1
|
Chen CT, Liao WY, Hsu CC, Hsueh KC, Yang SF, Teng YH, Yu YL. FUT2 genetic variants as predictors of tumor development with hepatocellular carcinoma. Int J Med Sci 2017; 14:885-890. [PMID: 28824326 PMCID: PMC5562196 DOI: 10.7150/ijms.19734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023] Open
Abstract
Lewis antigens related to the ABO blood group are fucosylated oligosaccharides and are synthesized by specific glycosyltransferases (FUTs). FUTs are involved in various biological processes including cell adhesion and tumor progression. The fucosyltransferase-2 gene (FUT2) encodes alpha (1,2) fucosyltransferase, which is responsible for the addition of the alpha (1,2)-linkage of fucose to glycans. Aberrant fucosylation occurs frequently during the development and progression of hepatocellular carcinoma (HCC). However, the association of FUT2 polymorphisms with HCC development has not been studied. Therefore, we aimed to investigate the association of FUT2 polymorphisms with demographic, etiological, and clinical characteristics and with susceptibility to HCC. In this study, a total of 339 patients and 720 controls were recruited. The genotypes of FUT2 at four single-nucleotide polymorphisms (SNPs; rs281377, rs1047781, rs601338, and rs602662) were detected by real-time polymerase chain reaction from these samples. Compared with the wild-type genotype at SNP rs1047781, which is homozygous for nucleotides AA, at least one polymorphic T allele (AT or TT) displayed significant association with clinical stage (p = 0.048) and tumor size (p = 0.022). Our study strongly implicates the polymorphic locus rs1047781 of FUT2 as being associated with HCC development.
Collapse
Affiliation(s)
- Chih Tien Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen Ying Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia Chun Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Kuan Chun Hsueh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of General Surgery, Department of Surgery, Tungs' Taichung MetroHarbour Hospital, Taichung, Taiwan
| | - Shun Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying Hock Teng
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yung Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
2
|
Lane WJ, Westhoff CM, Uy JM, Aguad M, Smeland-Wagman R, Kaufman RM, Rehm HL, Green RC, Silberstein LE. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion 2015; 56:743-54. [PMID: 26634332 PMCID: PMC5019240 DOI: 10.1111/trf.13416] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/15/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next-generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS-based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data.
Collapse
Affiliation(s)
- William J Lane
- Department of Pathology.,Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | - Heidi L Rehm
- Department of Pathology.,Harvard Medical School, Boston, Massachusetts.,Laboratory for Molecular Medicine.,Partners Healthcare Personalized Medicine, Boston, Massachusetts
| | - Robert C Green
- Division of Genetics, Department of Medicine.,Harvard Medical School, Boston, Massachusetts.,Partners Healthcare Personalized Medicine, Boston, Massachusetts
| | - Leslie E Silberstein
- Division of Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital
| | | |
Collapse
|
3
|
Nosaka M, Ishida Y, Tanaka A, Hayashi T, Miyashita T, Kaminaka C, Eisenmenger W, Furukawa F, Kimura A. Aberrant expression of histo-blood group A type 3 antigens in vascular endothelial cells in inflammatory sites. J Histochem Cytochem 2007; 56:223-31. [PMID: 17998569 DOI: 10.1369/jhc.7a7290.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histo-blood group ABH antigens are widely distributed in human tissues. The epitopes of ABH antigens are carried by at least four different peripheral core isotypes of internal carbohydrate backbones (type 1-4). Each type of ABH antigen is expressed tissue specifically, and aberrant expression of ABH antigens is often observed during oncogenesis. We immunohistochemically examined the expression of A type 3 antigens in wounded and diseased skin tissues (A and AB blood groups). In uninjured skin, the expression of A type 3 antigens was restricted to the eccrine sweat gland. In addition to the sweat glands, A type 3 antigens were found in vascular endothelial cells of the wound sites. The extent of A type 3 antigens expression related to postinfliction intervals. A significantly higher expression rate of A type 3 antigens in endothelial cells was also observed in diseased skin, suggesting that inflammation might induce A type 3 antigen expression in endothelial cells. Double-color immunofluorescence staining of the specimens showed that von Willebrand factor (vWF) was a core-protein of A type 3 determinants aberrantly expressed in endothelial cells in inflamed tissues, suggesting that aberrant expression of A type 3 antigens is involved in stabilization of vWF in inflammation.
Collapse
Affiliation(s)
- Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Holgersson J, Gustafsson A, Breimer ME. Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol Cell Biol 2005; 83:694-708. [PMID: 16266322 DOI: 10.1111/j.1440-1711.2005.01373.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relative shortage of human organs for transplantation is today the major barrier to a broader use of transplantation as a means of treating patients with end-stage organ failure. This barrier could be partly overcome by an increased use of blood group ABO-incompatible live donors, and such trials are currently underway at several transplant centres. If xenotransplantation can be used clinically in the future, the human organ shortage will, in principle, be eradicated. In both these cases, carbohydrate antigens and the corresponding anti-carbohydrate antibodies are the major primary immunological barriers to overcome. Refined carbohydrate-based therapeutics may permit an increased number of ABO-incompatible transplantations to be carried out, and may remove the initial barriers to clinical xenotransplantation. Here, we will discuss the chemical characteristics of protein-carbohydrate interactions and outline carbohydrate-based antirejection therapies as used today in experimental as well as in clinical settings. Novel mucin-based adsorbers of natural anti-carbohydrate antibodies will also be described.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institute, Karolinska University Hospital at Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Löfling JC, Hauzenberger E, Holgersson J. Absorption of anti-blood group A antibodies on P-selectin glycoprotein ligand-1/immunoglobulin chimeras carrying blood group A determinants: core saccharide chain specificity of the Se and H gene encoded alpha1,2 fucosyltransferases in different host cells. Glycobiology 2002; 12:173-82. [PMID: 11971861 DOI: 10.1093/glycob/12.3.173] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To specifically eliminate recipient anti-blood group ABO antibodies prior to ABO-incompatible organ or bone marrow transplantation, an efficient absorber of ABO antibodies has been developed in which blood group determinants may be carried at high density and by different core saccharide chains on a mucin-type protein backbone. The absorber was made by transfecting different host cells with cDNAs encoding a P-selectin glycoprotein ligand-1/mouse immunoglobulin G(2b) chimera (PSGL-1/mIgG(2b)), the H- or Se-gene encoded alpha1,2-fucosyltransferases (FUT1 or FUT2) and the blood group A gene encoded alpha1,3 N-acetylgalactosaminyltransferase (alpha1,3 GalNAcT). Western blot analysis of affinity-purified recombinant PSGL-1/mIgG(2b) revealed that different precursor chains were produced in 293T, COS-7m6, and Chinese hamster ovary (CHO)-K1 host cells coexpressing FUT1 or FUT2. FUT1 directed expression of H type 2 structures mainly, whereas FUT2 preferentially made H type 3 structures. None of the host cells expressing either FUT1 or FUT2 supported expression of H type 1 structures. Furthermore, the highest A epitope density was on PSGL-1/mIgG2(2b) made in CHO-K1 cells coexpressing FUT2 and the alpha1,3 GalNAcT. This PSGL-1/mIgG(2b) was used for absorption of anti-blood group A antibodies in human blood group O serum. At least 80 times less A trisaccharides on PSGL-1/mIgG(2b) in comparison to A trisaccharides covalently linked to macroporous glass beads were needed for the same level of antibody absorption. In conclusion, PSGL-1/mIgG(2b), if substituted with A epitopes, was shown to be an efficient absorber of anti-blood group A antibodies and a suitable model protein for studies on protein glycosylation.
Collapse
Affiliation(s)
- Jonas C Löfling
- Division of Clinical Immunology, F79, IMP1, Karolinska Institutet, Huddinge University Hospital AB, S-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Abstract
The alpha(1,2)fucosyltransferase Se enzyme regulates the expression of the ABH antigens in secretion. Secretors, who have ABH antigens in their saliva, have at least one functional Se allele in the FUT2 locus, while non-secretors, who fail to express ABH antigens in saliva, are homozygous for the non-functional se allele. Molecular analyses of the FUT2 polymorphism of various populations have indicated the ethnic specificity of null alleles: the null allele se(428) is a common Se enzyme-deficient allele in Africans and Caucasians but does not occur in Asians, whereas the null allele se(357,385) is specific to Asians. The gene frequency of se(428) or se(357,385) is about 0.5 in each respective population. Why the se(428) is absent in Asians is of interest. Also here, we describe the polymorphisms of the fucosyltransferase genes (FUT1, FUT3 and FUT6).
Collapse
Affiliation(s)
- Y Koda
- Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Japan
| | | | | |
Collapse
|
7
|
Fujitani N, Liu Y, Okamura T, Kimura H. Distribution of H type 1-4 chains of the ABO(H) system in different cell types of human respiratory epithelium. J Histochem Cytochem 2000; 48:1649-56. [PMID: 11101633 DOI: 10.1177/002215540004801208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We used three anti-H monoclonal antibodies (MAbs) specific for H Type 1, H Type 2, and H Type 3/4 antigens to investigate the distribution of H Type 1-H Type 4 chains of the ABO(H) histo-blood group in the human respiratory system. Strong staining of H Type 1 chain and weak staining of H Type 2 chain were observed in mucous cells of submucosal glands of bronchial epithelium, which were dependent on the secretor status. No H Type 3/4 chains were detected in mucous cells. Serous cells of submucosal glands of respiratory system showed no staining by three anti-H antibodies. H Type 1 and H Type 3/4 antigens were detected heterogeneously in apical surfaces of bronchial epithelium from secretors but not from nonsecretors. In contrast, basal cells of bronchial epithelium expressed H Type 2 irrespective of the secretor status, probably regulated by the H gene. Some alveolar Type II cells contained only H Types 3/4, which were dependent on the secretor status, whereas alveolar Type I cells had no H antigens. Our results indicated that different cell types in respiratory epithelium expressed different types of carbohydrate chains of histo-blood group antigens under the control of the H or the Se gene.
Collapse
Affiliation(s)
- N Fujitani
- Department of Forensic Medicine and Human Genetics, Faculty of Science, Okayama University of Science, Okayama, Japan
| | | | | | | |
Collapse
|
8
|
Barreaud JP, Saunier K, Souchaire J, Delourme D, Oulmouden A, Oriol R, Levéziel H, Julien R, Petit JM. Three bovine alpha2-fucosyltransferase genes encode enzymes that preferentially transfer fucose on Galbeta1-3GalNAc acceptor substrates. Glycobiology 2000; 10:611-21. [PMID: 10814703 DOI: 10.1093/glycob/10.6.611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the synthesis of alpha2-fucosylated epitopes in the bovine species, we have characterized cDNAs from various tissues. We found three distinct alpha2-fucosyltransferase genes, named bovine fut1, fut2, and sec1 which are homologous to human FUT1, FUT2, and Sec1 genes, respectively. Their open reading frames (ORF) encode polypeptides of 360 (bovine H), 344 (bovine Se), and 368 (bovine Sec1) amino acids, respectively. These enzymes transfer fucose in alpha1,2 linkage to ganglioside GM(1)and galacto- N -biose, but not to the phenyl-beta-D-galactoside, type 1 or type 2 acceptors, suggesting that their substrate specificity is different and more restricted than the other cloned mammalian alpha2-fucosyltransferases. Southern blot analyses detected four related alpha2-fucosyltransferase sequences in the bovine genome while only three have been described in other species. The supernumerary entity seems to be related to the alpha2-fucosyltransferase activity which can also use type 1 and phenyl-beta-D-galactoside substrate acceptors. It was exclusively found in bovine intestinal tract. Our results show that, at least in one mammalian species, four alpha2-fucosyltransferases are present, three adding a fucose on alpha1,2 linkage on type 3/4 acceptor (Galbeta1-3GalNAc) and another able to transfer also fucose on phenyl-beta-D-galactoside and type 1 (Galbeta1-3GlcNAc) acceptors. The phylogenetic tree of the enzymes homologous to those encoded by the bovine fut1, fut2, and sec1 genes revealed two main families, one containing all the H-like proteins and the second containing all the Se-like and Sec1-like proteins. The Sec1-like family had a higher evolutionary rate than the Se-like family.
Collapse
Affiliation(s)
- J P Barreaud
- Unité de Génétique Moléculaire Animale-UMR 1061 (INRA/Université de Limoges), France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fujitani N, Liu Y, Toda S, Shirouzu K, Okamura T, Kimura H. Expression of H type 1 antigen of ABO histo-blood group in normal colon and aberrant expressions of H type 2 and H type 3/4 antigens in colon cancer. Glycoconj J 2000; 17:331-8. [PMID: 11261842 DOI: 10.1023/a:1007173722426] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have immunohistochemically examined the distribution of the H antigens of type 1, type 2 and type 3/4 chains of the ABO(H) histo-blood group system in human normal colon and in colon cancer using three monoclonal antibodies specific for each of the H type 1/2, H type 2, and the H type 3/4 chain. We unexpectedly found that mucosa of the normal colon from secretors but not that from nonsecretors expressed only H type 1 and did not express H type 2 or H type 3/4. The H type 1 was expressed in goblet cells. Positive goblet cells expressing H type 1 were decreased in number progressively from the proximal colon to the rectum. In tumors, 4 (57%) of 7 cancer tissues of the proximal colon from secretors expressed no H type 1, whereas all 8 cancer tissues of the distal colon from secretors expressed H type 1. The aberrant expressions of H type 2 and H type 3/4 (47 and 67%, respectively) were found in cancer tissues from both the proximal and the distal colon. Tumors from nonsecretors did not express any H antigens. Our results suggested that the expression of H type 1 in the normal colon and the aberrant expressions of H type 2 and H type 3/4 in colon cancer tissues were regulated by FUT2-encoded Se type alpha(1,2)fucosyltransferase. However, UEA-I-positive substance(s) rather than H type 2 were uniquely expressed throughout the normal colon and in colon cancers from both secretors and nonsecretors.
Collapse
Affiliation(s)
- N Fujitani
- Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|