infective drug in dentistry. To treat infected void areas, a drug-loaded material that swells to fill the void and releases the drug slowly is needed. This study investigated the encapsulation and release of chlorhexidine from cellulose acetate nanofibers for use as an antibacterial treatment for dental bacterial infections by oral bacteria Streptococcus mutans and Enterococcus faecalis. This study used a commercial electrospinning machine to finely control the manufacture of thin, flexible, chlorhexidine-loaded cellulose acetate nanofiber mats with very-small-diameter fibers (measured using SEM). Water absorption was measured gravimetrically, drug release was analyzed by absorbance at 254 nm, and antibiotic effects were measured by halo analysis in agar. Slow electrospinning at lower voltage (14 kV), short target distance (14 cm), slow traverse and rotation, and syringe injection speeds with controlled humidity and temperature allowed for the manufacture of strong, thin films with evenly cross-meshed, uniform low-diameter nanofibers (640 nm) that were flexible and absorbed over 600% in water. Chlorhexidine was encapsulated efficiently and released in a controlled manner. All formulations killed both bacteria and may be used to fill infected voids by swelling for intimate contact with surfaces and hold the drug in the swollen matrix for effective bacterial killing in dental settings.
Collapse
Affiliation(s)
- Luana Dutra de Carvalho
- Department of Oral Health Sciences, Division of Restorative Dentistry, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (L.D.d.C.); (A.P.M.)
| | - Bernardo Urbanetto Peres
- Department of Oral Biological and Medical Sciences, Division of Biomaterials, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (B.U.P.); (R.M.C.)
| | - Ya Shen
- Department of Oral Health Sciences, Division of Endodontics, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (Y.S.); (M.H.)
| | - Markus Haapasalo
- Department of Oral Health Sciences, Division of Endodontics, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (Y.S.); (M.H.)
| | - Hazuki Maezono
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka Dental University, Osaka 565-0871, Japan;
| | - Adriana P. Manso
- Department of Oral Health Sciences, Division of Restorative Dentistry, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (L.D.d.C.); (A.P.M.)
| | - Frank Ko
- Department of Materials Engineering, Faculty of Applied Sciences, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4, Canada;
| | - John Jackson
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ricardo M. Carvalho
- Department of Oral Biological and Medical Sciences, Division of Biomaterials, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; (B.U.P.); (R.M.C.)
| |
Collapse
|
2
|
Chen Z, Chu Z, Jiang Y, Xu L, Qian H, Wang Y, Wang W. Recent advances on nanomaterials for antibacterial treatment of oral diseases. Mater Today Bio 2023; 20:100635. [PMID: 37143614 PMCID: PMC10153485 DOI: 10.1016/j.mtbio.2023.100635] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
An imbalance of bacteria in oral environment can lead to a variety of oral diseases, such as periodontal disease, dental caries, and peri-implant inflammation. In the long term, in view of the increasing bacterial resistance, finding suitable alternatives to traditional antibacterial methods is an important research today. With the development of nanotechnology, antibacterial agents based on nanomaterials have attracted much attention in dental field due to their low cost, stable structures, excellent antibacterial properties and broad antibacterial spectrum. Multifunctional nanomaterials can break through the limitations of single therapy and have the functions of remineralization and osteogenesis on the basis of antibacterial, which has made significant progress in the long-term prevention and treatment of oral diseases. In this review, we have summarized the applications of metal and their oxides, organic and composite nanomaterials in oral field in recent five years. These nanomaterials can not only inactivate oral bacteria, but also achieve more efficient treatment and prevention of oral diseases by improving the properties of the materials themselves, enhancing the precision of targeted delivery of drugs and imparting richer functions. Finally, future challenges and untapped potential are elaborated to demonstrate the future prospects of antibacterial nanomaterials in oral field.
Collapse
Affiliation(s)
- Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui, 230032, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Zhaoyou Chu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Yechun Jiang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
- Corresponding author. School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China.
| | - Yuanyin Wang
- School of Stomatology, Anhui Medical University, Hefei, Anhui, 230032, China
- Corresponding author. School of Stomatology, Anhui Medical University, Hefei, Anhui, China.
| | - Wanni Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230012, China
- Corresponding author. School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Cuylear D, Elghazali NA, Kapila SD, Desai TA. Calcium Phosphate Delivery Systems for Regeneration and Biomineralization of Mineralized Tissues of the Craniofacial Complex. Mol Pharm 2023; 20:810-828. [PMID: 36652561 PMCID: PMC9906782 DOI: 10.1021/acs.molpharmaceut.2c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calcium phosphate (CaP)-based materials have been extensively used for mineralized tissues in the craniofacial complex. Owing to their excellent biocompatibility, biodegradability, and inherent osteoconductive nature, their use as delivery systems for drugs and bioactive factors has several advantages. Of the three mineralized tissues in the craniofacial complex (bone, dentin, and enamel), only bone and dentin have some regenerative properties that can diminish due to disease and severe injuries. Therefore, targeting these regenerative tissues with CaP delivery systems carrying relevant drugs, morphogenic factors, and ions is imperative to improve tissue health in the mineralized tissue engineering field. In this review, the use of CaP-based microparticles, nanoparticles, and polymer-induced liquid precursor (PILPs) amorphous CaP nanodroplets for delivery to craniofacial bone and dentin are discussed. The use of these various form factors to obtain either a high local concentration of cargo at the macroscale and/or to deliver cargos precisely to nanoscale structures is also described. Finally, perspectives on the field using these CaP materials and next steps for the future delivery to the craniofacial complex are presented.
Collapse
Affiliation(s)
- Darnell
L. Cuylear
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States
| | - Nafisa A. Elghazali
- Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States
| | - Sunil D. Kapila
- Section
of Orthodontics, School of Dentistry, University
of California, Los Angeles, California 90095-1668, United States
| | - Tejal A. Desai
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States,Department
of Bioengineering, University of California, Berkeley, California 94143-2520, United States,School
of
Engineering, Brown University, Providence, Rhode Island 02912, United States,
| |
Collapse
|
5
|
Shirur KS, Padya BS, Pandey A, Hegde MM, Narayan AI, Rao BSS, Bhat VG, Mutalik S. Development of Lipidic Nanoplatform for Intra-Oral Delivery of Chlorhexidine: Characterization, Biocompatibility, and Assessment of Depth of Penetration in Extracted Human Teeth. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3372. [PMID: 36234500 PMCID: PMC9565570 DOI: 10.3390/nano12193372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms are the major cause for the failure of root canal treatment, due to the penetration ability within the root anatomy. However, irrigation regimens have at times failed due to the biofilm mode of bacterial growth. Liposomes are vesicular structures of the phospholipids which might help in better penetration efficiency into dentinal tubules and in increasing the antibacterial efficacy. Methods: In the present work, chlorhexidine liposomes were formulated. Liposomal chlorhexidine was characterized by size, zeta potential, and cryo-electron microscope (Cryo-EM). Twenty-one single-rooted premolars were extracted and irrigated with liposomal chlorhexidine and 2% chlorhexidine solution to evaluate the depth of penetration. In vitro cytotoxicity study was performed for liposomal chlorhexidine on the L929 mouse fibroblast cell line. Results: The average particle size of liposomes ranged from 48 ± 4.52 nm to 223 ± 3.63 nm with a polydispersity index value of <0.4. Cryo-EM microscopic images showed spherical vesicular structures. Depth of penetration of liposomal chlorhexidine was higher in the coronal, middle, and apical thirds of roots compared with plain chlorhexidine in human extracted teeth when observed under the confocal laser scanning microscope. The pure drug exhibited a cytotoxic concentration at which 50% of the cells are dead after a drug exposure (IC50) value of 12.32 ± 3.65 µg/mL and 29.04 ± 2.14 µg/mL (on L929 and 3T3 cells, respectively) and liposomal chlorhexidine exhibited an IC50 value of 37.9 ± 1.05 µg/mL and 85.24 ± 3.22 µg/mL (on L929 and 3T3 cells, respectively). Discussion: Antimicrobial analysis showed a decrease in colony counts of bacteria when treated with liposomal chlorhexidine compared with 2% chlorhexidine solution. Nano-liposomal novel chlorhexidine was less cytotoxic when treated on mouse fibroblast L929 cells and more effective as an antimicrobial agent along with higher penetration ability.
Collapse
Affiliation(s)
- Krishnaraj Somyaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Aparna I. Narayan
- Department of Prosthodontics and Crown and Bridge, Manipal College of Dental Sciences Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Varadaraj G. Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
6
|
Banakar M, Moayedi S, Shamsoddin E, Vahedi Z, Banakar MH, Mousavi SM, Rokaya D, Bagheri Lankarani K. Chewing Gums as a Drug Delivery Approach for Oral Health. Int J Dent 2022; 2022:9430988. [PMID: 35769942 PMCID: PMC9236808 DOI: 10.1155/2022/9430988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Drug delivery approaches with the shortest therapeutic period and the lowest side effects have always been considered a sublime target in the medical sciences. Among many delivery methods, chewing gum could be perceived as a promising drug carrier that can carry several types of drugs for oral health. These drug carriers could represent optimal therapeutic time and lower side effects due to their sustained release capability and lower required thresholds for the drug compared with other delivery approaches. The convenient use in the oral cavity's local environment and the ability to locally carry multiple drugs are considered the main advantages of this delivery approach. Aim This review aimed to explore chewing gum as a promising drug carrier that can carry several types of drugs for oral health. Materials and Methods Articles were searched for on PubMed, ISI, SCOPUS, Google Patents, the Royal Society of Chemistry website, and electronic databases using MESH terms and the following keywords: ("Gum" OR "Chewing gum") and ("Drug delivery OR Drug delivery systems") in the English language. No time limit was applied, and all documents as of August 30th, 2020 were retrieved. Results Gum-drug interactions, mechanisms of release, and formulations of the drugs might all play a role in this versatile delivery method. Accordingly, chewing gum-based carriers may be presented as a plausible candidate for drug delivery in oral diseases. Conclusion Gum-driven drugs could be introduced as promising candidates for treating oral diseases due to their ability to deliver the proper local dosages of active ingredients, short contact time, biocompatibility, and biodegradable chemical structures.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Sedigheh Moayedi
- Department of Orthodontics, Mashhad University of Medical Sciences, School of Dentistry, Mashhad, Iran
| | - Erfan Shamsoddin
- Cochrane Iran Associate Centre, National Institute for Medical Research Development (NIMAD), Tehran, Iran
| | - Zahra Vahedi
- School of Dentistry, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Higino T, França R. Drug-delivery nanoparticles for bone-tissue and dental applications. Biomed Phys Eng Express 2022; 8. [PMID: 35439740 DOI: 10.1088/2057-1976/ac682c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
The use of nanoparticles as biomaterials with applications in the biomedical field is growing every day. These nanomaterials can be used as contrast imaging agents, combination therapy agents, and targeted delivery systems in medicine and dentistry. Usually, nanoparticles are found as synthetic or natural organic materials, such as hydroxyapatite, polymers, and lipids. Besides that, they are could also be inorganic, for instance, metallic or metal-oxide-based particles. These inorganic nanoparticles could additionally present magnetic properties, such as superparamagnetic iron oxide nanoparticles. The use of nanoparticles as drug delivery agents has many advantages, for they help diminish toxicity effects in the body since the drug dose reduces significantly, increases drugs biocompatibility, and helps target drugs to specific organs. As targeted-delivery agents, one of the applications uses nanoparticles as drug delivery particles for bone-tissue to treat cancer, osteoporosis, bone diseases, and dental treatments such as periodontitis. Their application as drug delivery agents requires a good comprehension of the nanoparticle properties and composition, alongside their synthesis and drug attachment characteristics. Properties such as size, shape, core-shell designs, and magnetic characteristics can influence their behavior inside the human body and modify magnetic properties in the case of magnetic nanoparticles. Based on that, many different studies have modified the synthesis methods for these nanoparticles and developed composite systems for therapeutics delivery, adapting, and improving magnetic properties, shell-core designs, and particle size and nanosystems characteristics. This review presents the most recent studies that have been presented with different nanoparticle types and structures for bone and dental drug delivery.
Collapse
Affiliation(s)
- Taisa Higino
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada
| | - Rodrigo França
- Biomedical Engineering Program, University of Manitoba, Winnipeg, Canada.,Dental Biomaterials Research Lab, Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Cai X, Wang X. Chlorhexidine-loaded poly (amido amine) dendrimer and a dental adhesive containing amorphous calcium phosphate nanofillers for enhancing bonding durability. Dent Mater 2022; 38:824-834. [PMID: 35450701 DOI: 10.1016/j.dental.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A novel method of combining chlorhexidine (CHX) loaded poly (amido amine) (PAMAM) dendrimers with a dental adhesive containing amorphous calcium phosphate (ACP) nanofillers are proposed for etch-and-rinse bonding system to enhance resin-dentin bonding durability. METHODS The CHX-loaded PAMAM and ACP nanofillers were synthesized and characterized. Their effects on the cytotoxicity were tested by MTT assay. Micro-tensile bond strength (μTBS) before and after thermomechanical challenges were used to evaluate the bonding durability. Anti-matrix metalloproteinase (MMPs) property was examined using in-situ zymography. A double-fluorescence technique was used to examine interfacial permeability after bonding. Dentin remineralization in Ca/P lacking solution was observed under scanning electron microscopy. RESULTS Compared with a 0.2 wt% CHX solution, the PAMAM loaded CHX had less cytotoxicity, while the in situ zymography showed it could still inhibit MMPs activity within the hybrid layer after released from PAMAM. The application of the novel method maintained the μTBS better than the control group after thermomechanical challenges, and it did not negatively affect water permeability of the bonding interfaces. CHX-loaded PAMAM regulated the calcium (Ca) and phosphate (P) ions provided by the ACP-containing adhesives to remineralize the demineralized dentin surfaces without initial Ca/P in the environment. SIGNIFICANCE The novel method can reduce the cytotoxicity of CHX, inhibit MMPs activities, maintain μTBS, and induce dentin remineralization, which are crucial factors for enhancing bonding durability.
Collapse
Affiliation(s)
- Xue Cai
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
9
|
Zhang Y, Jiang R, Lei L, Yang Y, Hu T. Drug delivery systems for oral disease applications. J Appl Oral Sci 2022; 30:e20210349. [PMID: 35262595 PMCID: PMC8908861 DOI: 10.1590/1678-7757-2021-0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
There are many restrictions on topical medications for the oral cavity. Various factors affect the topical application of drugs in the oral cavity, an open and complex environment. The complex physical and chemical environment of the oral cavity, such as saliva and food, will influence the effect of free drugs. Therefore, drug delivery systems have served as supporting structures or as carriers loading active ingredients, such as antimicrobial agents and growth factors (GFs), to promote antibacterial properties, tissue regeneration, and engineering for drug diffusion. These drug delivery systems are considered in the prevention and treatment of dental caries, periodontal disease, periapical disease, the delivery of anesthetic drugs, etc. These carrier materials are designed in different ways for clinical application, including nanoparticles, hydrogels, nanofibers, films, and scaffolds. This review aimed to summarize the advantages and disadvantages of different carrier materials. We discuss synthesis methods and their application scope to provide new perspectives for the development and preparation of more favorable and effective local oral drug delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Ruining Jiang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Lei Lei
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yingming Yang
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tao Hu
- Sichuan University, West China Hospital of Stomatology, Department of Preventive Dentistry, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
10
|
Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3167. [PMID: 34207552 PMCID: PMC8229368 DOI: 10.3390/ma14123167] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
The risk of secondary bacterial infections resulting from dental procedures has driven the design of antimicrobial and antifouling dental materials to curb pathogenic microbial growth, biofilm formation and subsequent oral and dental diseases. Studies have investigated approaches based primarily on contact-killing or release-killing materials. These materials are designed for addition into dental resins, adhesives and fillings or as immobilized coatings on tooth surfaces, titanium implants and dental prosthetics. This review discusses the recent developments in the different classes of biomaterials for antimicrobial and antifouling dental applications: polymeric drug-releasing materials, polymeric and metallic nanoparticles, polymeric biocides and antimicrobial peptides. With modifications to improve cytotoxicity and mechanical properties, contact-killing and anti-adhesion materials show potential for incorporation into dental materials for long-term clinical use as opposed to short-lived antimicrobial release-based coatings. However, extended durations of biocompatibility testing, and adjustment of essential biomaterial features to enhance material longevity in the oral cavity require further investigations to confirm suitability and safety of these materials in the clinical setting. The continuous exposure of dental restorative and regenerative materials to pathogenic microbes necessitates the implementation of antimicrobial and antifouling materials to either replace antibiotics or improve its rational use, especially in the day and age of the ever-increasing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Poornima Ramburrun
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Nadine A Pringle
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Admire Dube
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Razia Z Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa
| | - Sarah D'Souza
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
11
|
Mercadante V, Scarpa E, De Matteis V, Rizzello L, Poma A. Engineering Polymeric Nanosystems against Oral Diseases. Molecules 2021; 26:2229. [PMID: 33924289 PMCID: PMC8070659 DOI: 10.3390/molecules26082229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology and nanoparticles (NPs) are at the forefront of modern research, particularly in the case of healthcare therapeutic applications. Polymeric NPs, specifically, hold high promise for these purposes, including towards oral diseases. Careful optimisation of the production of polymeric NPs, however, is required to generate a product which can be easily translated from a laboratory environment to the actual clinical usage. Indeed, considerations such as biocompatibility, biodistribution, and biodegradability are paramount. Moreover, a pre-clinical assessment in adequate in vitro, ex vivo or in vivo model is also required. Last but not least, considerations for the scale-up are also important, together with an appropriate clinical testing pathway. This review aims to eviscerate the above topics, sourcing at examples from the recent literature to put in context the current most burdening oral diseases and the most promising polymeric NPs which would be suitable against them.
Collapse
Affiliation(s)
- Valeria Mercadante
- Division of Oral Medicine, UCL Eastman Dental Institute, Bloomsbury Campus, Rockefeller Building, 21 University Street, London WC1E 6DE, UK;
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM), National Institute of Molecular Genetics (INGM), Via G. Balzaretti 9, 20133 Milan, Italy; (E.S.); (L.R.)
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, Via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Loris Rizzello
- Department of Pharmaceutical Sciences (DISFARM), National Institute of Molecular Genetics (INGM), Via G. Balzaretti 9, 20133 Milan, Italy; (E.S.); (L.R.)
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
12
|
Akram Z, Daood U, Aati S, Ngo H, Fawzy AS. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111894. [DOI: 10.1016/j.msec.2021.111894] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
|
13
|
Yu J, Zhang Z, Guo R, Peng W, Yang H, Huang C. Epigallocatechin-3-gallate/nanohydroxyapatite platform delivery approach to adhesive-dentin interface stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111918. [DOI: 10.1016/j.msec.2021.111918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 01/31/2023]
|
14
|
Akram Z, Aati S, Ngo H, Fawzy A. pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. J Nanobiotechnology 2021; 19:43. [PMID: 33563280 PMCID: PMC7871398 DOI: 10.1186/s12951-021-00788-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background A low pH environment is created due to the production of acids by oral biofilms that further leads to the dissolution of hydroxyapatite crystal in the tooth structure significantly altering the equilibrium. Although the overall bacterial counts may not be eradicated from the oral cavity, however, synthesis of engineered anti-bacterial materials are warranted to reduce the pathogenic impact of the oral biofilms. The purpose of this study was to synthesize and characterize chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSN) grafted with poly-L-glycolic acid (PGA) and to test the in vitro drug release in various pH environments, cytotoxicity, and antimicrobial capacity. In addition, this study aimed to investigate the delivery of CHX-loaded/MSN-PGA nanoparticles through demineralized dentin tubules and how these nanoparticles interact with tooth dentin after mixing with commercial dentin adhesive for potential clinical application. Results Characterization using SEM/TEM and EDX confirmed the synthesis of CHX-loaded/MSN-PGA. An increase in the percentage of drug encapsulation efficiency from 81 to 85% in CHX loaded/MSN and 92–95% in CHX loaded/MSN-PGA proportionately increased with increasing the amount of CHX during the fabrication of nanoparticles. For both time-periods (24 h or 30 days), the relative microbial viability significantly decreased by increasing the CHX content (P < 0.001). Generally, the cell viability percentage of DPSCs exposed to MSN-PGA/Blank, CHX-loaded/MSN, and CHX-loaded/MSN-PGA, respectively was > 80% indicating low cytotoxicity profiles of experimental nanoparticles. After 9 months in artificial saliva (pH 7.4), the significantly highest micro-tensile bond strength value was recorded for 25:50 CHX/MSN and 25:50:50 CHX/MSN-PGA. A homogenous and widely distributed 50:50:50 CHX-loaded/MSN-PGA nanoparticles exhibited excellent bonding with the application of commercially available dentin adhesive. Conclusions A pH-sensitive CHX release response was noted when loaded in MSN grafted PGA nanoparticles. The formulated drug-loaded nanocarrier demonstrated excellent physicochemical, spectral, and biological characteristics. Showing considerable capacity to penetrate effectively inside dentinal tubules and having high antibacterial efficacy, this system could be potentially used in adhesive and restorative dentistry.![]()
Collapse
Affiliation(s)
- Zohaib Akram
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia
| | - Sultan Aati
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia
| | - Hein Ngo
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
| |
Collapse
|
15
|
Antibacterial Drug-Release Polydimethylsiloxane Coating for 3D-Printing Dental Polymer: Surface Alterations and Antimicrobial Effects. Pharmaceuticals (Basel) 2020; 13:ph13100304. [PMID: 33053829 PMCID: PMC7600417 DOI: 10.3390/ph13100304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
Polymers are the most commonly used material for three-dimensional (3D) printing in dentistry; however, the high porosity and water absorptiveness of the material adversely influence biofilm formation on the surface of the 3D-printed dental prostheses. This study evaluated the effects of a newly developed chlorhexidine (CHX)-loaded polydimethylsiloxane (PDMS)-based coating material on the surface microstructure, surface wettability and antibacterial activity of 3D-printing dental polymer. First, mesoporous silica nanoparticles (MSN) were used to encapsulate CHX, and the combination was added to PDMS to synthesize the antibacterial agent-releasing coating substance. Then, a thin coating film was formed on the 3D-printing polymer specimens using oxygen plasma and thermal treatment. The results show that using the coating substance significantly reduced the surface irregularity and increased the hydrophobicity of the specimens. Remarkably, the culture media containing coated specimens had a significantly lower number of bacterial colony formation units than the noncoated specimens, thereby indicating the effective antibacterial activity of the coating.
Collapse
|
16
|
Queiroz VM, Kling IC, Eltom AE, Archanjo BS, Prado M, Simão RA. Corn starch films as a long-term drug delivery system for chlorhexidine gluconate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110852. [DOI: 10.1016/j.msec.2020.110852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 11/15/2022]
|
17
|
Almeida Furquim de Camargo B, Soares Silva DE, Noronha da Silva A, Campos DL, Machado Ribeiro TR, Mieli MJ, Borges Teixeira Zanatta M, Bento da Silva P, Pavan FR, Gallina Moreira C, Resende FA, Menegário AA, Chorilli M, Vieira de Godoy Netto A, Bauab TM. New Silver(I) Coordination Compound Loaded into Polymeric Nanoparticles as a Strategy to Improve In Vitro Anti-Helicobacter pylori Activity. Mol Pharm 2020; 17:2287-2298. [DOI: 10.1021/acs.molpharmaceut.9b01264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Anderson Noronha da Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Débora Leite Campos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Maria Júlia Mieli
- Department of Biological Sciences and Health, University of Araraquara, Araraquara 14801-340, São Paulo, Brazil
| | | | - Patrícia Bento da Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Fernando Rogerio Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Cristiano Gallina Moreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Flávia Aparecida Resende
- Department of Biological Sciences and Health, University of Araraquara, Araraquara 14801-340, São Paulo, Brazil
| | - Amauri Antônio Menegário
- Environmental Studies Center, São Paulo State University (UNESP), Rio Claro 13506-900, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| |
Collapse
|
18
|
de Moraes IQS, do Nascimento TG, da Silva AT, de Lira LMSS, Parolia A, Porto ICCDM. Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restor Dent Endod 2020; 45:e31. [PMID: 32839712 PMCID: PMC7431940 DOI: 10.5395/rde.2020.45.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were “matrix metalloproteinases”, “collagen”, and “dentin” and “hybrid layer”. MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.
Collapse
Affiliation(s)
- Izadora Quintela Souza de Moraes
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Antonio Thomás da Silva
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Lilian Maria Santos Silva de Lira
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Abhishek Parolia
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Isabel Cristina Celerino de Moraes Porto
- Laboratory of Pharmaceutical and Food Analysis, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Federal University of Alagoas, Campus A. C. Simões, Maceió, Alagoas, Brazil
| |
Collapse
|
19
|
Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020; 25:E516. [PMID: 31991678 PMCID: PMC7038021 DOI: 10.3390/molecules25030516] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
The oral cavity is a unique complex ecosystem colonized with huge numbers of microorganism species. Oral cavities are closely associated with oral health and sequentially with systemic health. Many factors might cause the shift of composition of oral microbiota, thus leading to the dysbiosis of oral micro-environment and oral infectious diseases. Local therapies and dental hygiene procedures are the main kinds of treatment. Currently, oral drug delivery systems (DDS) have drawn great attention, and are considered as important adjuvant therapy for oral infectious diseases. DDS are devices that could transport and release the therapeutic drugs or bioactive agents to a certain site and a certain rate in vivo. They could significantly increase the therapeutic effect and reduce the side effect compared with traditional medicine. In the review, emerging recent applications of DDS in the treatment for oral infectious diseases have been summarized, including dental caries, periodontitis, peri-implantitis and oral candidiasis. Furthermore, oral stimuli-responsive DDS, also known as "smart" DDS, have been reported recently, which could react to oral environment and provide more accurate drug delivery or release. In this article, oral smart DDS have also been reviewed. The limits have been discussed, and the research potential demonstrates good prospects.
Collapse
Affiliation(s)
| | | | | | - Jing Zou
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases& West China School of Stomatology& National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; (J.L.); (X.P.); (X.Z.)
| |
Collapse
|
20
|
Keshvad MA, Hooshmand T, Behroozibakhsh M, Davaei S. Interfacial fracture toughness of self-adhesive and conventional flowable composites to dentin using different dentin pretreatments. JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY 2019; 10:e12414. [PMID: 30953416 DOI: 10.1111/jicd.12414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
AIM The aim of the present study was to investigate the effect of different dentin pretreatments on the interfacial fracture toughness of a self-adhesive flowable composite to dentin compared with that of a conventional flowable composite. METHODS Caries-free human molars were sectioned to expose the underlying dentin and were randomly divided into seven groups (N = 12) of dentin pretreatments bonded to a self-adhesive flowable composite (Vetise Flow, VF) or a conventional flowable composite (Clearfil Magesty Flow, CM). For VF; Control group (group C-VF), there was no pretreatment, self-etching primer (SP), oxalate dentin desensitizer (OX), and chlorhexidine gluconate (CH) were used. For CM; SP (group SP-CM), OX followed by SP (OX-CM), and CH followed by SP (CH-CM) were used. The interfacial fracture toughness was measured using a universal testing machine. Data were analyzed by Kruskal-Wallis test and analysis of variance. RESULTS For VF, the fracture toughness of SP-VF was significantly higher than that of other groups. For CM, a significantly higher fracture toughness for SP-CM than that of OX-CM was found. For all dentin pretreatments, the fracture toughness values were significantly higher for CM compared with the VF. CONCLUSIONS The self-adhesive flowable composite had reduced bonding efficacy to dentin compared with that of the conventional flowable composite, regardless of the type of dentin pretreatment.
Collapse
Affiliation(s)
- Mohammad A Keshvad
- Department of Orthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Tabassom Hooshmand
- Department of Dental Biomaterials, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, Tehran University of Medical Sciences, Tehran, Iran
| | - Sotoodeh Davaei
- Department of Dental Biomaterials, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Fan W, Li Y, Liu D, Sun Q, Duan M, Fan B. PLGA submicron particles containing chlorhexidine, calcium and phosphorus inhibit Enterococcus faecalis infection and improve the microhardness of dentin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:17. [PMID: 30671677 DOI: 10.1007/s10856-018-6216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Enterococcus faecalis (E. faecalis), a Gram-positive facultative anaerobe, is reported to take responsibility for a large portion of refractory root canal infections and root canal re-infections of human teeth. Chlorhexidine is a strong bactericide against E. faecalis but cannot infiltrate into dentinal tubules. On the other hand, a common negative effect of root canal medicaments is the decrease of dentin microhardness. In this study, poly(D,L-lactic-co-glycolide) (PLGA) submicron particles were applied as delivery carriers to load and release the chlorhexidine as well as calcium and phosphorus. The release profiles, antibacterial ability against E. faecalis, infiltration ability into dentinal tubules, biocompatibility and effects on dentin microhardness of these particles were investigated. Results revealed that encapsulated chemicals could be released in a sustained manner from the particles. The particles also exhibited excellent biocompatibility on MC3T3-E1 cells and significant antimicrobial property against E. faecalis. On dentin slices, the particles could be driven into dentinal tubules by ultrasonic activiation and inhibit E. faecalis colonization. Besides, dentin slices medicated with the particles displayed an increase in microhardness. In conclusion, PLGA submicron particles carrying chlorhexidine, calcium and phosphorus could be developed into a new intra-canal disinfectant for dental treatments.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanyun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Danfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Mengting Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
22
|
Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today 2019; 24:85-98. [DOI: 10.1016/j.drudis.2018.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
|
23
|
Effect of matrix metalloproteinase 8 inhibitor and chlorhexidine on the cytotoxicity, oxidative stress and cytokine level of MDPC-23. Dent Mater 2018; 34:e301-e308. [DOI: 10.1016/j.dental.2018.08.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
|
24
|
Priyadarshini BM, Antipina MN, Fawzy AS. Formulation and characterisation of poly(lactic‐co‐glycolic acid) encapsulated clove oil nanoparticles for dental applications. IET Nanobiotechnol 2018. [DOI: 10.1049/iet-nbt.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Balasankar M. Priyadarshini
- Discipline of Oral SciencesFaculty of DentistryNational University of Singapore11 Lower Kent Ridge RoadSingapore 119083Singapore
| | - Maria N. Antipina
- Institute of Materials Research and Engineering (IMRE)Innovis, 2 Fusionopolis WaySingapore 138634Singapore
| | - Amr S. Fawzy
- Discipline of Oral SciencesFaculty of DentistryNational University of Singapore11 Lower Kent Ridge RoadSingapore 119083Singapore
- Oral Restorative and Rehabilitative SciencesDental SchoolUniversity of Western Australia(M512)35 Stirling HighwayCRAWLEYWA6009Australia
| |
Collapse
|
25
|
Genari B, Leitune VCB, Jornada DS, Aldrigui BR, Pohlmann AR, Guterres SS, Samuel SMW, Collares FM. Effect on adhesion of a nanocapsules-loaded adhesive system. Braz Oral Res 2018; 32:e008. [PMID: 29412223 DOI: 10.1590/1807-3107bor-2018.vol32.0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
This study aimed to evaluate the in situ degree of conversion, contact angle, and immediate and long-term bond strengths of a commercial primer and an experimental adhesive containing indomethacin- and triclosan-loaded nanocapsules (NCs). The indomethacin- and triclosan-loaded NCs, which promote anti-inflammatory and antibacterial effects through controlled release, were incorporated into the primer at a concentration of 2% and in the adhesive at concentrations of 1, 2, 5, and 10%. The in situ degree of conversion (DC, n=3) was evaluated by micro-Raman spectroscopy. The contact angle of the primer and adhesive on the dentin surface (n = 3) was determined by an optical tensiometer. For the microtensile bond strength µTBS test (12 teeth per group), stick-shaped specimens were tested under tensile stress immediately after preparation and after storage in water for 1 year. The data were analyzed using two-way ANOVA, three-way ANOVA and Tukey's post hoc tests with α=0.05. The use of the NC-loaded adhesive resulted in a higher in situ degree of conversion. The DC values varied from 75.07 ± 8.83% to 96.18 ± 0.87%. The use of NCs in only the adhesive up to a concentration of 5% had no influence on the bond strength. The contact angle of the primer remained the same with and without NCs. The use of both the primer and adhesive with NCs (for all concentrations) resulted in a higher contact angle of the adhesive. The longitudinal μTBS was inversely proportional to the concentration of NCs in the adhesive system, exhibiting decreasing values for the groups with primer containing NCs and adhesives with increasing concentrations of NCs. Adhesives containing up to 5% of nanocapsules and primer with no NCs maintained the in situ degree of conversion, contact angle, and immediate and long-term bond strengths. Therefore, the NC-loaded adhesive can be an alternative method for combining the bond performance and therapeutic effects. The use of an adhesive with up to 5% nanocapsules containing indomethacin and triclosan and a primer with no nanocapsules maintained the long-term bond performance.
Collapse
Affiliation(s)
- Bruna Genari
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Vicente Castelo Branco Leitune
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Denise Soledade Jornada
- Universidade Federal do Rio Grande do Sul - UFRGS, Pharmaceutical Sciences, Porto Alegre, RS, Brazil
| | - Bibiana Rocha Aldrigui
- Universidade Federal do Rio Grande do Sul - UFRGS, Pharmaceutical Sciences, Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Universidade Federal do Rio Grande do Sul - UFRGS, Pharmaceutical Sciences, Porto Alegre, RS, Brazil
| | | | - Susana Maria Werner Samuel
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Tedesco M, Chain MC, Bortoluzzi EA, da Fonseca Roberti Garcia L, Alves AMH, Teixeira CS. Comparison of two observational methods, scanning electron and confocal laser scanning microscopies, in the adhesive interface analysis of endodontic sealers to root dentine. Clin Oral Investig 2018; 22:2353-2361. [DOI: 10.1007/s00784-018-2336-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
27
|
PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater 2017; 33:830-846. [DOI: 10.1016/j.dental.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
|
28
|
Antimicrobial effect and physicochemical properties of an adhesive system containing nanocapsules. Dent Mater 2017; 33:735-742. [PMID: 28449922 DOI: 10.1016/j.dental.2017.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To incorporate indomethacin and triclosan-loaded nanocapsules into primer and adhesive, and evaluate its properties. METHODS Indomethacin and triclosan were encapsulated by deposition of preformed polymer and subsequently characterized regarding morphology, particle size, drug content and cytotoxicity. Nanocapsules (NCs) were incorporated into primer at 2% and into adhesive at 1, 2, 5, and 10% concentrations. Degree of conversion (DC) and softening in ethanol of the adhesive were evaluated. Drug release and drug diffusion through dentin was quantified by high performance liquid chromatography. Antimicrobial test was performed until 96h. RESULTS Spherical and biocompatible NCs presented mean size of 159nm. Drugs content was 3mg indomethacin/g powder and 2mg triclosan/g powder. Incorporating NCs in adhesive showed no influence in DC (p=0.335). The addition of 2% of NCs showed no influence in softening in ethanol (p>0.05). After 120h, 93% of indomethacin and 80% of triclosan were released from primer, 20% of indomethacin and 17% of triclosan were released from adhesive with 10% of NCs. Indomethacin showed diffusion through dentin. In 24h, adhesive containing 2 and 5% of NCs using primer with NCs showed antimicrobial effect. In 96h, adhesives containing different concentration of NCs promoted antimicrobial effect. CONCLUSIONS Indomethacin and triclosan-loaded nanocapsules were successfully incorporated into primer and adhesive, promoting controlled drugs release, indomethacin diffusion through dentin and antimicrobial effect without compromising its physicochemical properties. SIGNIFICANCE Indomethacin and triclosan-loaded nanocapsules have potential to prevent recurrent caries and to be used in deep cavities controlling pulpar inflammatory process.
Collapse
|
29
|
Fawzy AS, Priyadarshini BM, Selvan ST, Lu TB, Neo J. Proanthocyanidins-Loaded Nanoparticles Enhance Dentin Degradation Resistance. J Dent Res 2017; 96:780-789. [PMID: 28182862 DOI: 10.1177/0022034517691757] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies reported that grapeseed extract (GSE), which is rich in proanthocyanidins (PAs), improves the biodegradation resistance of demineralized dentin. This study aimed to investigate the effect of a new GSE delivery strategy to demineralized dentin through loading into biodegradable polymer poly-[lactic-co-glycolic acid] (PLGA) nanoparticles on the biodegradation resistance in terms of structural stability and surface/bulk mechanical and biochemical properties with storage time in collagenase-containing solutions. GSE-loaded nanoparticles were synthetized by nanoprecipitation at PLGA/GSE (w/w) ratios of 100:75, 100:50, and 100:25 and characterized for their morphological/structural features, physicochemical characteristics, and drug loading, entrapment, and release. Nanoparticle suspensions in distilled water (12.5% w/v) were applied (1 min) to demineralized dentin specimens by simulating pulpal pressure. The nanoparticle delivery was investigated by scanning electron microscopy (SEM)/transmission electron microscopy (TEM), and the GSE release from the delivered nanoparticles was further characterized. The variations in surface and bulk mechanical properties were characterized in terms of reduced elastic-modulus, hardness, nanoindentation testing, and apparent elastic-modulus with a storage time up to 3 mo. Hydroxyproline release with exposure to collagenase up to 7 d was estimated. An etch-and-rinse dentin adhesive was applied to investigate the morphology of the resin-dentin interface after nanoparticle delivery. Treatment with the GSE-loaded nanoparticles enhanced the collagen fibril structural resistance, reflected from the TEM investigation, and improved the biomechanical and biochemical stability of demineralized dentin. Nanoparticles having PLGA/GSE of 100:75 (w/w) showed the highest cumulative GSE release and were associated with the best improvement in biodegradation resistance. TEM/SEM showed the ability of the nanoparticles to infiltrate dentinal tubules' main and lateral branches. SEM revealed the formation of a uniform hybrid layer and well-formed resin tags with the presence of numerous nanoparticles located within the dentinal tubules and/or attached to the resin tag. This study demonstrated the potential significance of delivering collagen crosslinkers loaded into biodegradable polymer nanoparticles through the dentinal tubules of demineralized dentin on the biodegradation resistance.
Collapse
Affiliation(s)
- A S Fawzy
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - B M Priyadarshini
- 1 Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - S T Selvan
- 2 Institute of Materials Research and Engineering (IMRE), Innovis, Singapore
| | - T B Lu
- 3 Electron Microscopy Unit, YLLSOM, National University of Singapore, Singapore
| | - J Neo
- 4 Discipline of Prosthodontics, Operative Dentistry and Endodontics, Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|