1
|
Brown G. Deregulation of All- Trans Retinoic Acid Signaling and Development in Cancer. Int J Mol Sci 2023; 24:12089. [PMID: 37569466 PMCID: PMC10419198 DOI: 10.3390/ijms241512089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer stem cells are the root cause of cancer, which, in essence, is a developmental disorder. All-trans retinoic acid (ATRA) signaling via ligand-activation of the retinoic acid receptors (RARs) plays a crucial role in tissue patterning and development during mammalian embryogenesis. In adults, active RARγ maintains the pool of hematopoietic stem cells, whereas active RARα drives myeloid cell differentiation. Various findings have revealed that ATRA signaling is deregulated in many cancers. The enzymes for ATRA synthesis are downregulated in colorectal, gastric, lung, and oropharyngeal cancers. ATRA levels within breast, ovarian, pancreatic, prostate, and renal cancer cells were lower than within their normal counterpart cells. The importance is that 0.24 nM ATRA activates RARγ (for stem cell stemness), whereas 100 times more is required to activate RARα (for differentiation). Moreover, RARγ is an oncogene regarding overexpression within colorectal, cholangiocarcinoma, hepatocellular, ovarian, pancreatic, and renal cancer cells. The microRNA (miR) 30a-5p downregulates expression of RARγ, and miR-30a/miR-30a-5p is a tumor suppressor for breast, colorectal, gastric, hepatocellular, lung, oropharyngeal, ovarian, pancreatic, prostate, and renal cancer. These complementary findings support the view that perturbations to ATRA signaling play a role in driving the abnormal behavior of cancer stem cells. Targeting ATRA synthesis and RARγ has provided promising approaches to eliminating cancer stem cells because such agents have been shown to drive cell death.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Wong YF, Kopp JB, Roberts C, Scambler PJ, Abe Y, Rankin AC, Dutt N, Hendry BM, Xu Q. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS One 2011; 6:e16770. [PMID: 21326615 PMCID: PMC3033902 DOI: 10.1371/journal.pone.0016770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/29/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. METHODOLOGY/PRINCIPAL FINDINGS RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. CONCLUSIONS/SIGNIFICANCE Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.
Collapse
Affiliation(s)
- Yuen Fei Wong
- Department of Renal Medicine, King's College London, London, United Kingdom
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Catherine Roberts
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | - Peter J. Scambler
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | - Yoshifusa Abe
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Neelanjana Dutt
- Department of Histopathology, King's College Hospital, London, United Kingdom
| | - Bruce M. Hendry
- Department of Renal Medicine, King's College London, London, United Kingdom
| | - Qihe Xu
- Department of Renal Medicine, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Yoon M, Madden MC, Barton HA. Developmental Expression of Aldehyde Dehydrogenase in Rat: a Comparison of Liver and Lung Development. Toxicol Sci 2005; 89:386-98. [PMID: 16291827 DOI: 10.1093/toxsci/kfj045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill North Carolina 27599-7315, USA
| | | | | |
Collapse
|
5
|
Brodeur H, Gagnon I, Mader S, Bhat PV. Cloning of monkey RALDH1 and characterization of retinoid metabolism in monkey kidney proximal tubule cells. J Lipid Res 2003; 44:303-13. [PMID: 12576512 DOI: 10.1194/jlr.m200359-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans and 9-cis retinoic acids function as ligands for retinoic acid receptors (RARs and RXRs), which are ligand-dependent transcription factors and play important roles in development and cellular differentiation. Several retinal dehydrogenases are likely to contribute to the production of all-trans and 9-cis RAs in vivo, but their respective roles in different tissues are still poorly characterized. We have previously characterized and cloned from kidney tissues the rat retinal dehydrogenase type 1 (RALDH1), which oxidizes all-trans and 9-cis retinal with high efficiency but is inactive with 13-cis retinal. Here we have characterized the retinal-oxidizing activity in monkey JTC12 cells, which are derived from kidney proximal tubules. In vitro assay of cell lysates revealed the presence of a NAD+-dependent dehydrogenase that catalyzed the oxidation of all-trans, 9-cis, and 13-cis retinal. Northern blot analysis of JTC12 RNAs and cloning by reverse transcription-polymerase chain reaction demonstrated expression of a monkey homolog of RALDH1. Bacterially expressed JTC12 RALDH1 catalyzed conversion of all three retinal isomers, with a higher catalytic efficiency for 9-cis retinal than for all-trans and 13-cis retinal. Accordingly, live JTC12 produced 9-cis retinoic acid more efficiently than all-trans retinoic acid from their respective retinal precursors. Only metabolites corresponding to the same steric conformation were formed from 9-cis or all-trans retinal, indicating a lack of detectable isomerizing activity in JTC12 cells.
Collapse
Affiliation(s)
- Helene Brodeur
- Laboratory of Nutrition and Cancer, Universite de Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
6
|
Guimond J, Devost D, Brodeur H, Mader S, Bhat PV. Characterization of the rat RALDH1 promoter. A functional CCAAT and octamer motif are critical for basal promoter activity. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1579:81-91. [PMID: 12427543 DOI: 10.1016/s0167-4781(02)00510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.
Collapse
Affiliation(s)
- Julie Guimond
- Laboratory of Nutrition and Cancer, Centre Hospitalier de l'Universite de Montreal-Hotel-Dieu, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
7
|
Niederreither K, Vermot J, Fraulob V, Chambon P, Dolle P. Retinaldehyde dehydrogenase 2 (RALDH2)- independent patterns of retinoic acid synthesis in the mouse embryo. Proc Natl Acad Sci U S A 2002; 99:16111-6. [PMID: 12454286 PMCID: PMC138573 DOI: 10.1073/pnas.252626599] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2002] [Indexed: 11/18/2022] Open
Abstract
Knockout of the murine retinoic acid (RA)-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2) gene leads to early morphogenetic defects and embryonic lethality. Using a RA-responsive reporter transgene, we have looked for RA-generating activities in Raldh2-null mouse embryos and investigated whether these activities could be ascribed to the other known RALDH enzymes (RALDH1 and RALDH3). To this end, the early defects of Raldh2(-/-) embryos were rescued through maternal dietary RA supplementation under conditions that do not interfere with the activity of the reporter transgene in WT embryos. We show that RALDH2 is responsible for most of the patterns of reporter transgene activity in the spinal cord and trunk mesodermal derivatives. However, reporter transgene activity was selectively detected in Raldh2(-/-) embryos within the mesonephric area that expresses RALDH3 and in medial-ventral cells of the spinal cord and posterior hindbrain, up to the level of the fifth rhombomere. The craniofacial patterns of RA-reporter activity were unaltered in Raldh2(-/-) mutants. Although these patterns correlated with the presence of Raldh1 andor Raldh3 transcripts in eye, nasal, and inner ear epithelia, no such correlation was found within forebrain neuroepithelium. These data suggest the existence of additional RA-generating activities in the differentiating forebrain, hindbrain, and spinal cord, which, along with RALDH1 and RALDH3, may account for the development of Raldh2(-/-) mutants once these have been rescued for early lethality.
Collapse
Affiliation(s)
- Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche ScientifiqueInstitut National de la Santé et de la Recherche MédicaleUniversité Louis PasteurCollège de France, Strasbourg, France
| | | | | | | | | |
Collapse
|
8
|
Montplaisir V, Lan NC, Guimond J, Savineau C, Bhat PV, Mader S. Recombinant class I aldehyde dehydrogenases specific for all-trans- or 9-cis-retinal. J Biol Chem 2002; 277:17486-92. [PMID: 11882655 DOI: 10.1074/jbc.m112445200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular basis for the specificity of aldehyde dehydrogenases (ALDHs) for retinal, the precursor of the morphogen retinoic acid, is still poorly understood. We have expressed in Escherichia coli both retinal dehydrogenase (RALDH), a cytosolic aldehyde dehydrogenase originally isolated from rat kidney, and the highly homologous phenobarbital-induced aldehyde dehydrogenase (PB-ALDH). Oxidation of propanal was observed with both enzymes. On the other hand, recombinant RALDH efficiently catalyzed oxidation of 9-cis- and all-trans-retinal, whereas PB-ALDH was inactive with all-trans-retinal and poorly active with 9-cis-retinal. A striking difference between PB-ALDH and all other class I ALDHs is the identity of the amino acid immediately preceding the active nucleophile Cys(302) (Ile(301) instead of Cys(301)). Nevertheless, these amino acids could be exchanged in either RALDH or PB-ALDH without affecting substrate specificity. Characterization of chimeric enzymes demonstrates that distinct groups of amino acids control the differential activity of RALDH and PB-ALDH with all-trans- and 9-cis-retinal. Of 52 divergent amino acids, the first 17 are crucial for activity with all-trans-retinal, whereas the next 25 are important for catalysis of 9-cis-retinal oxidation. Recombinant enzymes with specificity for all-trans- or 9-cis-retinal were obtained, which should provide useful tools to study the relative importance of local production of all-trans- versus 9-cis-retinoic acid in development and tissue differentiation.
Collapse
Affiliation(s)
- Veronique Montplaisir
- Department of Biochemistry, University of Montreal, Montreal, Quebec H3R 3N2, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Gagnon I, Duester G, Bhat PV. Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:156-62. [PMID: 11983430 DOI: 10.1016/s0167-4838(02)00213-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Retinal dehydrogenase (RALDH) isozymes catalyze the terminal oxidation of retinol into retinoic acid (RA) that is essential for embryogenesis and tissue differentiation. To understand the role of mouse type 2 RALDH in synthesizing the ligands (all-trans and 9-cis RA) needed to bind and activate nuclear RA receptors, we determined the detailed kinetic properties of RALDH2 for various retinal substrates. Purified recombinant RALDH2 showed a pH optimum of 9.0 for all-trans retinal oxidation. The activity of the enzyme was lower at 37 degrees C compared to 25 degrees C. The efficiency of conversion of all-trans retinal to RA was 2- and 5-fold higher than 13-cis and 9-cis retinal, respectively. The K(m) for all-trans and 13-cis retinal were similar (0.66 and 0.62 microM, respectively). However, the K(m) of RALDH2 for 9-cis retinal substrate (2.25 microM) was 3-fold higher compared to all-trans and 13-cis retinal substrates. Among several reagents tested for their ability to either inhibit or activate RALDH2, citral and para-hydroxymercuribenzoic acid (p-HMB) inhibited and MgCl(2) activated the reaction. Comparison of the kinetic properties of RALDH2 for retinal substrates and its activity towards various reagents with those of previously reported rat kidney RALDH1 and human liver aldehyde dehydrogenase-1 showed distinct differences. Since RALDH2 has low K(m) and high catalytic efficiency for all-trans retinal, it may likely be involved in the production of all-trans RA in vivo.
Collapse
Affiliation(s)
- Isabelle Gagnon
- Laboratory of Nutrition and Cancer, Centre Hospitalier de l'Université de Montreal-Research Centre, Hotel-Dieu Campus, Université de Montreal, 3840 rue Saint-Urbain, Montreal, Quebec, Canada H2W 1T8
| | | | | |
Collapse
|
10
|
Niederreither K, Fraulob V, Garnier JM, Chambon P, Dollé P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 2002; 110:165-71. [PMID: 11744377 DOI: 10.1016/s0925-4773(01)00561-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three retinaldehyde dehydrogenases (RALDH1, RALDH2 and RALDH3), which catalyze the oxidation of retinaldehyde into retinoic acid, have been shown to be differentially expressed during early embryogenesis. Here, we report their differential expression patterns throughout later mouse organogenesis. Raldh1 is prominently expressed in developing lung (notably in bronchial and tracheal epithelia), and shows stage-specific expression in stomach and intestine epithelial and mesenchymal layers. Raldh3 expression is specific to the differentiating intestinal lamina propria. Raldh2 is expressed throughout the kidney nephrogenic zone, whereas Raldh1 and Raldh3 are mostly expressed in collecting duct epithelia. Raldh3 expression is more restricted than that of Raldh1 in the urogenital tract and sex gland epithelia, whereas Raldh2 expression is mesenchymal. Raldh1 is coexpressed with Raldh2 in the early heart epicardium, and is later specifically expressed in developing heart valves. All three genes exhibit distinct expression patterns in respiratory and olfactory epithelia and/or mesenchymes, and in developing teeth. Only Raldh1 expression is seen after birth in specific brain structures. These data indicate a requirement for regulated RA synthesis in various differentiating organs.
Collapse
Affiliation(s)
- Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, B.P. 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND An increasing rate of highly-active antiretroviral therapy (HAART)-associated metabolic and morphological abnormalities has been reported in HIV-infected persons. Some of them resemble retinoid-related adverse events, indicating alteration(s) of retinol metabolism or of retinoic acid-mediated signalling. OBJECTIVE To evaluate retinol levels in patients with or without HAART and to assess the effect of antiretroviral agents on retinal dehydrogenase (RALDH), a key enzyme involved in retinoic acid synthesis. DESIGN Plasma retinol levels, measured in six patients receiving HAART and in five others with no antiretroviral therapy, were correlated with levels of serum retinol-binding proteins. We then studied the effects of seven antiretroviral agents on RALDH activity and gene expression in a kidney-derived cell line (LLCPK). RESULTS Plasma retinol levels in patients receiving HAART were decreased in comparison with those not receiving antiretroviral drugs (51 +/- 5 versus 66 +/- 11 microg/dl; P = 0.03), whereas retinol-binding protein levels were increased (68 +/- 18 versus 45 +/- 10 mg/l; P = 0.04). RALDH activity was heightened by ritonavir (24%), indinavir (17%), saquinavir (17%), zalcitabine (14%), delavirdine (12%) and nelfinavir (10%) and decreased (22%) by DMP-450. RALDH gene expression was induced only by indinavir. CONCLUSIONS These data indicate that certain retinoid-like adverse effects in HAART-receiving patients are not due to higher retinol levels. Enhanced RALDH activity or/and gene expression by some protease inhibitors could increase retinoic acid concentrations. Elevated retinoic acid levels might be responsible for retinoid-like or other adverse effects due to alterations in the expression of retinoic acid-responsive genes.
Collapse
Affiliation(s)
- E Toma
- Department of Microbiology & Infectious Diseases, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
12
|
Vermot J, Fraulob V, Dollé P, Niederreither K. Expression of enzymes synthesizing (aldehyde dehydrogenase 1 and reinaldehyde dehydrogenase 2) and metabolizaing (Cyp26) retinoic acid in the mouse female reproductive system. Endocrinology 2000; 141:3638-45. [PMID: 11014218 DOI: 10.1210/endo.141.10.7696] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin A is required for female reproduction. Rodent uterine cells are able to synthesize retinoic acid (RA), the active vitamin A derivative, and express RA receptors. Here, we report that two RA-synthesizing enzymes [aldehyde dehydrogenase 1 (Aldh1) and retinaldehyde dehydrogenase 2 (Raldh2)] and a cytochrome P450 (Cyp26) that metabolizes vitamin A and RA into more polar metabolites exhibit dynamic expression patterns in the mouse uterus, both during the ovarian cycle and during early pregnancy. Aldh1 expression is up-regulated during diestrus and proestrus in the uterine glands, whereas Raldh2 is highly induced in the endometrial stroma in metestrus. Cyp26 expression, which is not detectable during the normal ovarian cycle, is strongly induced in the uterine luminal epithelium, 24 h after human CG hormonal administration. Raldh2 stromal expression also strongly responds to gonadotropin (PMSG and human CG) induction. Furthermore, Raldh2 expression can be hormonally induced in stromal cells of the vagina and cervix. All three enzymes exhibit differential expression profiles during early pregnancy. Aldh1 glandular expression is sharply induced at 2.5 gestational days, whereas Raldh2 stromal expression increases more steadily until the implantation phase. Cyp26 epithelial expression is strongly induced between 3.5-4.5 gestational days, i.e. when the developing blastocysts colonize the uterine lumen. These data suggest a need for precise regulation of RA synthesis and/or metabolism, in both cycling and pregnant uterus.
Collapse
Affiliation(s)
- J Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collège de France, Illkirch, CU de Strasbourg, France
| | | | | | | |
Collapse
|
13
|
Hsu LC, Chang WC, Yoshida A. Mouse type-2 retinaldehyde dehydrogenase (RALDH2): genomic organization, tissue-dependent expression, chromosome assignment and comparison to other types. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:289-93. [PMID: 10858567 DOI: 10.1016/s0167-4781(00)00108-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinaldehyde dehydrogenase (RALDH) isozymes catalyze the formation of an essential developmental modulator, retinoic acid. We determined the structural organization of mouse type-2 Raldh2 by isolation of overlapping genomic DNA clones from a phage library. The gene consists of 14 exons spanning more than 70 kb of genomic DNA. It was localized to mouse chromosome 6. Northern blot analysis revealed testis-specific expression. The RALDH genes belong to the aldehyde dehydrogenase (ALDH) multi-gene family. Three types of RALDH genes (e.g. human ALDH1/mouse Ahd2/rat RalDH(I), human ALDH11/mouse Raldh2/rat RalDH(II) and human ALDH6) are highly conserved during evolution, sharing about 70% identity at the amino acid level between any two gene types and 90% identity between any two mammalian genes of the same type. Different RALDH types show specific tissue and developmental expression patterns, suggesting (i) a regulatory mechanism of retinoic acid synthesis via different promoters of RALDH genes, and (ii) distinctive biological roles of different isozymes in embryogenesis and organogenesis.
Collapse
Affiliation(s)
- L C Hsu
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
14
|
Ang HL, Duester G. Retinoic acid biosynthetic enzyme ALDH1 localizes in a subset of retinoid-dependent tissues during xenopus development. Dev Dyn 1999; 215:264-72. [PMID: 10398536 DOI: 10.1002/(sici)1097-0177(199907)215:3<264::aid-aja8>3.0.co;2-i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Control of retinoic acid synthesis in vertebrate organisms is undoubtedly important for regulating the numerous retinoid signaling events which occur during development. The mechanisms which accomplish this task involve enzymes such as class I aldehyde dehydrogenase (ALDH1), which has recently been found to be conserved from amphibians to mammals and which functions as a retinoic acid biosynthetic enzyme in vivo. Here we have found that Xenopus ALDH1 mRNA and protein is expressed in a subset of retinoid-dependent tissues which develop shortly after neurulation during the tail bud stages. ALDH1 mRNA was first clearly detectable by in situ hybridization in stage 28 tail bud embryos localized in the olfactory placode and pronephros, and at stage 35 mRNA was also detected in the pronephric duct. Antibodies were generated against Xenopus ALDH1, and immunohistochemistry was used to demonstrate that ALDH1 protein accumulates in the olfactory placode, pronephros, and dorsal retina at stage 28, and additionally in the lens placode and pronephric duct at stage 35. Neither ALDH1 mRNA nor protein was detected in the posterior region of Xenopus embryos during the tail bud stages. In contrast to neurula stage embryos in which retinoic acid is distributed in an anteroposterior gradient with the high end posteriorly, we found that tail bud stage embryos have retinoic acid present in significant levels in both the head and trunk regions, but with no detection in the posterior region. These findings are consistent with ALDH1 contributing to retinoic acid synthesis needed for development of certain head structures (olfactory placodes, dorsal retina, lens placode) and certain trunk structures (pronephros and pronephric duct). Dev Dyn 1999;215:264-272.
Collapse
Affiliation(s)
- H L Ang
- Gene Regulation Program, Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|