1
|
Ida-Yonemochi H. Role of glucose metabolism in amelogenesis. J Oral Biosci 2025; 67:100667. [PMID: 40306383 DOI: 10.1016/j.job.2025.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Cell energy metabolism plays a pivotal role in organ development and function by regulating cell behavior in pathophysiological conditions. Glucose metabolism is the central cascade for obtaining energy in mammalian cells, and cells alter the glucose metabolic pathway depending on intra- and extracellular environments. Therefore, glucose metabolism is closely associated with cell differentiation stages, and cell energy metabolism plays a vital role not only in energy production but also in cell fate regulation in organogenesis. HIGHLIGHT During enamel formation, the timing of the expression of passive and active glucose transporters, glycogen synthesis, and glycogen degradation is strictly regulated according to the energy demand of ameloblast-lineage cells. These glucose metabolic reactions are particularly active in the maturation stage of ameloblasts. Furthermore, autophagy, a key regulator of cellular energy homeostasis that modulates glucose metabolism, occurs during both the secretory and maturation stages of ameloblasts. Disruption of glucose metabolism cascade and autophagy induces enamel hypoplasia, as demonstrated in both in vitro and in vivo models. CONCLUSION Adequate energy supply via glucose metabolism is essential for enamel matrix secretion and maturation. A thorough understanding of the precise regulation of energy metabolism in amelogenesis facilitates comprehension of the normal enamel formation process and pathological conditions affecting it. This review summarizes glucose metabolic processes during amelogenesis, focusing on glucose uptake, glycogenesis, and glycogenolysis.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
2
|
Hutami IR, Arinawati DY, Rahadian A, Dewi RC, Rochmah YS, Christiono S, Afroz S. Roles of calcium in ameloblasts during tooth development: A scoping review. J Taibah Univ Med Sci 2025; 20:25-39. [PMID: 39839572 PMCID: PMC11745948 DOI: 10.1016/j.jtumed.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Calcium ions (Ca2+) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation. This review synthesizes current knowledge, focusing on preclinical data elucidating the molecular mechanisms of calcium transport in ameloblasts, during normal tooth development and in response to external stimuli. Methods This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search, conducted in December 2023, spanned multiple databases including PubMed (8.363 records), Google Scholar (5.630 records), and Science Direct (21.810 records). The primary aim was to examine the influence of calcium ion regulation on ameloblast development, with a focus on preclinical studies. Results After an initial screening of 396 titles and abstracts, 11 full-text articles (four in vitro studies and seven animal studies) met the inclusion and exclusion criteria. The studies, assessed for quality using the CAMRADES tool, ranged from low to moderate. Calcium deficiency, nutritional supplements, fluoride exposure, TRPM7, STIM proteins, and the SOCE pathway were found to influence amelogenesis. Conclusion Calcium transport mechanisms play a critical role in enamel formation, with factors such as TRPM7, Kir 4.2, CRAC channels, and the SOCE pathway supporting enamel mineralization, while disruptions like hypoxia, fluoride exposure, and circadian imbalances negatively impact amelogenesis. Understanding the interplay between calcium, environmental, and nutritional factors provides valuable insights into ameloblast function and offers potential avenues for improving enamel quality and addressing defects.
Collapse
Affiliation(s)
- Islamy R. Hutami
- Department of Orthodontics, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
- Master Program of Dental Sciences, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Dian Y. Arinawati
- Department of Oral Biology, Faculty of Dentistry, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Arief Rahadian
- Department of Biochemical, Faculty of Medicine, Universitas Islam Sultan Agung, Indonesia
| | - Rizqa C. Dewi
- Master Program of Dental Sciences, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Yayun S. Rochmah
- Department of Oral Surgery, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Sandy Christiono
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Islam Sultan Agung, Indonesia
| | - Shaista Afroz
- Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India
| |
Collapse
|
3
|
Grün P, Pfaffeneder-Mantai F, Leunig N, Bytyqi D, Maier C, Gencik M, Bandura P, Turhani D. Bimaxillary fixed implant-supported zirconium oxide prosthesis therapy of an adolescent patient with non-syndromic oligodontia and two WNT10 variants: a case report. Ann Med Surg (Lond) 2024; 86:3072-3081. [PMID: 38694351 PMCID: PMC11060206 DOI: 10.1097/ms9.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction and importance Oligodontia is a rare genetic condition characterized by more than six congenitally missing teeth, either as an isolated non-syndromic condition or in association with other genetic syndromes. The impact of WNT10A variants on dental development increases with the presence of the c.321C>A variant and the number of missing teeth. Case presentation A 21-year-old man with non-syndromic oligodontia was diagnosed at 15 years of age with misaligned teeth, speech problems, and the absence of 24 permanent teeth. Interdisciplinary collaboration between specialists was initiated to enable comprehensive treatment. DNA analysis confirmed that the patient was a carrier of the known pathogenic WNT10A variant c321C>A and WNT10A variant c.113G>T of unknown clinical significance. Clinical discussion Dental implants are a common treatment; however, bone development challenges in adolescent patients with non-syndromic oligodontia necessitate careful planning to ensure implant success. Many WNT variants play crucial roles in tooth development and are directly involved in non-syndromic oligodontia, especially the WNT10 variant c.321C>A. Conclusion A full-arch implant-supported monolithic zirconia screw-retained fixed prosthesis is a viable treatment option for young adults with non-syndromic oligodontia. Further studies are needed to clarify the possible amplifying effect of the WNT10A variants c321C>A and c.113G>T on the pathogenic phenotype of non-syndromic oligodontia.
Collapse
Affiliation(s)
- Pascal Grün
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Florian Pfaffeneder-Mantai
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
- Division for Chemistry and Physics of Materials, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Nikolai Leunig
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Ditjon Bytyqi
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Cornelia Maier
- Practice for Orthodontics, Hohenauerstraße, Mühldorf am Inn, Germany
| | - Martin Gencik
- Practice for Human Genetics, Brünnlbadgasse, Vienna, Austria
| | - Patrick Bandura
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| | - Dritan Turhani
- Center for Oral and Maxillofacial Surgery, Department of Dentistry
| |
Collapse
|
4
|
Sukseree S, Gruber R, Tschachler E, Eckhart L. Letter to the Editor, "Autophagy Plays a Crucial Role in Ameloblast Differentiation". J Dent Res 2024; 103:452. [PMID: 37968790 DOI: 10.1177/00220345231210462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Affiliation(s)
- S Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - R Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - E Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - L Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Iwaya C, Iwata J. Response to Letter, "Autophagy Plays a Crucial Role in Ameloblast Differentiation". J Dent Res 2024; 103:453. [PMID: 38380491 DOI: 10.1177/00220345241231770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Affiliation(s)
- C Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - J Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
- Pediatric Research Center, The University of Texas Health Science Center at Houston, School of Medicine, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
İnan S, Barış E. The role of autophagy in odontogenesis, dental implant surgery, periapical and periodontal diseases. J Cell Mol Med 2024; 28:e18297. [PMID: 38613351 PMCID: PMC11015398 DOI: 10.1111/jcmm.18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.
Collapse
Affiliation(s)
- Sevinç İnan
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| |
Collapse
|
7
|
Masunova N, Tereschenko M, Alexandrov G, Spirina L, Tarasenko N. Crucial Role of microRNAs as New Targets for Amelogenesis Disorders Detection. Curr Drug Targets 2023; 24:1139-1149. [PMID: 37936447 DOI: 10.2174/0113894501257011231030161427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Amelogenesis imperfecta (AI) refers to a heterogeneous group of conditions with multiple factors which contribute to the hypomineralisation of enamel. Preventive measures are necessary to predict this pathology. Prospects for preventive medicine are closely related to the search for new informative methods for diagnosing a human disease. MicroRNAs are prominent for the non-invasive diagnostic platform. THE AIM OF THE STUDY The aim of the review is to review the heterogeneous factors involved in amelogenesis and to select the microRNA panel associated with the AI type. METHODS We used DIANA Tools (algorithms, databases and software) for interpreting and archiving data in a systematic framework ranging from the analysis of expression regulation from deep sequencing data to the annotation of miRNA regulatory elements and targets (https://dianalab. e-ce.uth.gr/). In our study, based on a gene panel associated with the AI types, twenty-four miRNAs were identified for the hypoplastic type (supplement), thirty-five for hypocalcified and forty-- nine for hypomaturation AI. The selection strategy included the microRNA search with multiple targets using the AI type's gene panel. RESULTS Key proteins, calcium-dependent and genetic factors were analysed to reveal their role in amelogenesis. The role of extracellular non-coding RNA sequences with multiple regulatory functions seems to be the most attractive. We chose the list of microRNAs associated with the AI genes. We found four microRNAs (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p and hsamiR- 146a-5p) for the gene panel, associated with the hypoplastic type of AI; five microRNAs (hsa- miR-29c-3p, hsa-miR-124-3p, hsa-miR-1343-3p, hsa-miR-335-5p, and hsa-miR-16-5p - for hypocalcified type of AI, and seven ones (hsa-miR-124-3p, hsa-miR-147a, hsa-miR-16-5p, hsamiR- 429, hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-335-5p) - for hypomaturation. It was revealed that hsa-miR-16-5p is included in three panels specific for both hypoplastic, hypocalcified, and hypomaturation types. Hsa-miR-146a-5p is associated with hypoplastic and hypomaturation type of AI, which is associated with the peculiarities of the inflammatory response immune response. In turn, hsa-miR-335-5p associated with hypocalcified and hypomaturation type of AI. CONCLUSION Liquid biopsy approaches are a promising way to reduce the economic cost of treatment for these patients in modern healthcare. Unique data exist about the role of microRNA in regulating amelogenesis. The list of microRNAs that are associated with AI genes and classified by AI types has been uncovered. The target gene analysis showed the variety of functions of selected microRNAs, which explains the multiple heterogeneous mechanisms in amelogenesis. Predisposition to mineralisation problems is a programmed event. Many factors determine the manifestation of this problem. Additionally, it is necessary to remember the variable nature of the changes, which reduces the prediction accuracy. Therefore, models based on liquid biopsy and microRNAs make it possible to take into account these factors and their influence on the mineralisation. The found data needs further investigation.
Collapse
Affiliation(s)
- Nadezhda Masunova
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Maria Tereschenko
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Georgy Alexandrov
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
| | - Liudmila Spirina
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia Tarasenko
- Siberian State Medical University of the Ministry of Health of Russia, 634050, Tomsk, Russia
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|