1
|
Pu P, Hou Y, Zhang Q, Hu X, Ding Y, Jia P, Zhao H. Treatment and genetic analysis of multiple supernumerary and impacted teeth in an adolescent patient. BMC Oral Health 2024; 24:790. [PMID: 39004718 PMCID: PMC11246580 DOI: 10.1186/s12903-024-04573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Multiple supernumerary teeth, combined with numerous impacted teeth, can lead to various malocclusions, posing significant treatment challenges. While certain genes associated with syndromic cases of multiple supernumerary and impacted teeth have been identified, the etiologies of non-syndromic cases still largely remain elusive. CASE PRESENTATION Here, we report a treatment of a 12-year-old boy who presented with 10 supernumerary teeth and 6 impacted teeth, accompanied by a genetic analysis to explore the underlying etiology. During the treatment, fifteen teeth were extracted, and various skilled techniques, including the closed-eruption technique and the application of by-pass arches, were utilized. Post-treatment, traction was successful for all the impacted teeth, without any tooth mobility or reduction in gingival height. Space closure, well-aligned teeth, and excellent functional occlusion were achieved. Furthermore, comprehensive genetic analysis was conducted through whole-exome sequencing on the patient and his parents, which revealed a potential link between the patient's numerous supernumerary teeth and abnormal mineralization. Notably, the p.Ser496Pro variant in the TCF7L2 gene was identified as a potential candidate variant in this patient. CONCLUSIONS Overall, our findings not only report the treatment of a rare case involving multiple supernumerary and impacted teeth but also offer valuable insights into the molecular basis of supernumerary teeth.
Collapse
Affiliation(s)
- Panjun Pu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, PR China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, PR China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qing Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, PR China
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaoyi Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, PR China
- Department of Cranio-Maxillofacial Trauma and Plastic Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peizeng Jia
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Ave, Beijing, 100081, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, PR China.
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
2
|
Kumari A, Franks NE, Li L, Audu G, Liskowicz S, Johnson JD, Mistretta CM, Allen BL. Distinct expression patterns of Hedgehog signaling components in mouse gustatory system during postnatal tongue development and adult homeostasis. PLoS One 2024; 19:e0294835. [PMID: 38848388 PMCID: PMC11161123 DOI: 10.1371/journal.pone.0294835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The Hedgehog (HH) pathway regulates embryonic development of anterior tongue taste fungiform papilla (FP) and the posterior circumvallate (CVP) and foliate (FOP) taste papillae. HH signaling also mediates taste organ maintenance and regeneration in adults. However, there are knowledge gaps in HH pathway component expression during postnatal taste organ differentiation and maturation. Importantly, the HH transcriptional effectors GLI1, GLI2 and GLI3 have not been investigated in early postnatal stages; the HH receptors PTCH1, GAS1, CDON and HHIP, required to either drive HH pathway activation or antagonism, also remain unexplored. Using lacZ reporter mouse models, we mapped expression of the HH ligand SHH, HH receptors, and GLI transcription factors in FP, CVP and FOP in early and late postnatal and adult stages. In adults we also studied the soft palate, and the geniculate and trigeminal ganglia, which extend afferent fibers to the anterior tongue. Shh and Gas1 are the only components that were consistently expressed within taste buds of all three papillae and the soft palate. In the first postnatal week, we observed broad expression of HH signaling components in FP and adjacent, non-taste filiform (FILIF) papillae in epithelium or stroma and tongue muscles. Notably, we observed elimination of Gli1 in FILIF and Gas1 in muscles, and downregulation of Ptch1 in lingual epithelium and of Cdon, Gas1 and Hhip in stroma from late postnatal stages. Further, HH receptor expression patterns in CVP and FOP epithelium differed from anterior FP. Among all the components, only known positive regulators of HH signaling, SHH, Ptch1, Gli1 and Gli2, were expressed in the ganglia. Our studies emphasize differential regulation of HH signaling in distinct postnatal developmental periods and in anterior versus posterior taste organs, and lay the foundation for functional studies to understand the roles of numerous HH signaling components in postnatal tongue development.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicole E. Franks
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Libo Li
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabrielle Audu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Sarah Liskowicz
- Department of Biology, University of Scranton, Scranton, Pennsylvania, United States of America
| | - John D. Johnson
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, New Jersey, United States of America
| | - Charlotte M. Mistretta
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Wang Y, Shi Y, Wang L, Xu J, Shan Z, Gao Z. Spatiotemporal expression of fibroblast growth factor 4 and 10 during the morphogenesis of deciduous molars in miniature pigs. Arch Oral Biol 2023; 155:105795. [PMID: 37619487 DOI: 10.1016/j.archoralbio.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) play pivotal roles in mediating interactions between dental epithelium and mesenchyme throughout tooth initiation and morphogenesis. This study aimed to elucidate the roles of FGF4 and FGF10 in the regulation of tooth development. DESIGN In this study, we investigated spatiotemporal expression patterns of FGF4 and FGF10 in the third deciduous molars (DM3) of miniature pigs at the cap, early bell, and late bell stages. Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Non-radioactive in situ hybridization, immunohistochemistry, and real-time PCR were used to detect mRNA and protein expression levels of FGF4 and FGF10. RESULTS FGF4 was expressed in the dental epithelium and mesenchyme at the cap stage. At the early bell stage, epithelial expression of FGF4 was reduced while mesenchymal expression got stronger. At the late bell stage, the FGF4 expression was restricted to the inner enamel epithelium (IEE) and differentiating odontoblasts. FGF10 was expressed intensely in both epithelium and mesenchyme at the cap stage. The expression of FGF10 was concentrated in the secondary enamel knots and surrounding mesenchyme at the early bell stage. FGF10 was weakly detected in the IEE by the late bell stage. CONCLUSIONS Our results indicated that FGF4 and FGF10 might have partially redundant functions in regulating epithelium morphogenesis. FGF4 may be involved in regulatory signaling cascades mediating interactions between the epithelium and mesenchyme. In addition, the downregulation of FGF10 expression may be associated with the cessation of mesenchymal cell proliferation and initiation of preodontoblast polarization.
Collapse
Affiliation(s)
- Yingxin Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuanyuan Shi
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
4
|
Fu Y, Miyazaki K, Chiba Y, Funada K, Yuta T, Tian T, Mizuta K, Kawahara J, Zhang L, Martin D, Iwamoto T, Takahashi I, Fukumoto S, Yoshizaki K. Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development. J Biol Chem 2023; 299:104638. [PMID: 36963497 PMCID: PMC10130355 DOI: 10.1016/j.jbc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Collapse
Affiliation(s)
- Yao Fu
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanako Miyazaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yuta Chiba
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Keita Funada
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomomi Yuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tian Tian
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanji Mizuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Jumpei Kawahara
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Ling Zhang
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core (National Institute on Deafness and Other Communication Disorders), National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Division of Oral Health Sciences, Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Satoshi Fukumoto
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
5
|
Msx1 is essential for proper rostral tip formation of the mouse mandible. Biochem Biophys Res Commun 2023; 642:75-82. [PMID: 36566565 DOI: 10.1016/j.bbrc.2022.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
The right and left mandibular processes derived from the first branchial arch grow toward the midline and fuse to create the rostral tip region of the mandible during mandibular development. Severe and mild cases of failure in this process results in rare median cleft of the lower lip and cleft chin, respectively. The detailed molecular mechanisms of mandibular tip formation are unknown. We hypothesize that the Msx1 gene is involved in mandibular tip development, because Msx1 has a central role in other craniofacial morphogenesis processes, such as teeth and the secondary palate development. Normal Msx1 expression was observed in the rostral end of the developing mandible; however, a reduced expression of Msx1 was observed in the soft tissue of the mandibular tip than in the lower incisor bud region. The rostral tip of the right and left mandibular processes was unfused in both control and Msx1-null (Msx1-/-) mice at embryonic day (E) 12.5; however, a complete fusion of these processes was observed at E13.5 in the control. The fused processes exhibited a conical shape in the control, whereas the same region remained bifurcated in Msx1-/-. This phenotype occurred with 100% penetrance and was not restored at subsequent stages of development. Furthermore, Meckel's cartilage in addition to the outline surface soft tissues was also unfused and bifurcated in Msx1-/- from E14.5 onward. The expression of phosho-Smad1/5, which is a mediator of bone morphogenetic protein (Bmp) signaling, was downregulated in the mandibular tip of Msx1-/- at E12.5 and E13.5, probably due to the downregulated Bmp4 expression in the neighboring lower incisor bud. Cell proliferation was significantly reduced in the midline region of the mandibular tip in Msx1-/- at the same developmental stages in which downregulation of pSmad was observed. Our results indicate that Msx1 is indispensable for proper mandibular tip development.
Collapse
|
6
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
7
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
8
|
Zhang H, Chinoy A, Mousavi P, Beeler A, Louie K, Collier C, Mishina Y. Elevated WNT signaling and compromised Hedgehog signaling due to Evc2 loss of function contribute to the abnormal molar patterning. FRONTIERS IN DENTAL MEDICINE 2022; 3:876015. [PMID: 38606060 PMCID: PMC11007741 DOI: 10.3389/fdmed.2022.876015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Ellis-van Creveld (EVC) syndrome is an autosomal recessive chondrodysplasia. The affected individuals bear a series of skeleton defects, congenital heart septum anomalies, midfacial defects, and dental defects. Previous studies using Evc or Evc2 mutant mice have characterized the pathological mechanism leading to various types of congenital defects. Some patients with EVC have supernumerary tooth; however, it is not known yet if there are supernumerary tooth formed in Evc or Evc2 mutant mice, and if yes, what is the pathological mechanism associated. In the present study, we used Evc2 mutant mice and analyze the pattern of molars in Evc2 mutant mice at various stages. Our studies demonstrate that Evc2 loss of function within the dental mesenchymal cells leads to abnormal molar patterning, and that the most anterior molar in the Evc2 mutant mandible represents a supernumerary tooth. Finally, we provide evidence supporting the idea that both compromised Hedgehog signaling and elevated WNT signaling due to Evc2 loss of function contributes to the supernumerary tooth formation.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Afriti Chinoy
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Paymon Mousavi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aubrey Beeler
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke’ale Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Collier
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Wang J, Wang T, Zhang F, Zhang Y, Guo Y, Jiang X, Yang B. Roles of circular RNAs in osteogenic differentiation of bone marrow mesenchymal stem cells (Review). Mol Med Rep 2022; 26:227. [PMID: 35593273 PMCID: PMC9178710 DOI: 10.3892/mmr.2022.12743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts, chondrocytes, adipocytes and even myoblasts, and are therefore defined as pluripotent cells. BMSCs have become extremely important seed cells in gene therapy, tissue engineering, cell replacement therapy and regenerative medicine due to their potential in multilineage differentiation, self‑renewal, immune regulation and other fields. Circular RNAs (circRNAs) are a class of non‑coding RNAs that are widely present in eukaryotic cells. Unlike standard linear RNAs, circRNAs form covalently closed continuous loops with no 5' or 3' polarity. circRNAs are abundantly expressed in cells and tissues, and are highly conserved and relatively stable during evolution. Numerous studies have shown that circRNAs play an important role in the osteogenic differentiation of BMSCs. Further studies on the role of circRNAs in the osteogenic differentiation of BMSCs can provide a new theoretical and experimental basis for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Fujie Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|