1
|
Lauritano D, Mastrangelo F, D’Ovidio C, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Trimarchi M, Carinci F, Conti P. Activation of Mast Cells by Neuropeptides: The Role of Pro-Inflammatory and Anti-Inflammatory Cytokines. Int J Mol Sci 2023; 24:ijms24054811. [PMID: 36902240 PMCID: PMC10002992 DOI: 10.3390/ijms24054811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mast cells (MCs) are tissue cells that are derived from bone marrow stem cells that contribute to allergic reactions, inflammatory diseases, innate and adaptive immunity, autoimmunity, and mental disorders. MCs located near the meninges communicate with microglia through the production of mediators such as histamine and tryptase, but also through the secretion of IL-1, IL-6 and TNF, which can create pathological effects in the brain. Preformed chemical mediators of inflammation and tumor necrosis factor (TNF) are rapidly released from the granules of MCs, the only immune cells capable of storing the cytokine TNF, although it can also be produced later through mRNA. The role of MCs in nervous system diseases has been extensively studied and reported in the scientific literature; it is of great clinical interest. However, many of the published articles concern studies on animals (mainly rats or mice) and not on humans. MCs are known to interact with neuropeptides that mediate endothelial cell activation, resulting in central nervous system (CNS) inflammatory disorders. In the brain, MCs interact with neurons causing neuronal excitation with the production of neuropeptides and the release of inflammatory mediators such as cytokines and chemokines. This article explores the current understanding of MC activation by neuropeptide substance P (SP), corticotropin-releasing hormone (CRH), and neurotensin, and the role of pro-inflammatory cytokines, suggesting a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Filiberto Mastrangelo
- Department of Clinical and Experimental Medicine, School of Dentistry, University of Foggia, 71100 Foggia, Italy
| | - Cristian D’Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece
| | - Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
2
|
Schwartz SL, Yan Q, Telmer CA, Lidke KA, Bruchez MP, Lidke DS. Fluorogen-activating proteins provide tunable labeling densities for tracking FcεRI independent of IgE. ACS Chem Biol 2015; 10:539-46. [PMID: 25343439 PMCID: PMC4340345 DOI: 10.1021/cb5005146] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Crosslinking of IgE bound FcεRI on mast cells and basophils by multivalent antigen leads to degranulation and the release of key inflammatory mediators that stimulate the allergic response. Here, we present and characterize the use of fluorogen-activating proteins (FAPs) for single particle tracking of FcεRI to investigate how receptor mobility is influenced after IgE-induced changes in mast cell behavior. FAPs are genetically encoded tags that bind a fluorogen dye and increase its brightness upon binding up to 20,000-fold. We demonstrate that, by titrating fluorogen concentration, labeling densities from ensemble to single particle can be achieved, independent of expression level and without the need for wash steps or photobleaching. The FcεRI γ-subunit fused to a FAP (FAP-γ) provides, for the first time, an IgE-independent probe for tracking this signaling subunit of FcεRI at the single molecule level. We show that the FcεRI γ-subunit dynamics are controlled by the IgE-binding α-subunit and that the cytokinergic IgE, SPE-7, induces mast cell activation without altering FcεRI mobility or promoting internalization. We take advantage of the far-red emission of the malachite green (MG) fluorogen to track FcεRI relative to dynamin-GFP and find that immobilized receptors readily correlate with locations of dynamin recruitment only under conditions that promote rapid endocytosis. These studies demonstrate the usefulness of the FAP system for single molecule studies and have provided new insights into the relationship among FcεRI structure, activity, and mobility.
Collapse
Affiliation(s)
- Samantha L. Schwartz
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Qi Yan
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Cheryl A. Telmer
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Keith A. Lidke
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Marcel P. Bruchez
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| | - Diane S. Lidke
- Department of Pathology and Cancer
Research and Treatment Center, ‡Department of Physics
and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Molecular Biosensor and Imaging Center, ∥Department of Biological
Sciences, ⊥Lane Center for
Computational Biology, #Department of Chemistry, Carnegie Mellon University, Pittsburgh Pennsylvania 15213, United States
| |
Collapse
|
3
|
Joo HM, Nam SY, Yang KH, Kim CS, Jin YW, Kim JY. The effects of low-dose ionizing radiation in the activated rat basophilic leukemia (RBL-2H3) mast cells. J Biol Chem 2012; 287:27789-95. [PMID: 22700973 DOI: 10.1074/jbc.m112.378497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.
Collapse
Affiliation(s)
- Hae Mi Joo
- Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Seoul 132-703, Korea
| | | | | | | | | | | |
Collapse
|
4
|
Sigalov AB. Cells diversify transmembrane signaling through the controlled chaos of protein disorder. SELF/NONSELF 2011; 2:75-79. [PMID: 22299058 PMCID: PMC3268992 DOI: 10.4161/self.2.2.15756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022]
Abstract
Cell surface receptors function to transduce signals across the cell membrane leading to a variety of biologic responses. Structurally, these integral proteins can be classified into two main families, depending on whether extracellular ligand-binding and intracellular signaling domains are located on the same protein chain (single-chain receptors, SRs) or on separate subunits (multichain receptors, MRs). Since most MRs are immune receptors, they are all commonly referred to as multi-chain immune recognition receptors (MIRRs). Recent studies reveal that, in contrast to well-structured signaling domains of SRs, those of MIRRs represent intrinsically disordered regions, the regions that lack a well-defined three-dimensional structure under physiological conditions. Why did nature separate recognition and signaling functions of MIRRs? Why for MIRRs did nature select to provide highly specific signaling through the chaos of protein disorder? What mechanisms could control this chaos in the process of transmembrane signal transduction to provide the specificity and diversity of the immune response? Here, I summarize recent findings that may not only shed light on these and other questions but also add significantly to our understanding of receptor signaling, a fundamental process that plays a critical role in health and disease.
Collapse
|
5
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
6
|
Sakai S, Sugawara T, Matsubara K, Hirata T. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors. J Biol Chem 2009; 284:28172-28179. [PMID: 19700409 DOI: 10.1074/jbc.m109.001099] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and beta-carotene significantly inhibited the antigen-induced release of beta-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (Fc epsilonRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited Fc epsilonRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of Fc epsilonRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of Fc epsilonRI to lipid rafts, which are known as platforms of the aggregation of Fc epsilonRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of Fc epsilonRI to lipid rafts. This is the first report that focused on the aggregation of Fc epsilonRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts.
Collapse
Affiliation(s)
- Shota Sakai
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502.
| | - Kiminori Matsubara
- Department of Human Life Sciences Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan
| | - Takashi Hirata
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502
| |
Collapse
|
7
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Fattakhova GV, Masilamani M, Narayanan S, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. Endosomal trafficking of the ligated FcvarepsilonRI receptor. Mol Immunol 2008; 46:793-802. [PMID: 18945491 DOI: 10.1016/j.molimm.2008.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/21/2022]
Abstract
In addition to initiating signaling cascades leading to mast cell mediator release, aggregation of the high affinity IgE receptor (FcvarepsilonRI) leads to rapid internalization of the cross-linked receptor. However, little is known about the trafficking of the internalized FcvarepsilonRI. Here we demonstrate that in RBL-2H3 cells, aggregated FcvarepsilonRI appears in the early endosomal antigen 1 (EEA1(+)) domains of the early endosomes within 15min after ligation. Minimal co-localization of FcvarepsilonRI with Rab5 was observed by 30min, followed by its appearance in the Rab7(+) late endosomes and lysosomes at later time points. During endosomal sorting, FcvarepsilonRIalpha and gamma subunits remain associated. In Syk-deficient RBL-2H3 cells, the rate of transport to lysosomes is markedly increased. Taken together, our data demonstrate time-dependent sorting of aggregated FcvarepsilonRI within the endosomal-lysosomal network, and that Syk may play an essential role in regulating the trafficking and retention of FcvarepsilonRI in endosomes.
Collapse
Affiliation(s)
- Gul'nar V Fattakhova
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Sigalov AB. Immune cell signaling: a novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci 2006; 27:518-24. [PMID: 16908074 DOI: 10.1016/j.tips.2006.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Multichain immune recognition receptors (MIRRs) represent a family of surface receptors that is expressed on different cells and that transduces extracellular signals, leading to many biological responses. The most intriguing common structural feature of MIRR family members is that the extracellular recognition domains and the intracellular signaling domains are located on separate subunits. It is not clear how extracellular ligand binding triggers MIRRs and initiates intracellular signal-transduction processes. In this article, I suggest that the structural similarity of the MIRRs provides the basis for the similarity in the mechanisms of MIRR-mediated transmembrane signaling. This hypothesis assumes that the therapeutic strategies learned from a novel mechanistic model of MIRR-mediated signal transduction, the signaling chain homo-oligomerization model, are generalized for this entire family and have important implications for the treatment of many disorders that are mediated by immune cells, including HIV.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
10
|
Sigalov AB. Multichain immune recognition receptor signaling: different players, same game? Trends Immunol 2005; 25:583-9. [PMID: 15489186 DOI: 10.1016/j.it.2004.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
11
|
Sigalov A, Aivazian D, Stern L. Homooligomerization of the cytoplasmic domain of the T cell receptor zeta chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 2004; 43:2049-61. [PMID: 14967045 DOI: 10.1021/bi035900h] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen receptors on T cells, B cells, mast cells, and basophils all have cytoplasmic domains containing one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. How clustering of receptor extracellular domains leads to phosphorylation of cytoplasmic domain ITAMs is not known, and little structural or biochemical information is available for the ITAM-containing cytoplasmic domains. Here we investigate the conformation and oligomeric state of several immune receptor cytoplasmic domains, using purified recombinant proteins and a variety of biophysical and biochemical techniques. We show that all of the cytoplasmic domains of ITAM-containing signaling subunits studied are oligomeric in solution, namely, T cell antigen receptor zeta, CD3epsilon, CD3delta, and CD3gamma, B cell antigen receptor Igalpha and Igbeta, and Fc receptor FcepsilonRIgamma. For zeta(cyt), the oligomerization behavior is best described by a two-step monomer-dimer-tetramer fast dynamic equilibrium with dissociation constants in the order of approximately 10 microM (monomer-dimer) and approximately 1 mM (dimer-tetramer). In contrast to the other ITAM-containing proteins, Igalpha(cyt) forms stable dimers and tetramers even below 10 microM. Circular dichroic analysis reveals the lack of stable ordered structure of the cytoplasmic domains studied, and oligomerization does not change the random-coil-like conformation observed. The random-coil nature of zeta(cyt) was also confirmed by heteronuclear NMR. Phosphorylation of zeta(cyt) and FcepsilonRIgamma(cyt) does not significantly alter their oligomerization behavior. The implications of these results for transmembrane signaling and cellular activation by immune receptors are discussed.
Collapse
MESH Headings
- Amino Acid Motifs
- Chromatography, Gel
- Cross-Linking Reagents/chemistry
- Cytoplasm/chemistry
- Cytoplasm/metabolism
- Dimerization
- Escherichia coli/genetics
- Humans
- Light
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Nuclear Magnetic Resonance, Biomolecular
- Phosphorylation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/isolation & purification
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Scattering, Radiation
- Solutions
- Temperature
- Thermodynamics
- Tyrosine/chemistry
- Tyrosine/metabolism
- Ultracentrifugation
Collapse
Affiliation(s)
- Alexander Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
12
|
Abstract
IgE receptors are implicated as important components of the immunological pathway in allergic and inflammatory diseases. Recent investigations have begun to unravel the structure, signal transduction and function of IgE receptors from different cell types in rodent and human systems. Studies of the mechanisms involved might provide opportunities for therapeutic intervention strategies in the treatment of allergic and hypersensitivity reactions.
Collapse
Affiliation(s)
- N Novak
- Department of Dermatology, Friedrich-Wilhelms-University of Bonn, D-53105, Bonn, Germany
| | | | | |
Collapse
|