1
|
Li Y, Lin Y, Guo J, Huang D, Zuo H, Zhang H, Yuan G, Liu H, Chen Z. CREB3L1 deficiency impairs odontoblastic differentiation and molar dentin deposition partially through the TMEM30B. Int J Oral Sci 2024; 16:59. [PMID: 39384739 PMCID: PMC11464721 DOI: 10.1038/s41368-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 10/11/2024] Open
Abstract
Odontoblasts are primarily responsible for synthesizing and secreting extracellular matrix proteins, which are crucial for dentinogenesis. Our previous single-cell profile and RNAscope for odontoblast lineage revealed that cyclic adenosine monophosphate responsive element-binding protein 3 like 1 (Creb3l1) was specifically enriched in the terminal differentiated odontoblasts. In this study, deletion of Creb3l1 in the Wnt1+ lineage led to insufficient root elongation and dentin deposition. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing were performed to revealed that in CREB3L1-deficient mouse dental papilla cells (mDPCs), the genes near the closed chromatin regions were mainly associated with mesenchymal development and the downregulated genes were primarily related to biological processes including cell differentiation, protein biosynthesis and transport, all of which were evidenced by a diminished ability of odontoblastic differentiation, a significant reduction in intracellular proteins, and an even greater decline in extracellular supernatant proteins. Dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp), and transmembrane protein 30B (Tmem30b) were identified as direct transcriptional regulatory targets. TMEM30B was intensively expressed in the differentiated odontoblasts, and exhibited a significant decline in both CREB3L1-deficient odontoblasts in vivo and in vitro. Deletion of Tmem30b impaired the ability of odontoblastic differentiation, protein synthesis, and protein secretion in mDPCs. Moreover, overexpressing TMEM30B in CREB3L1-deficient mDPCs partially rescued the extracellular proteins secretion. Collectively, our findings suggest that CREB3L1 participates in dentinogenesis and facilitates odontoblastic differentiation by directly enhancing the transcription of Dmp1, Dspp, and other differentiation-related genes and indirectly promoting protein secretion partially via TMEM30B.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Jinqiang Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hanshu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Venet K. Dentinogenesis Imperfecta in a 1-Year-Old Female Labrador Retriever Dog: A Case Report and Literature Review. J Vet Dent 2024; 41:424-432. [PMID: 37872656 DOI: 10.1177/08987564231208359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Dentinogenesis imperfecta is a rare, autosomal dominant, hereditary disorder that occurs in humans and animals. In humans, known causative genetic mutations have been elucidated; however, veterinary literature on the topic is limited. This case report describes a 1-year-old female Labrador Retriever who presented for evaluation of generalized discoloration of the permanent dentition with historical discoloration of the deciduous dentition. Radiographic and histopathological findings will be discussed, as well as an in-depth review of the current human and veterinary literature pertaining to the pathogenesis and treatment options for dentinogenesis imperfecta.
Collapse
|
3
|
Siddiqui MF, Li J, Wang S, Zhang H, Qin C, Lu Y. FAM20A is a golgi-localized Type II transmembrane protein. Sci Rep 2024; 14:6518. [PMID: 38499693 PMCID: PMC10948845 DOI: 10.1038/s41598-024-57007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Family with sequence similarity 20, member A (FAM20A) is a pseudo-kinase in the secretory pathway and is essential for enamel formation in humans. Here we examine if FAM20A is a membrane-associated protein. We show that the full-length FAM20A can be purified from HEK293 cells transfected with a FAM20A-expresing construct. Further, it is only found in the membrane fraction, but not in the soluble fraction, of cell lysate. Consistently, it is not secreted out of the expressing cells. Moreover, it is co-localized with GM130, a cis-Golgi network marker, and membrane topology analysis indicates that it has its C-terminus oriented towards the lumen of the organelle. Our results support that FAM20A is a Type II transmembrane protein within the secretory compartments.
Collapse
Affiliation(s)
- Mohammad Faizan Siddiqui
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Jiahe Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Suzhen Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
4
|
Xu Q, Li J, Zhang H, Wang S, Qin C, Lu Y. Constitutive expression of spliced X-box binding protein 1 inhibits dentin formation in mice. Front Physiol 2024; 14:1319954. [PMID: 38274041 PMCID: PMC10809399 DOI: 10.3389/fphys.2023.1319954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Upon endoplasmic reticulum (ER) stress, inositol-requiring enzyme 1 (IRE1) is activated, which subsequently converts an unspliced X-box binding protein 1 (XBP1U) mRNA to a spliced mRNA that encodes a potent XBP1S transcription factor. XBP1S is essential for relieving ER stress and secretory cell differentiation. We previously established Twist2-Cre;Xbp1 CS/+ mice that constitutively expressed XBP1S in the Twist2-expressing cells as well as in the cells derived from the Twist2-expressing cells. In this study, we analyzed the dental phenotype of Twist2-Cre;Xbp1 CS/+ mice. We first generated a mutant Xbp1s minigene that corresponds to the recombinant Xbp1 Δ26 allele (the Xbp1 CS allele that has undergone Cre-mediated recombination) and confirmed that the Xbp1s minigene expressed XBP1S that does not require IRE1α activation in vitro. Consistently, immunohistochemistry showed that XBP1S was constitutively expressed in the odontoblasts and other dental pulp cells in Twist2-Cre;Xbp1 CS/+ mice. Plain X-ray radiography and µCT analysis revealed that constitutive expression of XBP1S altered the dental pulp chamber roof- and floor-dentin formation, resulting in a significant reduction in dentin/cementum formation in Twist2-Cre;Xbp1 CS/+ mice, compared to age-matched Xbp1 CS/+ control mice. However, there is no significant difference in the density of dentin/cementum between these two groups of mice. Histologically, persistent expression of XBP1S caused a morphological change in odontoblasts in Twist2-Cre;Xbp1 CS/+ mice. Nevertheless, in situ hybridization and immunohistochemistry analyses showed that continuous expression of XBP1S had no apparent effects on the expression of the Dspp and Dmp1 genes. In conclusion, these results support that sustained production of XBP1S adversely affected odontoblast function and dentin formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, United States
| |
Collapse
|
5
|
Liao Y, Pan T, Xing X. Regenerative Endodontic Treatment in Dentinogenesis Imperfecta-Induced Apical Periodontitis. Case Rep Dent 2024; 2024:5128588. [PMID: 38223911 PMCID: PMC10787646 DOI: 10.1155/2024/5128588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Pulp involvement of immature permanent teeth with dentinogenesis imperfecta is challenging and could lead to extraction. A case of dentinogenesis imperfecta-induced periapical periodontitis of an immature permanent tooth was treated with regenerative endodontic treatment (RET), and root maturation was observed in 12-month follow-up. An 8-year-old girl presented acute pain and swelling in central mandibular region. Clinical and radiographic examination revealed "shell teeth" appearance of teeth 31, 41, and 42. Periapical lesion of tooth 31 was observed. Tooth 41 was previously treated with apexification. RET was planned and carried out for the necrotic tooth (tooth 31) with dentinogenesis imperfecta. The 1-, 3-, 7-, and 12-month postoperative recall revealed complete healing of periapical lesions. Root maturation characterized by elongation of root, thickening of dentinal walls, and closure of root apex was observed with radiographic examinations. We show that RET could be a desirable treatment for necrotic immature permanent teeth with dentinogenesis imperfecta and lead to resolution of endodontic lesions as well as maturation of dental root. The findings of this case suggest that RET should be considered by endodontist and pediatric dentist to treat teeth with similar dental anomalies and apical periodontitis.
Collapse
Affiliation(s)
- Ying Liao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ting Pan
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
6
|
Zhang Y, Qiao W, Ji Y, Meng L. GATA4 inhibits odontoblastic differentiation of dental pulp stem cells through targeting IGFBP3. Arch Oral Biol 2023; 154:105756. [PMID: 37451139 DOI: 10.1016/j.archoralbio.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE The odontogenic differentiation of human dental pulp stem cells (HDPSCs) is associated with reparative dentinogenesis. Transcription factor GATA binding protein 4 (GATA4) is proved to be essential for osteoblast differentiation and bone remodeling. This study clarified the function of GATA4 in HDPSCs odontoblast differentiation. METHODS The change in GATA4 expression during reparative dentin formation was detected by immunohistochemistry staining. The expression of GATA4 during HDPSCs odontoblastic differentiation was detected by western blot and quantitative polymerase chain reaction. The effect of GATA4 on odontoblast differentiation was investigated following overexpression lentivirus transfection. RNA sequencing, dual luciferase assay and chromatin immunoprecipitation (CHIP) were conducted to verify downstream targets of GATA4. GATA4 overexpression lentivirus and small interference RNA targeting IGFBP3 were co-transfected to investigate the regulatory mechanism of GATA4. RESULTS Upregulated GATA4 was observed during reparative dentin formation in vivo and the odontoblastic differentiation of HDPSCs in vitro. GATA4 overexpression suppressed the odontoblastic potential of HDPSCs, demonstrated by decreased alkaline phosphatase activity (p < 0.0001), mineralized nodules formation (p < 0.01), and odonto/osteogenic differentiation markers levels (p < 0.05). RNA sequencing revealed IGFBP3 was a potential target of GATA4. CHIP and dual luciferase assays identified GATA4 could activate IGFBP3 transcription. Additionally, IGFBP3 knockdown recovered the odontoblastic differentiation defect caused by GATA4 overexpression (p < 0.05). CONCLUSIONS GATA4 inhibited odontoblastic differentiation of HDPSCs via activating the transcriptional activity of IGFBP3, identifying its promising role in regulating HDPSCs odontoblast differentiation and reparative dentinogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weiwei Qiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Liuyan Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Su T, Zhu Y, Wang X, Zhu Q, Duan X. Hereditary dentin defects with systemic diseases. Oral Dis 2023; 29:2376-2393. [PMID: 37094075 DOI: 10.1111/odi.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE This review aimed to summarize recent progress on syndromic dentin defects, promoting a better understanding of systemic diseases with dentin malformations, the molecules involved, and related mechanisms. SUBJECTS AND METHODS References on genetic diseases with dentin malformations were obtained from various sources, including PubMed, OMIM, NCBI, and other websites. The clinical phenotypes and genetic backgrounds of these diseases were then summarized, analyzed, and compared. RESULTS Over 10 systemic diseases, including osteogenesis imperfecta, hypophosphatemic rickets, vitamin D-dependent rickets, familial tumoral calcinosis, Ehlers-Danlos syndrome, Schimke immuno-osseous dysplasia, hypophosphatasia, Elsahy-Waters syndrome, Singleton-Merten syndrome, odontochondrodysplasia, and microcephalic osteodysplastic primordial dwarfism type II were examined. Most of these are bone disorders, and their pathogenic genes may regulate both dentin and bone development, involving extracellular matrix, cell differentiation, and metabolism of calcium, phosphorus, and vitamin D. The phenotypes of these syndromic dentin defects various with the involved genes, part of them are similar to dentinogenesis imperfecta or dentin dysplasia, while others only present one or two types of dentin abnormalities such as discoloration, irregular enlarged or obliterated pulp and canal, or root malformation. CONCLUSION Some specific dentin defects associated with systemic diseases may serve as important phenotypes for dentists to diagnose. Furthermore, mechanistic studies on syndromic dentin defects may provide valuable insights into isolated dentin defects and general dentin development or mineralization.
Collapse
Affiliation(s)
- Tongyu Su
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiangpu Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qinglin Zhu
- Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Xu K, Liu Q, Huang W, Chu Y, Fan W, Liu J, He Y, Huang F. Promotive Effect of FBXO32 on the Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2023; 24:ijms24097708. [PMID: 37175415 PMCID: PMC10178205 DOI: 10.3390/ijms24097708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is crucial for the intricate formation and repair processes in dental pulp. Until now, the literature is not able to demonstrate the role of ubiquitination in the odontoblastic differentiation of hDPSCs. This study investigated the role of F-box-only protein 32 (FBXO32), an E3 ligase, in the odontoblastic differentiation of hDPSCs. The mRNA expression profile was obtained from ribonucleic acid sequencing (RNA-Seq) data and analyzed. Immunofluorescence and immunohistochemical staining identify the FBXO32 expression in human dental pulp and hDPSCs. Small-hairpin RNA lentivirus was used for FBXO32 knockdown and overexpression. Odontoblastic differentiation of hDPSCs was determined via alkaline phosphatase activity, Alizarin Red S staining, and mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction and Western blotting. Furthermore, subcutaneous transplantation in nude mice was performed to evaluate the role of FBXO32 in mineralization in vivo using histological analysis. FBXO32 expression was upregulated in the odontoblast differentiated hDPSCs as evidenced by RNA-Seq data analysis. FBXO32 was detected in hDPSCs and the odontoblast layer of the dental pulp. Increased FBXO32 expression in hDPSCs during odontoblastic differentiation was confirmed. Through lentivirus infection method, FBXO32 downregulation in hDPSCs attenuated odontoblastic differentiation in vitro and in vivo, whereas FBXO32 upregulation promoted the hDPSCs odontoblastic differentiation, without affecting proliferation and migration. This study demonstrated, for the first time, the promotive role of FBXO32 in regulating the odontoblastic differentiation of hDPSCs, thereby providing novel insights into the regulatory mechanisms during odontoblastic differentiation in hDPSCs.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qin Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yanhao Chu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
9
|
Liang T, Smith CE, Hu Y, Zhang H, Zhang C, Xu Q, Lu Y, Qi L, Hu JCC, Simmer JP. Dentin defects caused by a Dspp -1 frameshift mutation are associated with the activation of autophagy. Sci Rep 2023; 13:6393. [PMID: 37076504 PMCID: PMC10115861 DOI: 10.1038/s41598-023-33362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is primarily expressed by differentiated odontoblasts (dentin-forming cells), and transiently expressed by presecretory ameloblasts (enamel-forming cells). Disease-causing DSPP mutations predominantly fall into two categories: 5' mutations affecting targeting and trafficking, and 3' - 1 frameshift mutations converting the repetitive, hydrophilic, acidic C-terminal domain into a hydrophobic one. We characterized the dental phenotypes and investigated the pathological mechanisms of DsppP19L and Dspp-1fs mice that replicate the two categories of human DSPP mutations. In DsppP19L mice, dentin is less mineralized but contains dentinal tubules. Enamel mineral density is reduced. Intracellular accumulation and ER retention of DSPP is observed in odontoblasts and ameloblasts. In Dspp-1fs mice, a thin layer of reparative dentin lacking dentinal tubules is deposited. Odontoblasts show severe pathosis, including intracellular accumulation and ER retention of DSPP, strong ubiquitin and autophagy activity, ER-phagy, and sporadic apoptosis. Ultrastructurally, odontoblasts show extensive autophagic vacuoles, some of which contain fragmented ER. Enamel formation is comparable to wild type. These findings distinguish molecular mechanisms underlying the dental phenotypes of DsppP19L and Dspp-1fs mice and support the recently revised Shields classification of dentinogenesis imperfecta caused by DSPP mutations in humans. The Dspp-1fs mice may be valuable for the study of autophagy and ER-phagy.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA.
| | - Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX, 75246, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI, 48109-1078, USA
| |
Collapse
|
10
|
Zhang Z, Huang G, Huang Y, Liu S, Chen F, Gao X, Dong Y, Tian H. Novel dentin sialophosphoprotein gene frameshift mutations affect dentin mineralization. Arch Oral Biol 2023; 151:105701. [PMID: 37084484 DOI: 10.1016/j.archoralbio.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
11
|
Enamel biomineralization under the effects of indomethacin and celecoxib non-steroidal anti-inflammatory drugs. Sci Rep 2022; 12:15823. [PMID: 36138112 PMCID: PMC9500046 DOI: 10.1038/s41598-022-19583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to explore the effects of nonsteroidal anti-inflammatory drugs on biomineralization of enamel. Sixty C57Bl6 male mice were used, which were assigned into three groups: celecoxib (n = 20) or indomethacin (n = 20) treatment for a period of 28 days or received no medication (control group, n = 20). Visual inspection and microcomputed tomography were used to analyze enamel morphology. Scanning electron microscopy–Energy dispersive X-ray and Knoop microhardness test were used to quantify chemical element content (Ca, P, C, O) and enamel microhardness, respectively. Tissues were collected to investigate the synthesis, activity or nuclear translocation of metalloproteinase-20, transcription factor Runx2, dentin sialoprotein and cyclooxygenase-2 enzyme by means of immunohistochemistry, in situ zymography and indirect immunofluorescence. Treatment with indomethacin and celecoxib reduced the Ca and P content, microhardness and mineral density in enamel. Treatment with nonsteroidal anti-inflammatory drugs caused an accumulation of metalloproteinase-20 and overall increased enzymatic activity in enamel matrix, while the synthesis of the transcription factor Runx2 was inhibited by these drugs. Interestingly, indomethacin inhibited Runx2 translocation to the nucleus whereas celecoxib did not. Those findings show that non-steroidal anti-inflammatory drugs impact the enamel biomineralization and could be involved in the etiology tooth enamel defects if used during the period of tooth formation and mineralization.
Collapse
|
12
|
Mack Wilson J, Bell C, Queck K, Scott K. A Review of Dentinogenesis Imperfecta and Primary Dentin Disorders in Dogs. J Vet Dent 2022; 39:376-390. [DOI: 10.1177/08987564221123419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review describes the clinical, radiographic and histologic characteristics of dentinogenesis imperfecta diagnosed in two unrelated young dogs without evidence of concurrent osteogenesis imperfecta. The dentition was noted to have generalized coronal discoloration ranging from grey-blue to golden brown. Clinical pulp exposure, coronal wear and fractures were observed as was radiographic evidence of endodontic disease, thin dentin walls or dystrophic obliteration of the pulp canal. The enamel was severely affected by attrition and abrasion despite histologically normal areas; loss was most likely due to poor adherence or support by the underlying abnormal dentin. Histologically, permanent and deciduous teeth examined showed thin, amorphous dentin without organized dentin tubules and odontoblasts had dysplastic cell morphology. Primary dentin disorders, including dentinogenesis imperfecta and dentin dysplasia, have been extensively studied and genetically characterized in humans but infrequently reported in dogs. Treatment in human patients is aimed at early recognition and multi-disciplinary intervention to restore and maintain normal occlusion, aesthetics, mastication and speech. Treatment in both humans and canine patients is discussed as is the documented genetic heritability of primary dentin disorders in humans.
Collapse
Affiliation(s)
| | - Cynthia Bell
- Specialty Oral Pathology for Animals, LLC, Geneseo, IL, USA
| | - Katherine Queck
- Hospital for Veterinary Dentistry and Oral Surgery, Matthews, NC, USA
| | - Kristin Scott
- Hospital for Veterinary Dentistry and Oral Surgery, Matthews, NC, USA
| |
Collapse
|
13
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
14
|
Lee ES, Aryal YP, Kim TY, Kim JY, Yamamoto H, An CH, An SY, Lee Y, Sohn WJ, Jung JK, Ha JH, Kim JY. Facilitation of Reparative Dentin Using a Drug Repositioning Approach With 4-Phenylbutric Acid. Front Physiol 2022; 13:885593. [PMID: 35600310 PMCID: PMC9114641 DOI: 10.3389/fphys.2022.885593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
For hard tissue formation, cellular mechanisms, involved in protein folding, processing, and secretion play important roles in the endoplasmic reticulum (ER). In pathological and regeneration conditions, ER stress hinders proper formation and secretion of proteins, and tissue regeneration by unfolded protein synthesis. 4-Phenylbutyric acid (4PBA) is a chemical chaperone that alleviates ER stress through modulation in proteins folding and protein trafficking. However, previous studies about 4PBA only focused on the metabolic diseases rather than on hard tissue formation and regeneration. Herein, we evaluated the function of 4PBA in dentin regeneration using an exposed pulp animal model system via a local delivery method as a drug repositioning strategy. Our results showed altered morphological changes and cellular physiology with histology and immunohistochemistry. The 4PBA treatment modulated the inflammation reaction and resolved ER stress in the early stage of pulp exposure. In addition, 4PBA treatment activated blood vessel formation and TGF-β1 expression in the dentin-pulp complex. Micro-computed tomography and histological examinations confirmed the facilitated formation of the dentin bridge in the 4PBA-treated specimens. These results suggest that proper modulation of ER stress would be an important factor for secretion and patterned formation in dentin regeneration.
Collapse
Affiliation(s)
- Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
- *Correspondence: Jae-Young Kim, , orcid.org/0000-0002-6752-5683; Jung-Hong Ha, , orcid.org/0000-0002-0469-4324
| |
Collapse
|
15
|
Du Q, Cao L, Liu Y, Pang C, Wu S, Zheng L, Jiang W, Na X, Yu J, Wang S, Zhu X, Yang J. Phenotype and molecular characterizations of a family with dentinogenesis imperfecta shields type II with a novel DSPP mutation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1672. [PMID: 34988181 PMCID: PMC8667123 DOI: 10.21037/atm-21-5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Background Dentinogenesis imperfecta (DGI), Shields type-II is an autosomal dominant genetic disease which severely affects the function of the patients’ teeth. The dentin sialophosphoprotein (DSPP) gene is considered to be the pathogenic gene of DGI-II. In this study, a DGI-II family with a novel DSPP mutation were collected, functional characteristics of DGI cells and clinical features were analyzed to better understand the genotype-phenotype relationship of this disease. Methods Clinical data were collected, whole exome sequencing (WES) was conducted, and Sanger sequencing was used to verify the mutation sites. Physical characteristics of the patient’s teeth were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The localization of green fluorescent protein (GFP)-fused wild-type (WT) dentin sialoprotein (DSP) and its variant were evaluated via an immunocytochemistry (ICC) assay. The behaviors of human dental pulp stem cells (hDPSCs) were investigated by flow cytometry, osteogenic differentiation, and quantitative real-time polymerase chain reaction (qRT-PCR). Results A novel heterozygous mutation c.53T > G (p. Val18Gly) in DSPP was found in this family. The SEM results showed that the participants’ teeth had reduced and irregular dentinal tubes. The EDS results showed that the Ca/P ratio of the patients’ teeth was significantly higher than that of the control group. The ICC assay showed that the mutant DSP was entrapped in the endoplasmic reticulum (ER), while the WT DSP located mainly in the Golgi apparatus. In comparison with normal cells, the patient’s cells exhibited significantly decreased mineralization ability and lower expression levels of DSPP and RUNX2. Conclusions The c.53T > G (p. Val18Gly) DSPP variant was shown to present with rare hypoplastic enamel defects. Functional analysis revealed that this novel variant disturbs dentinal characteristics and pulp cell behavior.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Cao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Wu
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxue Na
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Yu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Wang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Abstract
Non-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5' mutations affecting an N-terminal targeting sequence and 3' mutations that shift translation into the - 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp-1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp-1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp-1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5' and 3' Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Collapse
|
17
|
Liang T, Xu Q, Zhang H, Wang S, Diekwisch TGH, Qin C, Lu Y. Enamel Defects Associated With Dentin Sialophosphoprotein Mutation in Mice. Front Physiol 2021; 12:724098. [PMID: 34630144 PMCID: PMC8497714 DOI: 10.3389/fphys.2021.724098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as “DsppP19L/+”), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (μCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, μCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
18
|
Liu M, Li W, Xia X, Wang F, MacDougall M, Chen S. Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration. Eur Cell Mater 2021; 42:43-62. [PMID: 34275129 PMCID: PMC9019922 DOI: 10.22203/ecm.v042a04] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.
Collapse
Affiliation(s)
- M.M. Liu
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Endodontics, School of Stomatology, Tongji University, Shanghai, 200072, China
| | - W.T. Li
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - X.M. Xia
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,Department of Obstetrics and Gynaecology, Second Xiangya Hospital, Central South University Changsha, 410011, China
| | - F. Wang
- Department of Anatomy, Fujian Medical University, Fuzhou, 350122, China
| | - M. MacDougall
- UBC Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - S. Chen
- Department of Developmental Dentistry, School of Dentistry, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. Notch signaling in the dynamics of perivascular stem cells and their niches. Stem Cells Transl Med 2021; 10:1433-1445. [PMID: 34227747 PMCID: PMC8459638 DOI: 10.1002/sctm.21-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway is a fundamental regulator of cell fate determination in homeostasis and regeneration. In this work, we aimed to determine how Notch signaling mediates the interactions between perivascular stem cells and their niches in human dental mesenchymal tissues, both in homeostatic and regenerative conditions. By single cell RNA sequencing analysis, we showed that perivascular cells across the dental pulp and periodontal human tissues all express NOTCH3, and that these cells are important for the response to traumatic injuries in vivo in a transgenic mouse model. We further showed that the behavior of perivascular NOTCH3‐expressing stem cells could be modulated by cellular and molecular cues deriving from their microenvironments. Taken together, the present studies, reinforced by single‐cell analysis, reveal the pivotal importance of Notch signaling in the crosstalk between perivascular stem cells and their niches in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Laura de Vargas Roditi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Kovacs CS, Chaussain C, Osdoby P, Brandi ML, Clarke B, Thakker RV. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 2021; 17:336-349. [PMID: 33948016 DOI: 10.1038/s41574-021-00488-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
The major mineralized tissues are bone and teeth, which share several mechanisms governing their development and mineralization. This crossover includes the hormones that regulate circulating calcium and phosphate concentrations, and the genes that regulate the differentiation and transdifferentiation of cells. In developing endochondral bone and in developing teeth, parathyroid hormone-related protein (PTHrP) acts in chondrocytes to delay terminal differentiation, thereby increasing the pool of precursor cells. Chondrocytes and (in specific circumstances) pre-odontoblasts can also transdifferentiate into osteoblasts. Moreover, bone and teeth share outcomes when affected by systemic disorders of mineral homeostasis or of the extracellular matrix, and by adverse effects of treatments such as bisphosphonates and fluoride. Unlike bone, teeth have more permanent effects from systemic disorders because they are not remodelled after they are formed. This Review discusses the normal processes of bone and tooth development, followed by disorders that have effects on both bone and teeth, versus disorders that have effects in one without affecting the other. The takeaway message is that bone specialists should know when to screen for dental disorders, just as dental specialists should recognize when a tooth disorder should raise suspicions about a possible underlying bone disorder.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | - Philip Osdoby
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Xu Q, Zhang H, Wang S, Qin C, Lu Y. Constitutive expression of spliced XBP1 causes perinatal lethality in mice. Genesis 2021; 59:e23420. [PMID: 33891366 DOI: 10.1002/dvg.23420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
Upon endoplasmic reticulum (ER) stress, inositol-requiring enzyme 1 (IRE1) is activated and catalyzes nonconventional splicing of an unspliced X-box binding protein 1 (XBP1U) mRNA to yield a spliced XBP1 (XBP1S) mRNA that encodes a potent XBP1S transcription factor. XBP1S is a key mediator of the IRE1 branch that is essential for alleviating ER stress. We generated a novel mouse strain (referred to as "Xbp1CS/+ " mice) that constitutively expressed XBP1S after Cre recombinase-mediated recombination. Further breeding of these mice with Twist2 Cre recombinase (Twist2-Cre) knock-in mice generated Twist2-Cre;Xbp1CS/+ mice. Most Twist2-Cre;Xbp1CS/+ mice died shortly after birth. Reverse-transcription polymerase chain reaction (RT-PCR) showed that constitutive expression of XBP1S occurred in various mouse tissues examined, but not in the brain. Immunohistochemistry confirmed that although the immunostaining signals for total XBP1 (XBP1U and XBP1S) were found in the calvarial bones in both Twist2-Cre;Xbp1CS/+ and control mice, the signals for XBP1S were only detected in the Twist2-Cre;Xbp1CS/+ mice, but not in the control mice. These results suggest that a precise control of XBP1S production is essential for normal mouse development.
Collapse
Affiliation(s)
- Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
22
|
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. A single-cell atlas of human teeth. iScience 2021; 24:102405. [PMID: 33997688 PMCID: PMC8099559 DOI: 10.1016/j.isci.2021.102405] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Teeth exert fundamental functions related to mastication and speech. Despite their great biomedical importance, an overall picture of their cellular and molecular composition is still missing. In this study, we have mapped the transcriptional landscape of the various cell populations that compose human teeth at single-cell resolution, and we analyzed in deeper detail their stem cell populations and their microenvironment. Our study identified great cellular heterogeneity in the dental pulp and the periodontium. Unexpectedly, we found that the molecular signatures of the stem cell populations were very similar, while their respective microenvironments strongly diverged. Our findings suggest that the microenvironmental specificity is a potential source for functional differences between highly similar stem cells located in the various tooth compartments and open new perspectives toward cell-based dental therapeutic approaches. Dental atlas of the pulp and periodontal tissues of human teeth Identification of three common MSC subclusters between dental pulp and periodontium Dental pulp and periodontal MSCs are similar, and their niches diverge
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | | | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
| | - Andreas E. Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Corresponding author
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Faculty of Medicine, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
- Corresponding author
| |
Collapse
|
23
|
Kaur S, Roberts DD. Differential intolerance to loss of function and missense mutations in genes that encode human matricellular proteins. J Cell Commun Signal 2021; 15:93-105. [PMID: 33415696 PMCID: PMC7904989 DOI: 10.1007/s12079-020-00598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Targeted gene disruption in mice has provided valuable insights into the functions of matricellular proteins. Apart from missense and loss of function mutations that have been associated with inherited diseases, however, their functions in humans remain unclear. The availability of deep exome sequencing data from over 140,000 individuals in the Genome Aggregation Database provided an opportunity to examine intolerance to loss of function and missense mutations in human matricellular genes. The probability of loss-of-function intolerance (pLI) differed widely within members of the thrombospondin, CYR61/CTGF/NOV (CCN), tenascin, small integrin-binding ligand N-linked glycoproteins (SIBLING), and secreted protein, acidic and rich in cysteine (SPARC) gene families. Notably, pLI values in humans had limited correlation with viability of the corresponding homozygous null mice. Among the thrombospondins, only THBS1 was highly loss-intolerant (pLI = 1). In contrast, Thbs1 is not essential for viability in mice. Several known thrombospondin-1 receptors were similarly loss-intolerant, although thrombospondin-1 is not the exclusive ligand for some of these receptors. The frequencies of missense mutations in THBS1 and the gene encoding its signaling receptor CD47 indicated conservation of some residues implicated in specific receptor binding. Deficits in missense mutations were also observed for other thrombospondin genes and for SPARC, SPOCK1, SPOCK2, TNR, and DSPP. The intolerance of THBS1 to loss of function in humans and elevated pLI values for THBS2, SPARC, SPOCK1, TNR, and CCN1 support important functions for these matricellular protein genes in humans, some of which may relate to functions in reproduction or responding to environmental stresses.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
24
|
Ye J, Wang Y, Zhu Q, Shi H, Xiang D, Wu C, Song L, Ma N, Liu Q, Zhang W. Primary observation of the role of posttranslational modification of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. Arch Oral Biol 2021; 125:105086. [PMID: 33639479 DOI: 10.1016/j.archoralbio.2021.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to observe the posttranslational role of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. METHODS To explore the function of full-length DSPP, four groups of mice were employed: (1) wild type (WT) mice; (2)Dspp knockout (Dspp KO) mice; (3) mice expressing the normal DSPP transgene in the Dspp KO background (Dspp KO/normal Tg); (4) mice expressing the uncleavable full-length DSPP in the Dspp KO background (Dspp KO/D452A Tg). Firstly, Plain X-ray Radiography and Micro-computed Tomography were used to observe the condylar morphology changes of Dspp KO/D452A Tg mice in comparison with the other three groups. Then, Hematoxylin & eosin and toluidine blue staining were applied to uncover the histological changes of mandibular condylar cartilage (MCC) of Dspp KO/D452A Tg mice. To explore the function of the NH2-terminal fragments (i.e. DSP/DSP-PG), three groups of mice were employed: (1) WT mice; (2) Dspp KO mice; (3) mice expressing the NH2-terminal fragments of DSPP in the Dspp-null background (Dspp KO/DSP Tg). The former strategies were utilized to examine the differences of condylar morphology and histological structures changes within three groups of mice. RESULTS Transgenic full-length DSPP partially maintained mandibular condylar morphology and MCC thickness of Dspp KO mice. Transgenic DSP failed to do so, but led to smaller mandibular condyle and disordered cartilage structure. CONCLUSIONS Our observations provide insight into the role of posttranslational modification of DSPP in the postnatal development of healthy MCC and maintenance of condylar morphology.
Collapse
Affiliation(s)
- Jiapeng Ye
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Chunyue Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lina Song
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital, Jilin University, Changchun, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Shi C, Ma N, Zhang W, Ye J, Shi H, Xiang D, Wu C, Song L, Zhang N, Liu Q. Haploinsufficiency of Dspp Gene Causes Dentin Dysplasia Type II in Mice. Front Physiol 2020; 11:593626. [PMID: 33240110 PMCID: PMC7680915 DOI: 10.3389/fphys.2020.593626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
Dentin dysplasia (DD) and dentinogenesis imperfecta (DGI) patients have abnormal structure, morphology, and function of dentin. DD-II, DGI-II, and DGI-III are caused by heterozygous mutations in the dentin sialophosphoprotein (DSPP) gene in humans. Evidences have shown that loss of function of DSPP in Dspp knockout mice leads to phenotypes similar to DGI-III, and that the abnormal dentinogenesis is associated with decreased levels of DSPP, indicating that DSPP haploinsufficiency may play a role in dentinogenesis. Thus, to testify the haploinsufficiency of Dspp, we used a Dspp heterozygous mouse model to observe the phenotypes in the teeth and the surrounding tissues. We found that Dspp heterozygous mice displayed dentin phenotypes similar to DD-II at the ages of 12 and 18 months, which was characterized by excessive attrition of the enamel at the occlusal surfaces, thicker floor dentin of the pulp chamber, decreased pulp volume, and compromised mineralization of the dentin. In addition, the periodontium was also affected, exhibiting apical proliferation of the junctional epithelium, decreased height and width of the alveolar bone, and infiltration of the inflammatory cells, leading to the destruction of the periodontium. Both the dental and periodontal phenotypes were age-dependent, which were more severe at 18 months old than those at 12 months old. Our report is the first to claim the haploinsufficiency of Dspp gene and a DD-II mouse model, which can be further used to study the molecular mechanisms of DD-II.
Collapse
Affiliation(s)
- Ce Shi
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Jiapeng Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Haibo Shi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Danwei Xiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Chunyue Wu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Lina Song
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Ning Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| | - Qilin Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Jilin University, Changchun, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Jani P, Zhang H, Benson MD, Qin C. Noggin inhibition of mouse dentinogenesis. J Oral Biosci 2019; 62:72-79. [PMID: 31862386 DOI: 10.1016/j.job.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The Bone Morphogenetic Proteins (BMPs) direct tooth development and still express in the adult tooth. We hypothesized that inhibition of BMP function would therefore disrupt dentinogenesis by differentiated odontoblasts. METHODS We generated mice overexpressing the BMP-inhibitory protein Noggin in differentiated odontoblasts and osteocytes under control of a Dmp1 promoter-driven cre transgene. We compared the dentin phenotype in these mice with that in WT littermates and in mice with a Smad4 odontoblast/osteocyte knockout mediated by the same cre and therefore lacking all BMP and Tgfβ signaling in the same tissues. RESULTS Three-month-old first molars from both Noggin-expressing and Smad4-deleted mice showed decreased dentin volume with enlarged pulp cavities, and both displayed less organized and mineralized dentinal tubules compared to WT. The Smad4-ablated phenotype was more severe. While dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) were decreased in the dentin of both lines, dentin matrix protein 1 (DMP1) was sharply increased in Noggin-expressing teeth. CONCLUSIONS The phenotypes we observed in Noggin-overexpressing and Smad4-conditional knockout teeth resemble the phenotype of Dentinogenesis Imperfecta (DGI) type III. Our results show that BMPs regulate post-natal dentinogenesis and that BMP-inhibitory proteins like Noggin play a role in that regulation. The increased severity of the Smad4 phenotype indicates that Tgfβ ligands, in addition to BMPs, play a crucial role in post-developmental dentinogenesis.
Collapse
Affiliation(s)
- Priyam Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
27
|
Li L, Saiyin W, Zhang H, Wang S, Xu Q, Qin C, Lu Y. FAM20A is essential for amelogenesis, but is dispensable for dentinogenesis. J Mol Histol 2019; 50:581-591. [PMID: 31667691 DOI: 10.1007/s10735-019-09851-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Mutations in the gene encoding family with sequence similarity 20, member A (FAM20A) caused amelogenesis imperfecta (AI), in humans. However, the roles of FAM20A in amelogenesis and dentinogenesis are poorly understood. In this study, we generated a Fam20a knockout (Sox2-Cre;Fam20afl/fl) mouse model by crossing Fam20afl/fl mice with Sox2-Cre transgenic mice, in which Fam20a was ablated in both dental epithelium and dental mesenchyme. We found that these mice developed an enamel phenotype that resembles human AI associated with FAM20A mutations, but did not have apparent dentin defects. The secretory stage ameloblasts in the mandibular incisors from the Sox2-Cre;Fam20afl/fl mice were shorter and detached from the enamel matrix, and subsequently lost their polarity, became disorganized and formed numerous spherical extracellular matrices in place of normal enamel. At the molecular level, the Sox2-Cre;Fam20afl/fl mice displayed dramatically reduced expression levels of the genes encoding the enamel matrix proteins, but unaltered levels of the genes encoding the dentin matrix proteins. Moreover, Fam20a ablation resulted in a great decrease in FAM20C protein level, but it did not alter the intracellular localization of FAM20C protein in ameloblasts and odontoblasts. These results indicate that FAM20A is essential for amelogenesis, but is dispensable for dentinogenesis.
Collapse
Affiliation(s)
- Lili Li
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Wuliji Saiyin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, 3302 Gaston Ave. Room 436, Dallas, TX, 75246, USA.
| |
Collapse
|