1
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Shi Y, Su C, Ding T, Zhao H, Wang Y, Ren Y, Wu L, Zhang Q, Liang J, Sun S, Wang J, Li J, Zeng X. Manganese suppresses the development of oral leukoplakia by activating the immune response. Oral Dis 2024; 30:462-476. [PMID: 36260219 DOI: 10.1111/odi.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Manganese ion (Mn2+ ) is reported to promote the antitumor immune response by activating the cGAS-STING pathway, but it is unknown whether Mn2+ can prevent the malignant transformation of precancerous lesions. The effects of Mn2+ in treating oral leukoplakia (OLK) were explored in this work. METHODS Peripheral blood Mn analysis of the patients was performed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). A coculture model of dendritic cells (DCs)/macrophages, CD8+ T cells, and dysplastic oral keratinocytes (DOKs) was employed to analyze the role and mechanism of Mn2+ in a simulated OLK immune microenvironment. Western blot, RT-PCR, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and lactate dehydrogenase (LDH) assays were adopted to detect the mechanism of Mn2+ in this model. 4-nitroquinoline oxide (4NQO)-induced OLK mice were used to assess the role of Mn2+ in suppressing OLK progression, and a novel Mn2+ -loaded guanosine-tannic acid hydrogel (G-TA@Mn2+ hydrogel) was fabricated and evaluated for its advantages in OLK therapy. RESULTS The content of Mn in patients' peripheral blood was negatively related to the progression of OLK. Mn2+ promoted the maturation and antigen presentation of DCs and macrophages and enhanced the activation of CD8+ T cells in the coculture model, resulting in effective killing of DOKs. Mechanistic analysis found that Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway. Moreover, Mn2+ suppressed the development of 4NQO-induced carcinogenesis in the mouse model. In addition, the G-TA@Mn2+ hydrogel had better anti-OLK effects. CONCLUSIONS Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway, and the G-TA@Mn2+ hydrogel is a potential novel therapeutic approach for OLK treatment.
Collapse
Affiliation(s)
- Yujie Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lanyan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
4
|
Sawicki CM, Janal MN, Gonzalez SH, Wu AK, Schmidt BL, Albertson DG. Measurement of the Association of Pain with Clinical Characteristics in Oral Cancer Patients at Diagnosis and Prior to Cancer Treatment. J Pain Res 2024; 17:501-508. [PMID: 38328017 PMCID: PMC10848821 DOI: 10.2147/jpr.s423318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 02/09/2024] Open
Abstract
Aim Oral cancer patients suffer pain at the site of the cancer, which degrades quality of life (QoL). The University of California San Francisco Oral Cancer Pain Questionnaire (UCSFOCPQ), the only validated instrument specifically designed for measuring oral cancer pain, measures the intensity and nature of pain and the level of functional restriction due to pain. Purpose The aim of this study was to compare pain reported by untreated oral cancer patients on the UCSFOCPQ with pain they reported on the Brief Pain Inventory (BPI), an instrument widely used to evaluate cancer and non-cancer pain. Patients and Methods The correlation between pain measured by the two instruments and clinical characteristics were analyzed. Thirty newly diagnosed oral cancer patients completed the UCSFOCPQ and the BPI. Results Pain severity measurements made by the UCSFOCPQ and BPI were concordant; however, the widely used BPI average pain over 24 hours score appeared less sensitive to detect association of oral cancer pain with clinical characteristics of patients prior to treatment (nodal status, depth of invasion, DOI). A BPI average score that includes responses to questions that measure both pain severity and interference with function performs similarly to the UCSFOCPQ in detection of associations with nodal status, pathologic T stage (pT stage), stage and depth of invasion (DOI). Conclusion Pain assessment instruments that measure sensory and interference dimensions of oral cancer pain correlate with biologic features and clinical behavior.
Collapse
Affiliation(s)
- Caroline M Sawicki
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY, USA
| | - Malvin N Janal
- Department of Epidemiology & Health Promotion New York University College of Dentistry, New York, NY, USA
| | - Sung Hye Gonzalez
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Angie K Wu
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
| | - Brian L Schmidt
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY, USA
| | - Donna G Albertson
- NYU Dentistry Translational Research Center, New York University College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- NYU Pain Research Center, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
5
|
Deng M, Guo J, Ling Z, Zhang C, He L, Fan Z, Cheng B, Xia J. KRAS mutations upregulate Runx1 to promote occurrence of head and neck squamous cell carcinoma. Mol Carcinog 2023; 62:1284-1294. [PMID: 37222390 DOI: 10.1002/mc.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
Gene mutations play an important role in head and neck squamous cell carcinoma (HNSCC) by not only promoting the occurrence and progression of HNSCC but also affecting sensitivity to treatment and prognosis. KRAS is one of the most frequently mutated oncogenes, which has been reported to have a mutation rate from 1.7% to 12.7% and may lead to poor prognosis in HNSCC, but its role remains unclear. Here, we found that the KRAS mutation can promote HNSCC generation through synergism with 4-Nitroquinoline-1-Oxide(4NQO). Mechanistically, KRAS mutations can significantly upregulate Runx1 to promote oral epithelial cell proliferation and migration and inhibit apoptosis. Runx1 inhibitor Ro 5-3335 can effectively inhibit KRAS-mutated HNSCC progression both in vitro and in vivo. These findings suggest that the KRAS mutation plays an important role in HNSCC and that Runx1 may be a novel therapeutic target for KRAS-mutated HNSCC.
Collapse
Affiliation(s)
- Miao Deng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lihong He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Liu S, Crawford J, Tao F. Assessing Orofacial Pain Behaviors in Animal Models: A Review. Brain Sci 2023; 13:390. [PMID: 36979200 PMCID: PMC10046781 DOI: 10.3390/brainsci13030390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Orofacial pain refers to pain occurring in the head and face, which is highly prevalent and represents a challenge to clinicians, but its underlying mechanisms are not fully understood, and more studies using animal models are urgently needed. Currently, there are different assessment methods for analyzing orofacial pain behaviors in animal models. In order to minimize the number of animals used and maximize animal welfare, selecting appropriate assessment methods can avoid repeated testing and improve the reliability and accuracy of research data. Here, we summarize different methods for assessing spontaneous pain, evoked pain, and relevant accompanying dysfunction, and discuss their advantages and disadvantages. While the behaviors of orofacial pain in rodents are not exactly equivalent to the symptoms displayed in patients with orofacial pain, animal models and pain behavioral assessments have advanced our understanding of the pathogenesis of such pain.
Collapse
Affiliation(s)
| | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
8
|
Horan NL, McIlvried LA, Atherton MA, Yuan MM, Dolan JC, Scheff NN. The impact of tumor immunogenicity on cancer pain phenotype using syngeneic oral cancer mouse models. FRONTIERS IN PAIN RESEARCH 2022; 3:991725. [PMID: 36172037 PMCID: PMC9512086 DOI: 10.3389/fpain.2022.991725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients report severe function-induced pain at the site of the primary tumor. The current hypothesis is that oral cancer pain is initiated and maintained in the cancer microenvironment due to secretion of algogenic mediators from tumor cells and surrounding immune cells that sensitize the primary sensory neurons innervating the tumor. Immunogenicity, which is the ability to induce an adaptive immune response, has been widely studied using cancer cell transplantation experiments. However, oral cancer pain studies have primarily used xenograft transplant models in which human-derived tumor cells are inoculated in an athymic mouse lacking an adaptive immune response; the role of inflammation in oral cancer-induced nociception is still unknown. Using syngeneic oral cancer mouse models, we investigated the impact of tumor cell immunogenicity and growth on orofacial nociceptive behavior and oral cancer-induced sensory neuron plasticity. We found that an aggressive, weakly immunogenic mouse oral cancer cell line, MOC2, induced rapid orofacial nociceptive behavior in both male and female C57Bl/6 mice. Additionally, MOC2 tumor growth invoked a substantial injury response in the trigeminal ganglia as defined by a significant upregulation of injury response marker ATF3 in tongue-innervating trigeminal neurons. In contrast, using a highly immunogenic mouse oral cancer cell line, MOC1, we found a much slower onset of orofacial nociceptive behavior in female C57Bl/6 mice only as well as sex-specific differences in the tumor-associated immune landscape and gene regulation in tongue innervating sensory neurons. Together, these data suggest that cancer-induced nociceptive behavior and sensory neuron plasticity can greatly depend on the immunogenic phenotype of the cancer cell line and the associated immune response.
Collapse
Affiliation(s)
- Nicole L. Horan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lisa A. McIlvried
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Megan A. Atherton
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Mona M. Yuan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John C. Dolan
- College of Dentistry, New York University, New York, NY, United States
| | - Nicole N. Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ye Y, Jensen DD, Viet CT, Pan HL, Campana WM, Amit M, Boada MD. Advances in Head and Neck Cancer Pain. J Dent Res 2022; 101:1025-1033. [PMID: 35416080 PMCID: PMC9305840 DOI: 10.1177/00220345221088527] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) affects over 890,000 people annually worldwide and has a mortality rate of 50%. Aside from poor survival, HNC pain impairs eating, drinking, and talking in patients, severely reducing quality of life. Different pain phenotype in patients (allodynia, hyperalgesia, and spontaneous pain) results from a combination of anatomical, histopathological, and molecular differences between cancers. Poor pathologic features (e.g., perineural invasion, lymph node metastasis) are associated with increased pain. The use of syngeneic/immunocompetent animal models, as well as a new mouse model of perineural invasion, provides novel insights into the pathobiology of HNC pain. Glial and immune modulation of the tumor microenvironment affect not only cancer progression but also pain signaling. For example, Schwann cells promote cancer cell proliferation, migration, and secretion of nociceptive mediators, whereas neutrophils are implicated in sex differences in pain in animal models of HNC. Emerging evidence supports the existence of a functional loop of cross-activation between the tumor microenvironment and peripheral nerves, mediated by a molecular exchange of bioactive contents (pronociceptive and protumorigenic) via paracrine and autocrine signaling. Brain-derived neurotrophic factor, tumor necrosis factor α, legumain, cathepsin S, and A disintegrin and metalloprotease 17 expressed in the HNC microenvironment have recently been shown to promote HNC pain, further highlighting the importance of proinflammatory cytokines, neurotrophic factors, and proteases in mediating HNC-associated pain. Pronociceptive mediators, together with nerve injury, cause nociceptor hypersensitivity. Oncogenic, pronociceptive mediators packaged in cancer cell-derived exosomes also induce nociception in mice. In addition to increased production of pronociceptive mediators, HNC is accompanied by a dampened endogenous antinociception system (e.g., downregulation of resolvins and µ-opioid receptor expression). Resolvin treatment or gene delivery of µ-opioid receptors provides pain relief in preclinical HNC models. Collectively, recent studies suggest that pain and HNC progression share converging mechanisms that can be targeted for cancer treatment and pain management.
Collapse
Affiliation(s)
- Y Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - D D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA.,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - C T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - H L Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W M Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, CA, USA.,San Diego Veterans Health System, San Diego, CA, USA
| | - M Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
10
|
Xie W, Shen J, Wang D, Guo J, Li Q, Wen S, Dai W, Wen L, Lu H, Fang J, Wang Z. Dynamic changes of exhaustion features in T cells during oral carcinogenesis. Cell Prolif 2022; 55:e13207. [PMID: 35179267 PMCID: PMC9055910 DOI: 10.1111/cpr.13207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES This study aimed to clarify the dynamic changes of exhaustion features in T cells during oral carcinogenesis. MATERIALS AND METHODS Mice were randomly divided into 4NQO group and control group. The exhaustion features of CD4+ and CD8+ T cells of both groups were detected by flow cytometry. Furthermore, multiplex immunohistochemistry was used to evaluate the expression of inhibitory receptors in human normal, dysplastic, and carcinogenesis tissues. Finally, anti-PD-1 antibody treatment was performed at the early premalignant phase of oral carcinogenesis. RESULTS The proportion of naive T cells in 4NQO group was lower than those in control group, while the proportion of effector memory T cells was higher in 4NQO group. The expression of inhibitory receptors on CD4+ and CD8+ T cells increased gradually during carcinogenesis. In contrast, the secretion of cytokines by CD4+ and CD8+ T cells decreased gradually with the progression stage. Strikingly, those changes occurred before the onset of oral carcinogenesis. The expression of inhibitory receptors on T cells increased gradually as the human tissues progressed from normal, dysplasia to carcinoma. Interestingly, PD-1 blockade at the early premalignant phase could reverse carcinogenesis progression by restoring T cell function. CONCLUSIONS T-cell dysfunction was established at the early premalignant phase of oral carcinogenesis; PD-1 blockade at the early premalignant phase can effectively reverse T-cell exhaustion features and then prevent carcinogenesis progression.
Collapse
Affiliation(s)
- Wenqiang Xie
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Jie Shen
- School of StomatologyZhejiang University School of MedicineClinical Research Center for Oral Disease of Zhejiang ProvinceKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityHangzhouPR China
| | - Dikan Wang
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Junyi Guo
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Qunxing Li
- Department of StomatologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouPR China
| | - Shuqiong Wen
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Wenxiao Dai
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Liling Wen
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Huanzi Lu
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Juan Fang
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| | - Zhi Wang
- Guanghua School of StomatologyGuangdong Provincial Key Laboratory of StomatologyStomatological HospitalSun Yat‐Sen UniversityGuangzhouPR China
| |
Collapse
|
11
|
Scheff NN, Wall IM, Nicholson S, Williams H, Chen E, Tu NH, Dolan JC, Liu CZ, Janal MN, Bunnett NW, Schmidt BL. Oral cancer induced TRPV1 sensitization is mediated by PAR 2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci Rep 2022; 12:4121. [PMID: 35260737 PMCID: PMC8904826 DOI: 10.1038/s41598-022-08005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR2, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR2 on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR2 mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA
| | - Ian M Wall
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Sam Nicholson
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Hannah Williams
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Elyssa Chen
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Nguyen H Tu
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - John C Dolan
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University (NYU) College of Dentistry, New York, USA
| | - Cheng Z Liu
- Pathology Department, NYU Langone Health, New York, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, NYU College of Dentistry, New York, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Health Neuroscience Institute, NYU Langone Health, New York, USA
| | - Brian L Schmidt
- Department of Neurobiology and Hillman Cancer Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, USA.
| |
Collapse
|
12
|
Dos Santos Alves JM, Viana KF, Pereira AF, Lima Júnior RCP, Vale ML, Pereira KMA, Gondim DV. Oral carcinogenesis triggers a nociceptive behavior and c-Fos expression in rats' trigeminal pathway. Oral Dis 2022; 29:1531-1541. [PMID: 35244314 DOI: 10.1111/odi.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To recognize changes that occur along the trigeminal pathway in oral cancer in order to establish an effective approach to pain control. METHODS Wistar rats were divided into control and 4-NQO-groups for 8, 12, 16, or 20 weeks. 4-NQO suspension was administered on the animals` tongues. Mechanical hyperalgesia, assessment of facial expressions and an open field test were performed. After euthanasia, the animals' tongues were removed for macro and microscopic analysis. c-Fos expression was analyzed in the trigeminal pathway structures. RESULTS 4-NQO induced time-dependent macroscopic lesions that were compatible with neoplastic tumors. Histopathological analysis confirmed oral squamous cell carcinoma in 50% of the animals on the 20th week. There was a significant nociceptive threshold reduction during the first two weeks, followed by a threshold return to the baseline levels, decreasing again from the 12th week. Facial nociceptive expression scores were observed on the 20th week, while increased grooming and exploratory activity were observed on the 8th week. Trigeminal ganglion showed an increased c-Fos immunoexpression on the 20th week and in the trigeminal subnucleus caudalis, it occurred on the 16th and 20th. The long-term carcinogenic exposure caused changes in the nociceptive behavior and c-Fos expression in the rats' trigeminal pathway.
Collapse
Affiliation(s)
- Joana Maria Dos Santos Alves
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Khalil Fernandes Viana
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Anamaria Falcão Pereira
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Roberto César Pereira Lima Júnior
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Mariana Lima Vale
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Karuza Maria Alves Pereira
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Delane Viana Gondim
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| |
Collapse
|
13
|
Phero A, Ferrari LF, Taylor NE. A novel rat model of temporomandibular disorder with improved face and construct validities. Life Sci 2021; 286:120023. [PMID: 34626607 DOI: 10.1016/j.lfs.2021.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
AIMS Temporomandibular disorders are a cluster of orofacial conditions that are characterized by pain in the temporomandibular joint (TMJ) and surrounding muscles/tissues. Animal models of painful temporomandibular dysfunction (TMD) are valuable tools to investigate the mechanisms responsible for symptomatic temporomandibular joint and associated structures disorders. We tested the hypothesis that a predisposing and a precipitating factor are required to produce painful TMD in rats, using the ratgnawmeter, a device that determines temporomandibular pain based on the time taken for the rat to chew through two obstacles. MATERIALS AND METHODS Increased time in the ratgnawmeter correlated with nociceptive behaviors produced by TMJ injection of formalin (2.5%), confirming chewing time as an index of painful TMD. Rats exposed only to predisposing factors, carrageenan-induced TMJ inflammation or sustained inhibition of the catechol-O-methyltransferase (COMT) enzyme by OR-486, showed no changes in chewing time. However, when combined with a precipitating event, i.e., exaggerated mouth opening produced by daily 1-h jaw extension for 7 consecutive days, robust function impairment was produced. KEY FINDINGS These results validate the ratgnawmeter as an efficient method to evaluate functional TMD pain by evaluating chewing time, and this protocol as a model with face and construct validities to investigate symptomatic TMD mechanisms. SIGNIFICANCE This study suggests that a predisposition factor must be present in order for an insult to the temporomandibular system to produce painful dysfunction. The need for a combined contribution of these factors might explain why not all patients experiencing traumatic events, such as exaggerated mouth opening, develop TMDs.
Collapse
Affiliation(s)
- Anthony Phero
- Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Dr., Research Park, Salt Lake City, UT 84108, United States of America
| | - Luiz F Ferrari
- Department of Anesthesiology, University of Utah School of Medicine, 383 Colorow Dr., Research Park, Salt Lake City, UT 84108, United States of America.
| | - Norman E Taylor
- Department of Anesthesiology, University of Utah School of Medicine, 30 North 1900 East, SOM 3C444, Salt Lake City, UT 84132-2304, United States of America.
| |
Collapse
|