1
|
Zhang Z, Liu T, Dong M, Ahamed MA, Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1969. [PMID: 38783564 PMCID: PMC11141732 DOI: 10.1002/wnan.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Md. Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
2
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
3
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Tosevska A, Morselli M, Basak SK, Avila L, Mehta P, Wang MB, Srivatsan ES, Pellegrini M. Cell-Free RNA as a Novel Biomarker for Response to Therapy in Head & Neck Cancer. Front Oncol 2022; 12:869108. [PMID: 35600369 PMCID: PMC9121879 DOI: 10.3389/fonc.2022.869108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsies are gaining more traction as non-invasive tools for the diagnosis and monitoring of cancer. In a new paradigm of cancer treatment, a synergistic botanical drug combination (APG-157) consisting of multiple molecules, is emerging as a new class of cancer therapeutics, targeting multiple pathways and providing a durable clinical response, wide therapeutic window and high level of safety. Monitoring the efficacy of such drugs involves assessing multiple molecules and cellular events simultaneously. We report, for the first time, a methodology that uses circulating plasma cell-free RNA (cfRNA) as a sensitive indicator of patient response upon drug treatment. Plasma was collected from six patients with head and neck cancer (HNC) and four healthy controls receiving three doses of 100 or 200 mg APG-157 or placebo through an oral mucosal route, before treatment and on multiple points post-dosing. Circulating cfRNA was extracted from plasma at 0-, 3- and 24-hours post-treatment, followed by RNA sequencing. We performed comparative analyses of the circulating transcriptome and were able to detect significant perturbation following APG-157 treatment. Transcripts associated with inflammatory response, leukocyte activation and cytokine were upregulated upon treatment with APG-157 in cancer patients, but not in healthy or placebo-treated patients. A platelet-related transcriptional signature could be detected in cancer patients but not in healthy individuals, indicating a platelet-centric pathway involved in the development of HNC. These results from a Phase 1 study are a proof of principle of the utility of cfRNAs as non-invasive circulating biomarkers for monitoring the efficacy of APG-157 in HNC.
Collapse
Affiliation(s)
- Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Saroj K Basak
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Luis Avila
- Aveta Biomics Inc, Bedford, MA, United States
| | - Parag Mehta
- Aveta Biomics Inc, Bedford, MA, United States
| | - Marilene B Wang
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
| | - Eri S Srivatsan
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Kim J, Cho S, Park Y, Lee J, Park J. Evaluation of micro-RNA in extracellular vesicles from blood of patients with prostate cancer. PLoS One 2021; 16:e0262017. [PMID: 34972164 PMCID: PMC8719659 DOI: 10.1371/journal.pone.0262017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) contain various types of molecules including micro-RNAs, so isolating EVs can be an effective way to analyze and diagnose diseases. A lot of micro-RNAs have been known in relation to prostate cancer (PCa), and we evaluate miR-21, miR-141, and miR-221 in EVs and compare them with prostate-specific antigen (PSA). EVs were isolated from plasma of 38 patients with prostate cancer and 8 patients with benign prostatic hyperplasia (BPH), using a method that showed the highest recovery of RNA. Isolation of EVs concentrated micro-RNAs, reducing the cycle threshold (Ct) value of RT-qPCR amplification of micro-RNA such as miR-16 by 5.12 and miR-191 by 4.65, compared to the values before EV isolation. Normalization of target micro-RNAs was done using miR-191. For miR-221, the mean expression level of patients with localized PCa was significantly higher than that of the control group, having 33.45 times higher expression than the control group (p < 0.01). Area under curve (AUC) between BPH and PCa for miR-221 was 0.98 (p < 0.0001), which was better than AUC for prostate-specific antigen (PSA) level in serum for the same patients. The levels of miR-21 and miR-141 in EVs did not show significant changes in patients with PCa compared to the control group in this study. This study suggests isolating EVs can be a helpful approach in analyzing micro-RNAs with regard to disease.
Collapse
Affiliation(s)
- Jiyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Siwoo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| | - Yonghyun Park
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoul Lee
- Department of Urology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaesung Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeong-buk, Republic of Korea
| |
Collapse
|
6
|
Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W, Zhao Z. Extracellular Vesicles in Liquid Biopsies: Potential for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611244. [PMID: 33506022 PMCID: PMC7814955 DOI: 10.1155/2021/6611244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Liquid biopsy is conducted through minimally invasive or noninvasive procedures, and the resulting material can be subjected to genomic, proteomic, and lipidomic analyses for early diagnosis of cancers and other diseases. Extracellular vesicles (EVs), one kind of promising tool for liquid biopsy, are nanosized bilayer particles that are secreted by all kinds of cells and that carry cargoes such as lipids, proteins, and nucleic acids, protecting them from enzymatic degradation in the extracellular environment. In this review, we provide a comprehensive introduction to the properties and applications of EVs, including their biogenesis, contents, sample collection, isolation, and applications in diagnostics based on liquid biopsy.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Chongmai Zeng
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Yao
- Department of Implantology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Comprehensive analysis and comparison of proteins in salivary exosomes of climacteric and adolescent females. Odontology 2020; 109:82-102. [PMID: 32681298 DOI: 10.1007/s10266-020-00538-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
Currently, it is difficult to extract exosomes with stable physicochemical properties from saliva. Furthermore, due to inadequate availability of basic data, the application of salivary exosomes as a diagnostic material is limited. In this study, we aimed to investigate an easier method for extraction of exosomes from whole saliva and compared proteins in salivary exosomes derived from subjects of two age groups. Salivary exosomes were extracted from nine females (56.7 ± 1.17 years old; climacteric or 19.9 ± 0.20 years old; adolescent) using commercial reagents and kits and detected using western blotting with anti-exosome marker antibodies. Exosome particle size and exosome-containing proteins were identified using NanoSight® and liquid chromatography with tandem mass spectrometry, respectively. In addition, an efficient method of exosome extraction from saliva using a reagent and without the use of an ultracentrifuge was shown. Our results showed a higher total protein content and larger particle size in climacteric exosomes than in adolescent exosomes. However, adolescent exosomes showed a larger variety of proteins (780 proteins) than the climacteric exosomes (573 proteins). Altogether, 893 proteins were identified in the salivary exosomes. Although viral process-, ribosome- and structural molecule-related proteins were higher in the adolescent exosomes, the levels of major salivary proteins such as immunoglobulins and amylase, were higher in the climacteric exosomes than in the adolescent exosomes. The data presented, which show the fundamental protein composition of salivary exosomes and the changes that occur with age, are beneficial in both diagnostic and biotechnological applications.
Collapse
|
8
|
Xing X, Han S, Li Z, Li Z. Emerging role of exosomes in craniofacial and dental applications. Theranostics 2020; 10:8648-8664. [PMID: 32754269 PMCID: PMC7392016 DOI: 10.7150/thno.48291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes, a specific subgroup of extracellular vesicles that are secreted by cells, have been recognized as important mediators of intercellular communication. They participate in a diverse range of physiological and pathological processes. Given the capability of exosomes to carry molecular cargos and transfer bioactive components, exosome-based disease diagnosis and therapeutics have been extensively studied over the past few decades. Herein, we highlight the emerging applications of exosomes as biomarkers and therapeutic agents in the craniofacial and dental field. Moreover, we discuss the current challenges and future perspectives of exosomes in clinical applications.
Collapse
Affiliation(s)
| | | | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Cooper LF, Ravindran S, Huang CC, Kang M. A Role for Exosomes in Craniofacial Tissue Engineering and Regeneration. Front Physiol 2020; 10:1569. [PMID: 32009978 PMCID: PMC6971208 DOI: 10.3389/fphys.2019.01569] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering and regenerative medicine utilize mesenchymal stem cells (MSCs) and their secretome in efforts to create or induce functional tissue replacement. Exosomes are specific extracellular vesicles (EVs) secreted by MSCs and other cells that carry informative cargo from the MSC to targeted cells that influence fundamental cellular processes including apoptosis, proliferation, migration, and lineage-specific differentiation. In this report, we review the current knowledge regarding MSC exosome biogenesis, cargo and function. This review summarizes the use of MSC exosomes to control or induce bone, cartilage, dentin, mucosa, and pulp tissue formation. The next-step engineering of exosomes provides additional avenues to enhance oral and craniofacial tissue engineering and regeneration.
Collapse
Affiliation(s)
- Lyndon F. Cooper
- College of Dentistry, The University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | |
Collapse
|
10
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
11
|
Cristaldi M, Mauceri R, Di Fede O, Giuliana G, Campisi G, Panzarella V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front Physiol 2019; 10:1476. [PMID: 31920689 PMCID: PMC6914830 DOI: 10.3389/fphys.2019.01476] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Oral cancer is the sixth most common cancer type in the world, and 90% of it is represented by oral squamous cell carcinoma (OSCC). Despite progress in preventive and therapeutic strategies, delay in OSCC diagnosis remains one of the major causes of high morbidity and mortality; indeed the majority of OSCC has been lately identified in the advanced clinical stage (i.e., III or IV). Moreover, after primary treatment, recurrences and/or metastases are found in more than half of the patients (80% of cases within the first 2 years) and the 5-year survival rate is still lower than 50%, resulting in a serious issue for public health. Currently, histological investigation represents the “gold standard” of OSCC diagnosis; however, recent studies have evaluated the potential use of non-invasive methods, such as “liquid biopsy,” for the detection of diagnostic and prognostic biomarkers in body fluids of oral cancer patients. Saliva is a biofluid containing factors such as cytokines, DNA and RNA molecules, circulating and tissue-derived cells, and extracellular vesicles (EVs) that may be used as biomarkers; their analysis may give us useful information to do early diagnosis of OSCC and improve the prognosis. Therefore, the aim of this review is reporting the most recent data on saliva biomarker detection in saliva liquid biopsy from oral cancer patients, with particular attention to circulating tumor DNA (ctDNA), EVs, and microRNAs (miRNAs). Our results highlight that saliva liquid biopsy has several promising clinical uses in OSCC management; it is painless, accessible, and low cost and represents a very helpful source of diagnostic and prognostic biomarker detection. Even if standardized protocols for isolation, characterization, and evaluation are needed, recent data suggest that saliva may be successfully included in future clinical diagnostic processes, with a considerable impact on early treatment strategies and a favorable outcome.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Olga Di Fede
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanna Giuliana
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Banales JM, Feldstein AE, Sänger H, Lukacs-Kornek V, Szabo G, Kornek M. Extracellular Vesicles in Liver Diseases: Meeting Report from the International Liver Congress 2018. Hepatol Commun 2019; 3:305-315. [PMID: 30766966 PMCID: PMC6357829 DOI: 10.1002/hep4.1300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small and heterogeneous membrane‐bound structures released by cells and found in all biological fluids. They are effective intercellular communicators, acting on a number of close and/or distant target cells. EV cargo may reflect the cell of origin as well as the specific stress that induces their formation and release. They transport a variety of bioactive molecules, including messenger RNA, noncoding RNAs, proteins, lipids, and metabolites, that can be transferred among cells, regulating various cell responses. Alteration in the concentration and composition of EVs in biological fluids is a typical hallmark of pathologies in different liver diseases. Circulating EVs can serve as biomarkers or as messengers following uptake by other cells. This review is a meeting report from the International Liver Congress 2018 (European Association for the Study of the Liver) celebrated in Paris (Symposium: Extracellular vesicles and signal transmission) that discusses the role of EVs in several liver diseases, highlighting their potential value as disease biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital University of the Basque Country, CIBERehd, Ikerbasque San Sebastian Spain
| | - Ariel E Feldstein
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition University of California San Diego San Diego CA
| | - Hanna Sänger
- Department of Medicine II, Saarland University Medical Center Saarland University Homburg Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology University Hospital of the Rheinische Friedrich-Wilhelms-University Bonn Germany
| | - Gyongyi Szabo
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology University Hospital Bonn Bonn Germany.,Department of General, Visceral, and Thoracic Surgery German Armed Forces Central Hospital Koblenz Germany
| |
Collapse
|
13
|
Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, Jiang Z, Yu D, Yeung SCJ, Zhang H. Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis. Front Genet 2019; 10:202. [PMID: 30923536 PMCID: PMC6426748 DOI: 10.3389/fgene.2019.00202] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.
Collapse
Affiliation(s)
- Jialiang Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Xiao Xiong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
| | - Zuojie Jiang
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Dan Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
14
|
Wang RH, He LY, Zhou SH. The role of gene sculptor microRNAs in human precancerous lesions. Onco Targets Ther 2018; 11:5667-5675. [PMID: 30254459 PMCID: PMC6141127 DOI: 10.2147/ott.s171241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs. These noncoding RNAs regulate the expression of target genes and inhibit the translation of target proteins at the post-transcriptional level. miRNAs also play an important role in human health, from the development and differentiation of cells to the occurrence and progression of disorders such as cancer, cardiovascular diseases, and neurodegenerative diseases. Precancerous lesions are lesions prior to invasive carcinomas, and carcinogenesis is a very complicated process, which is multistage and the result of multigene synergy. miRNAs exert effects as both oncogenes and tumor suppressor genes by regulating target genes involved in signaling pathways. Hence, precancerous lesions are accompanied by relevant miRNA changes. Based on the morphology of miRNAs in vivo and the specificity of miRNA, various novel miRNA analysis methods have been developed, including reverse transcription quantitative PCR, enzyme analysis, molecular beacons, and deep sequencing. For example, in the laryngeal epithelial precancerous lesions, the data demonstrate that the expression of miR-10a-5p is downregulated and miR-484 is the most abundant miRNA in hepatic precancerous lesions. In this review, we discuss the functional roles of miRNAs in human precancerous lesions.
Collapse
Affiliation(s)
- Ran-Hong Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China, .,Department of Otolaryngology, The Third Hospital of Hangzhou City, Hangzhou City, People's Republic of China
| | - Lan-Ying He
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| |
Collapse
|
15
|
Han Y, Jia L, Zheng Y, Li W. Salivary Exosomes: Emerging Roles in Systemic Disease. Int J Biol Sci 2018; 14:633-643. [PMID: 29904278 PMCID: PMC6001649 DOI: 10.7150/ijbs.25018] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing,100081, China
| |
Collapse
|
16
|
Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients. Oncotarget 2018; 9:19793-19806. [PMID: 29731983 PMCID: PMC5929426 DOI: 10.18632/oncotarget.24857] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is a devastating disease with overall bleak prognosis. Current methods to diagnose lung cancer are rather invasive and are inadequate to detect the disease at an early stage when treatment is likely to be most effective. In this study, a shotgun sequencing approach was used to study the microRNA (miRNA) cargo of serum-derived exosomes of small cell lung cancer (SCLC) (n=9) and non-small cell lung cancer (NSCLC) (n=11) patients, and healthy controls (n=10). The study has identified 17 miRNA species that are differentially expressed in cancer patients and control subjects. Furthermore, within the patient groups, a set of miRNAs were differentially expressed in exosomal samples obtained before and after chemotherapy treatment. This manuscript demonstrates the potential of exosomal miRNAs for developing noninvasive tests for disease differentiation and treatment monitoring in lung cancer patients.
Collapse
|
17
|
Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Miner Res 2018; 33:517-533. [PMID: 29091316 DOI: 10.1002/jbmr.3332] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are newly appreciated regulators of tissue homeostasis and a means of intercellular communication. Reports have investigated the role of EVs and their cargoes in cellular regulation and have tried to fine-tune their biotechnological use, but to date very little is known on their function in bone biology. To investigate the relevance of EV-mediated communication between bone cells, we isolated EVs from primary mouse osteoblasts and assessed membrane integrity, size, and structure by transmission electron microscopy (TEM) and fluorescence-activated cell sorting (FACS). EVs actively shuttled loaded fluorochromes to osteoblasts, monocytes, and endothelial cells. Moreover, osteoblast EVs contained mRNAs shared with donor cells. Osteoblasts are known to regulate osteoclastogenesis, osteoclast survival, and osteoclast function by the pro-osteoclastic cytokine, receptor activator of nuclear factor κ-B ligand (Rankl). Osteoblast EVs were enriched in Rankl, which increased after PTH treatment. These EVs were biologically active, supporting osteoclast survival. EVs isolated from rankl-/- osteoblasts lost this pro-osteoclastic function, indicating its Rankl-dependence. They integrated ex vivo into murine calvariae, and EV-shuttled fluorochromes were quickly taken up by the bone upon in vivo EV systemic administration. Rankl-/- mice lack the osteoclast lineage and are negative for its specific marker tartrate-resistant acid phosphatase (TRAcP). Treatment of rankl-/- mice with wild-type osteoblast EVs induced the appearance of TRAcP-positive cells in an EV density-dependent manner. Finally, osteoblast EVs internalized and shuttled anti-osteoclast drugs (zoledronate and dasatinib), inhibiting osteoclast activity in vitro and in vivo. We conclude that osteoblast EVs are involved in intercellular communication between bone cells, contribute to the Rankl pro-osteoclastic effect, and shuttle anti-osteoclast drugs, representing a potential means of targeted therapeutic delivery. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alexander Loftus
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|