1
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
2
|
Pattison LA, Cloake A, Chakrabarti S, Hilton H, Rickman RH, Higham JP, Meng MY, Paine LW, Dannawi M, Qiu L, Ritoux A, Bulmer DC, Callejo G, Smith ESJ. Digging deeper into pain: an ethological behavior assay correlating well-being in mice with human pain experience. Pain 2024; 165:1761-1773. [PMID: 38452214 PMCID: PMC11247454 DOI: 10.1097/j.pain.0000000000003190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
ABSTRACT The pressing need for safer, more efficacious analgesics is felt worldwide. Preclinical tests in animal models of painful conditions represent one of the earliest checkpoints novel therapeutics must negotiate before consideration for human use. Traditionally, the pain status of laboratory animals has been inferred from evoked nociceptive assays that measure their responses to noxious stimuli. The disconnect between how pain is tested in laboratory animals and how it is experienced by humans may in part explain the shortcomings of current pain medications and highlights a need for refinement. Here, we survey human patients with chronic pain who assert that everyday aspects of life, such as cleaning and leaving the house, are affected by their ongoing level of pain. Accordingly, we test the impact of painful conditions on an ethological behavior of mice, digging. Stable digging behavior was observed over time in naive mice of both sexes. By contrast, deficits in digging were seen after acute knee inflammation. The analgesia conferred by meloxicam and gabapentin was compared in the monosodium iodoacetate knee osteoarthritis model, with meloxicam more effectively ameliorating digging deficits, in line with human patients finding meloxicam more effective. Finally, in a visceral pain model, the decrease in digging behavior correlated with the extent of disease. Ultimately, we make a case for adopting ethological assays, such as digging, in studies of pain in laboratory animals, which we believe to be more representative of the human experience of pain and thus valuable in assessing clinical potential of novel analgesics in animals.
Collapse
Affiliation(s)
- Luke A. Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Alexander Cloake
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Sampurna Chakrabarti
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Helen Hilton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Rebecca H. Rickman
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - James P. Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Michelle Y. Meng
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Luke W. Paine
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Maya Dannawi
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Lanhui Qiu
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Anne Ritoux
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - David C. Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Callejo
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom. Dr. Chakrabarti is now with Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. Dr. Callejo is now with Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Schreiber T, Koopmann I, Brandstetter J, Talbot SR, Goldstein L, Hoffmann L, Schildt A, Joksch M, Krause B, Jaster R, Palme R, Zechner D, Vollmar B, Kumstel S. Evidence-Based Severity Assessment of Animal Models for Pancreatic Cancer. Biomedicines 2024; 12:1494. [PMID: 39062067 PMCID: PMC11275077 DOI: 10.3390/biomedicines12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Animal models are crucial to preclinical oncological research and drug development. Animal experiments must be performed in accordance with the 3R principles of replacement and reduction, if possible, and refinement where these procedures remain crucial. In addition, European Union legislations demand a continuous refinement approach, as well as pro- and retrospective severity assessment. In this study, an objective databased severity assessment was performed in murine models for pancreatic cancer induced by orthotopic, subcutaneous, or intravenous injection of Panc02 cells. Parameters such as body weight change, distress score, perianal temperature, mouse grimace scale, burrowing, nesting behavior, and the concentration of corticosterone in plasma and its metabolites in feces were monitored during tumor progression. The most important parameters were combined into a score and mapped against a reference data set by the Relative Severity Assessment procedure (RELSA) to obtain the maximum achieved severity for each animal (RELSAmax). This scoring revealed a significantly higher RELSAmax for the orthotopic model than for the subcutaneous and intravenous models. However, compared to animal models such as pancreatitis and bile duct ligation, the pancreatic cancer models are shown to be less severe. Data-based animal welfare assessment proved to be a valuable tool for comparing the severity of differently induced cancer models.
Collapse
Affiliation(s)
- Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Ingo Koopmann
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Jakob Brandstetter
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Preclinical Data Science, Hannover Medical School, 30625 Hannover, Germany;
| | - Lea Goldstein
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Lisa Hoffmann
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Markus Joksch
- Department of Nuclear Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (M.J.); (B.K.)
| | - Bernd Krause
- Department of Nuclear Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (M.J.); (B.K.)
| | - Robert Jaster
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Rupert Palme
- Unit of Experimental Endocrinology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| | - Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (T.S.); (I.K.); (J.B.); (L.G.); (L.H.); (D.Z.); (B.V.)
| |
Collapse
|
4
|
Chen K, Zhang S, Cui G, Zhang X, Song Y, Zheng J, Chen Y, Zheng T. Establishment of a hybrid model of atherosclerosis and acute colitis in ApoE-/- mice. PLoS One 2024; 19:e0289820. [PMID: 38498570 PMCID: PMC10947657 DOI: 10.1371/journal.pone.0289820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/27/2023] [Indexed: 03/20/2024] Open
Abstract
Inflammatory bowel disease (IBD) and atherosclerosis (AS) are both common chronic inflammatory diseases with similar pathophysiological mechanisms. Some studies have shown that IBD patients are at increased risk for early atherosclerosis, myocardial infarction and venous thrombosis. Here we set up a hybrid mouse model associated with atherosclerosis and acute colitis in order to investigate the interplay of the two diseases. We fed ApoE-/- mice with high fat diet to establish atherosclerosis model, and used animal ultrasound machine to detect the artery of mice noninvasively. Then a new hybrid model of atherosclerosis and acute colitis was prepared by drinking water for 7 days. At the end of the experiment, the hybrid model mice showed typically pathological and intuitionistic changes of atherosclerosis and acute colitis. We found the shortened colon length, high histopathological scores of the colon with mucosal erosion and necrosis, hyperlipidemia, a plaque-covered mouse aorta and plaque with foam cells and lipid deposition in the hybrid model group, which proved that the hybrid model was successfully established. At the same time, ultrasonic detection showed that the end-diastolic blood flow velocity and the relative dilation value were decreased, while systolic time / diastolic time, the wall thickness, systolic diameters as well as diastolic diameters were gradually increased, and statistical significance appeared as early as 8 weeks. We clearly described the process of establishing a hybrid model of atherosclerosis and acute colitis, which might provide a repeatable platform for the interaction mechanism exploring and drug screening of atherosclerosis and inflammatory bowel disease in preclinical study.
Collapse
Affiliation(s)
- Keke Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing, P. R. China
| | - Shengwei Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
| | - Guanghui Cui
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
| | - Xue Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
| | - Yujian Song
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
- Department of Ultrasound, Foshan First People’s Hospital, Foshan, P. R. China
| | - Jie Zheng
- Department of Traditional Chinese Medicine, Peking University Shenzhen Hospital, Shenzhen, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, The Hong Kong University of Science and Technology Medical Center, Shenzhen- Peking University, Shenzhen, P. R. China
| |
Collapse
|
5
|
Peppermüller PP, Gehring J, Zentrich E, Bleich A, Häger C, Buettner M. Grimace scale assessment during Citrobacter rodentium inflammation and colitis development in laboratory mice. Front Vet Sci 2023; 10:1173446. [PMID: 37342621 PMCID: PMC10277495 DOI: 10.3389/fvets.2023.1173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Bacterial infections and chronic intestinal inflammations triggered by genetic susceptibility, environment or an imbalance in the intestinal microbiome are usually long-lasting and painful diseases in which the development and maintenance of these various intestinal inflammations is not yet fully understood, research is still needed. This still requires the use of animal models and is subject to the refinement principle of the 3Rs, to minimize suffering or pain perceived by the animals. With regard to this, the present study aimed at the recognition of pain using the mouse grimace scale (MGS) during chronic intestinal colitis due to dextran sodium sulfate (DSS) treatment or after infection with Citrobacter rodentium. Methods In this study 56 animals were included which were divided into 2 experimental groups: 1. chronic intestinal inflammation (n = 9) and 2. acute intestinal inflammation (with (n = 23) and without (n = 24) C. rodentium infection). Before the induction of intestinal inflammation in one of the animal models, mice underwent an abdominal surgery and the live MGS from the cage side and a clinical score were assessed before (bsl) and after 2, 4, 6, 8, 24, and 48 hours. Results The highest clinical score as well as the highest live MGS was detected 2 hours after surgery and almost no sign of pain or severity were detected after 24 and 48 hours. Eight weeks after abdominal surgery B6-Il4/Il10-/- mice were treated with DSS to trigger chronic intestinal colitis. During the acute phase as well as the chronic phase of the experiment, the live MGS and a clinical score were evaluated. The clinical score increased after DSS administration due to weight loss of the animals but no change of the live MGS was observed. In the second C57BL/6J mouse model, after infection with C. rodentium the clinical score increased but again, no increased score values in the live MGS was detectable. Discussion In conclusion, the live MGS detected post-operative pain, but indicated no pain during DSS-induced colitis or C. rodentium infection. In contrast, clinical scoring and here especially the weight loss revealed a decreased wellbeing due to surgery and intestinal inflammation.
Collapse
|
6
|
Oliver VL, Pang DSJ. Pain Recognition in Rodents. Vet Clin North Am Exot Anim Pract 2023; 26:121-149. [PMID: 36402478 DOI: 10.1016/j.cvex.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Available methods for recognizing and assessing pain in rodents have increased over the last 10 years, including the development of validated pain assessment scales. Much of this work has been driven by the needs of biomedical research, and there are specific challenges to applying these scales in the clinical environment. This article provides an introduction to pain assessment scale validation, reviews current methods of pain assessment, highlighting their strengths and weaknesses, and makes recommendations for assessing pain in a clinical environment.
Collapse
Affiliation(s)
- Vanessa L Oliver
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Animal Health Unit, VP Research, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Daniel S J Pang
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
7
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Riedesel AK, Bach-Hagemann A, Abdulbaki A, Talbot SR, Tolba R, Schwabe K, Lindauer U. Burrowing behaviour of rats: Strain differences and applicability as well-being parameter after intracranial surgery. Lab Anim 2022; 56:356-369. [PMID: 35144494 DOI: 10.1177/00236772211072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mice, burrowing is considered a species-typical parameter for assessing well-being, while this is less clear in rats. This exploratory study evaluated burrowing behaviour in three rat strains during training and in the direct postoperative phase after complex intracranial surgery in different neuroscience rat models established at Hannover Medical School or Aachen University Hospital. Male Crl:CD (SD; n = 18), BDIX/UlmHanZtm (BDIX; n = 8) and RjHan:WI (Wistar; n = 35) rats were individually trained to burrow gravel out of a tube on four consecutive days. Thereafter, BDIX rats were subjected to intracranial injection of BT4Ca cells and tumour resection (rat glioma model), SD rats to injection of 6-hydroxydopamine (6-OHDA) or vehicle (rat Parkinson's disease model) and Wistar rats to endovascular perforation or sham surgery (rat subarachnoid haemorrhage (SAH) model). Burrowing was retested on the day after surgery. During training, BDIX rats burrowed large amounts (mean of 2370 g on the fourth day), while SD and Wistar rats burrowed less gravel (means of 846 and 520 g, respectively). Burrowing increased significantly during training only in Wistar rats. Complex surgery, that is, tumour resection (BDIX), 6-OHDA injection (SD) and endovascular perforation or sham surgery for SAH (Wistar) significantly reduced burrowing and body weight, while simple stereotactic injection of tumour cells or vehicle did not affect burrowing. Despite the training, burrowing differed between the strains. In the direct postoperative phase, burrowing was reduced after complex surgery, indicating reduced well-being. Reduced burrowing was accompanied with postoperative weight loss, a validated and recognised quantitative measure for severity assessment.
Collapse
Affiliation(s)
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| | - Arif Abdulbaki
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Medical Faculty, RWTH Aachen University, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, 9165RWTH Aachen University, Medical Faculty, RWTH Aachen University, Germany
| |
Collapse
|
9
|
Garcia FADO, Sales-Campos H, Yuen VG, Machado JR, Viana GSDB, Oliveira CJF, McNeill JH. Arthrospira ( Spirulina) platensis Attenuates Dextran Sulfate Sodium-induced Colitis in Mice by Suppressing Key Pro-inflammatory Cytokines. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 76:150-158. [PMID: 32969363 DOI: 10.4166/kjg.2020.76.3.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
Background/Aims Therapies aimed at modulating cytokines have been used to treat inflammatory illnesses, such as inflammatory bowel disease. On the other hand, patients may become intolerant, refractory, or present with several side effects. Arthrospira (Spirulina) platensis (SPI) is a blue-green microalga with bioactive molecules that have been evaluated to treat inflammatory diseases. On the other hand, few studies have examined their effects on the production of specific cytokines and the intestinal architecture in dextran sulfate sodium (DSS)-induced colitis. Therefore, this study examined the effects of a treatment using SPI in a murine model of intestinal inflammation. Methods All mice (C57BL/6 male) were evaluated daily for their food and water intake, bodyweight variations, and clinical signs of disease. Colon inflammation was induced by exposure to DSS for 6 consecutive days. SPI was given orally at 50, 100, and 250 mg/kg/day. ELISA was performed to assess the production of cytokines. Myeloperoxidase and nitric oxide were also investigated. The level of microscopic damage was assessed by staining colon sections with hematoxylin and eosin. Results SPI attenuated the DSS-induced inflammation, with improvements in the clinical signs and a decrease in the production of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ. In addition, particularly at 250 mg/kg, SPI attenuated the severity of colitis by modulating the level of mucosal and submucosal cell infiltration, which preserved the epithelial barrier. Conclusions SPI may be an alternative source of bioactive molecules with immunomodulatory properties, and has great potential to be used in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Francisca Adilfa de Oliveira Garcia
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departamento de Fisiologia, Faculdade de Medicina Estacio de Juazeiro do Norte (ESTACIO), Juazeiro do Norte, CE, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Violet G Yuen
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Juliana Reis Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| | - Glauce Socorro de Barros Viana
- Departamento de Farmacologia, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil.,Departamento de Fisiologia, Faculdade de Medicina Estacio de Juazeiro do Norte (ESTACIO), Juazeiro do Norte, CE, Brazil
| | - Carlo José Freire Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Triangulo Mineiro (UFTM), Minas Gerais, Brazil
| | - John H McNeill
- Faculty of Pharmaceutical Sciences, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
11
|
Evaluation of Potential Sustainable Bedding Substrates Focusing on Preference, Behavior, and Stress Physiology in Rats-A Pilot Study. Animals (Basel) 2021; 11:ani11051375. [PMID: 34066005 PMCID: PMC8151165 DOI: 10.3390/ani11051375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Ensuring optimal housing conditions for laboratory animals is a crucial prerequisite for high-quality and ethically justifiable in vivo science. In addition to guaranteeing animal welfare and promoting scientific validity, environmental sustainability is also increasingly gaining attention in laboratory animal facilities. Consequently, comprehensive management of such aspects is one of the core tasks of any research vivarium. Hygienic monitoring and adhering to standardized experimental protocols have been highlighted in the past; nevertheless, various environmental aspects of housing animals still need to be evaluated in greater depth. In this pilot study, we aimed at assessing the suitability of spelt and corncob as economical and ecologically friendly bedding substrates as compared with commonly used aspen wood chips. Therefore, following a descriptive study design, we examined the preferences of male and female Wistar rats for corncob and spelt under specific conditions. In addition, we evaluated potential effects on behavior, metabolism, and stress physiology. The type of bedding did not seem to influence behavior in the observed parameters but did have time- and sex-dependent effects on blood glucose. Furthermore, housing animals on spelt led to a significant reduction in food consumption, probably compensated for by the intake of spelt, and although it did not influence glucose levels, it may have certainly impacted the nutrient supply. Our descriptive pilot study, therefore, highlights the importance of a thorough condition-associated evaluation of even seemingly marginal environmental factors, when balancing potential cost-benefit advances in sustainability and questions of standardization and reproducibility of experimental protocols.
Collapse
|
12
|
Chartier LC, Fujino J, Howarth GS, Freysdottir J, Hardardottir I, Mashtoub S. Emu Oil and Saireito in combination reduce tumour development and clinical indicators of disease in a mouse model of colitis-associated colorectal cancer. Biomed Pharmacother 2021; 138:111478. [PMID: 33756155 DOI: 10.1016/j.biopha.2021.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Emu Oil (EO) previously demonstrated therapeutic potential in a mouse model of colitis-associated CRC (CA-CRC). Saireito, a traditional Japanese medicine, has not been investigated in CA-CRC. AIM To determine whether EO and Saireito could be therapeutic in an azoxymethane (AOM)/dextran sulphate sodium (DSS) model of CA-CRC. METHODS Female C57BL/6 mice were assigned to groups (n = 10/group); 1) saline control, 2) saline+Saireito, 3) saline+EO, 4) saline+EO/Saireito, 5) AOM/DSS control, 6) AOM/DSS+Saireito, 7) AOM/DSS+EO and 8) AOM/DSS+EO/Saireito. Mice were intraperitoneally injected with saline or AOM (7.4 mg/kg) on day 0 and underwent three DSS/water cycles (2%w/v DSS for 7 days, 14 days water). Mice were orally-gavaged with either water (80 µL), Saireito (80 µL), EO (80 µL) or EO/Saireito (160 µL; 80 µL EO + 80 µL Saireito) thrice weekly. Daily bodyweight and disease activity index (DAI) were recorded and colonoscopies performed on days 20, 41 and 62. Mice were euthanized on day 63. p < 0.05 was considered statistically significant. RESULTS AOM/DSS induced significant bodyweight loss throughout the trial (max -36%), which was attenuated by Saireito (max +7%), EO (max +5%) and EO/Saireito (max +14%; p < 0.05). AOM/DSS increased DAI compared to saline controls (p < 0.05), which was reduced by Saireito, EO and EO/Saireito (p < 0.05). All treatments reduced colonoscopically-assessed colitis severity (days 20 and 41; p < 0.05). EO/Saireito further decreased colitis severity compared to Saireito and EO alone (day 20; p < 0.05). Finally, EO and EO/Saireito resulted in fewer colonic tumours compared to AOM/DSS controls (p < 0.05). CONCLUSION Combined EO and Saireito reduced disease and tumour development in AOM/DSS mice, suggesting therapeutic potential in CA-CRC.
Collapse
Affiliation(s)
- Lauren C Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - Junko Fujino
- Department of Paediatric Surgery, Saitama Medical Centre, Dokkyo Medical University, Saitama, Japan.
| | - Gordon S Howarth
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia; School of Animal & Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| | - Jona Freysdottir
- Faculty of Medicine, Biomedical Centre, University of Iceland and Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland.
| | - Ingibjorg Hardardottir
- Faculty of Medicine, Biomedical Centre, University of Iceland and Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland.
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia; School of Medicine, The University of Western Australia, Murdoch, Western Australia, Australia.
| |
Collapse
|
13
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
14
|
Garrone B, di Matteo A, Amato A, Pistillo L, Durando L, Milanese C, Di Giorgio FP, Tongiani S. Synergistic interaction between trazodone and gabapentin in rodent models of neuropathic pain. PLoS One 2021; 16:e0244649. [PMID: 33395416 PMCID: PMC7781482 DOI: 10.1371/journal.pone.0244649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023] Open
Abstract
Neuropathic pain is a chronic debilitating condition caused by injury or disease of the nerves of the somatosensory system. Although several therapeutic approaches are recommended, none has emerged as an optimal treatment leaving a need for developing more effective therapies. Given the small number of approved drugs and their limited clinical efficacy, combining drugs with different mechanisms of action is frequently used to yield greater efficacy. We demonstrate that the combination of trazodone, a multifunctional drug for the treatment of major depressive disorders, and gabapentin, a GABA analogue approved for neuropathic pain relief, results in a synergistic antinociceptive effect in the mice writhing test. To explore the potential relevance of this finding in chronic neuropathic pain, pharmacodynamic interactions between low doses of trazodone (0.3 mg/kg) and gabapentin (3 mg/kg) were evaluated in the chronic constriction injury (CCI) rat model, measuring the effects of the two drugs both on evoked and spontaneous nociception and on general well being components. Two innate behaviors, burrowing and nest building, were used to assess these aspects. Besides exerting a significant antinociceptive effect on hyperalgesia and on spontaneous pain, combined inactive doses of trazodone and gabapentin restored in CCI rats innate behaviors that are strongly reduced or even abolished during persistent nociception, suggesting that the combination may have an impact also on pain components different from somatosensory perception. Our results support the development of a trazodone and gabapentin low doses combination product for optimal multimodal analgesia treatment.
Collapse
|
15
|
Sohrabi M, Pecoraro HL, Combs CK. Gut Inflammation Induced by Dextran Sulfate Sodium Exacerbates Amyloid-β Plaque Deposition in the AppNL-G-F Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1235-1255. [PMID: 33427741 PMCID: PMC8122495 DOI: 10.3233/jad-201099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although it is known that the brain communicates with the gastrointestinal (GI) tract via the well-established gut-brain axis, the influence exerted by chronic intestinal inflammation on brain changes in Alzheimer's disease (AD) is not fully understood. We hypothesized that increased gut inflammation would alter brain pathology of a mouse model of AD. OBJECTIVE Determine whether colitis exacerbates AD-related brain changes. METHODS To test this idea, 2% dextran sulfate sodium (DSS) was dissolved in the drinking water and fed ad libitum to male C57BL/6 wild type and AppNL-G-F mice at 6-10 months of age for two cycles of three days each. DSS is a negatively charged sulfated polysaccharide which results in bloody diarrhea and weight loss, changes similar to human inflammatory bowel disease (IBD). RESULTS Both wild type and AppNL-G-F mice developed an IBD-like condition. Brain histologic and biochemical assessments demonstrated increased insoluble Aβ1-40/42 levels along with the decreased microglial CD68 immunoreactivity in DSS treated AppNL-G-F mice compared to vehicle treated AppNL-G-F mice. CONCLUSION These data demonstrate that intestinal dysfunction is capable of altering plaque deposition and glial immunoreactivity in the brain. This study increases our knowledge of the impact of peripheral inflammation on Aβ deposition via an IBD-like model system.
Collapse
Affiliation(s)
- Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| | - Heidi L. Pecoraro
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo ND
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND
| |
Collapse
|
16
|
Analysis of Animal Well-Being When Supplementing Drinking Water with Tramadol or Metamizole during Chronic Pancreatitis. Animals (Basel) 2020; 10:ani10122306. [PMID: 33291366 PMCID: PMC7762076 DOI: 10.3390/ani10122306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pain management during in vivo experiments can considerably improve the wellbeing of animals. However, often it is not clear, which drugs are best for the animals and how to apply these drugs without causing stress. In this study, we evaluated mice when metamizole or tramadol was provided via drinking water. Neither of these two drugs reduced the amount of consumed water or body weight in healthy mice or influenced their natural behavior, such as nest building or burrowing activity. Both analgesics were then given to mice suffering from chronic pancreatitis. Mice drinking tramadol supplemented water, at some time-points, experienced less loss in body weight and consumed more water than mice drinking metamizole. However, no major differences in other methods measuring wellbeing of mice was observed. In conclusion, both analgesics can be used during chronic pancreatitis, but tramadol seems to be moderately advantageous when compared to metamizole. Abstract Pain management during in vivo experiments is an animal welfare concern and is in many countries also legally required. In this study, we evaluated C57Bl/6J mice when 3 g/L metamizole or 1 g/L tramadol was provided via drinking water, before and during cerulein-induced chronic pancreatitis. Supplementation of drinking water with metamizole or tramadol did not significantly reduce the amount of consumed water. In order to evaluate the wellbeing of mice, a distress score, burrowing activity, nesting behavior, and body weight was assessed. Before induction of pancreatitis, neither tramadol nor metamizole influenced these readout parameters. Chronic pancreatitis caused a significantly increased distress score, decreased burrowing activity and a reduction in body weight. Mice drinking tramadol-supplemented water experienced less loss in body weight and consumed more water than mice drinking metamizole, at a few time-points during chronic pancreatitis. Pancreatic atrophy, a characteristic feature of chronic pancreatitis was not differentially influenced by either analgesic. In conclusion, both analgesics can be used during 33 days of chronic pancreatitis, but tramadol seems to be moderately advantageous when compared to metamizole.
Collapse
|
17
|
Mitchell CJ, Howarth GS, Chartier LC, Trinder D, Lawrance IC, Huang LS, Mashtoub S. Orally administered emu oil attenuates disease in a mouse model of Crohn's-like colitis. Exp Biol Med (Maywood) 2020; 245:1697-1707. [PMID: 32903038 PMCID: PMC7802385 DOI: 10.1177/1535370220951105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Crohn's disease is a severe, incurable inflammatory bowel disease. Orally administered emu oil has demonstrated anti-inflammatory properties in previous models of gastrointestinal disease. We aimed to determine whether orally administered emu oil could attenuate disease in a mouse model of Crohn's-like colitis. Female ARC(s) mice (CD-1 equivalent, n = 10/group) were intra-rectally administered water (120 μL) or trinitrobenzene sulfonic acid (TNBS; 3 mg in 50% ethanol; 120 μL bolus) on day 0. Mice were orally administered water (80 μL) or emu oil (80 μL or 160 μL) daily for five days and euthanized on day six. Bodyweight and disease activity were recorded daily. Colonoscopy, burrowing activity, facial grimace, histological parameters (damage severity, small intestinal villus height/crypt depth and colonic crypt depth), myeloperoxidase activity and intestinal permeability were assessed. P < 0.05 was considered statistically significant. TNBS decreased bodyweight (days 1, 2, 4; P < 0.05) and increased disease activity (days 1-6; P < 0.01), compared to normal controls. Emu oil (80 μL) attenuated disease activity on days 5-6 (P < 0.05), although bodyweight loss was not significantly impacted (P > 0.05). Facial grimace and colonoscopy scores were significantly increased in TNBS-control mice; effects attenuated by both volumes of emu oil (P < 0.001). TNBS increased histological damage severity compared to normal controls (P < 0.05); an effect attenuated by 80 μL emu oil (proximal and distal colon; P < 0.05) and 160 μL emu oil (distal colon; P < 0.01). In the ileum, villus height and crypt depth were unaffected by TNBS or emu oil treatment compared to normal (P > 0.05). TNBS-induced distal colonic crypt lengthening was unaffected following emu oil administration (P > 0.05). Remaining parameters, including burrowing, myeloperoxidase activity and intestinal permeability, were unchanged across all treatment groups (P > 0.05). In normal mice, emu oil treatment did not significantly impact any parameter compared to normal controls. In conclusion, emu oil reduced overall disease severity and facial grimace scores in TNBS mice. These results suggest therapeutic potential for orally administered emu oil in the management of Crohn's disease.
Collapse
Affiliation(s)
- Chloe J Mitchell
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Gordon S Howarth
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia 5371, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lauren C Chartier
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Debbie Trinder
- School of Medicine, University of Western Australia, Murdoch, Western Australia 6150, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia 6150, Australia
| | - Ian C Lawrance
- School of Medicine, University of Western Australia, Murdoch, Western Australia 6150, Australia
- Saint John of God Hospital, Centre for Inflammatory Bowel Disease, Subiaco, Western Australia 6008, Australia
| | - Li San Huang
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - Suzanne Mashtoub
- Gastroenterology Department, Women’s and Children’s Hospital, North Adelaide, South Australia 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
Regmi B, Shah MK. Possible implications of animal models for the assessment of visceral pain. Animal Model Exp Med 2020; 3:215-228. [PMID: 33024943 PMCID: PMC7529330 DOI: 10.1002/ame2.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Acute pain, provoked generally after the activation of peripheral nociceptors, is an adaptive sensory function that alerts the individual to avoid noxious stimuli. However, uncontrolled acute pain has a maladaptive role in sensory activity leading to development of a chronic pain state which persists even after the damage is resolved, or in some cases, in the absence of an initial local acute injury. Huge numbers of people suffer from visceral pain at least once during their life span, leading to substantial health care costs. Although studies reporting on the mechanism of visceral pain are accumulating, it is still not precisely understood. Therefore, this review aims to elucidate the mechanism of visceral pain through an evaluation of different animal models and their application to develop novel therapeutic approaches for treating visceral pain. To assess the nociceptive responses in viscera, several visceral pain models such as inflammatory, traction, stress and genetic models utilizing different methods of measurement have been devised. Among them, the inflammatory and traction models are widely used for studying the visceral pain mechanism of different disease conditions and post-operative surgery in humans and animals. A hapten, 2,4,6-trinitrobenzene sulfonic acid (TNBS), has been extensively used as an inflammatory agent to induce visceral pain. The traction model seems to cause a strong pain stimulation and autonomic reaction and could thus be the most appropriate model for studying the underlying visceral pain mechanism and for probing the therapeutic efficacies of various anesthetic and analgesics for the treatment of visceral pain and hyperalgesia.
Collapse
Affiliation(s)
- Bharata Regmi
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| | - Manoj K Shah
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| |
Collapse
|
19
|
Body weight algorithm predicts humane endpoint in an intracranial rat glioma model. Sci Rep 2020; 10:9020. [PMID: 32488031 PMCID: PMC7265476 DOI: 10.1038/s41598-020-65783-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
Humane endpoint determination is fundamental in animal experimentation. Despite commonly accepted endpoint criteria for intracranial tumour models (20% body weight loss and deteriorated clinical score) some animals still die before being euthanized in current research. We here systematically evaluated other measures as surrogates for a more reliable humane endpoint determination. Adult male BDIX rats (n = 119) with intracranial glioma formation after BT4Ca cell-injection were used. Clinical score and body weight were assessed daily. One subgroup (n = 14) was assessed daily for species-specific (nesting, burrowing), motor (distance, coordination) and social behaviour. Another subgroup (n = 8) was implanted with a telemetric device for monitoring heart rate (variability), temperature and activity. Body weight and clinical score of all other rats were used for training (n = 34) and validation (n = 63) of an elaborate body weight course analysis algorithm for endpoint detection. BT4Ca cell-injection reliably induced fast-growing tumours. No behavioural or physiological parameter detected deteriorations of the clinical state earlier or more reliable than clinical scoring by experienced observers. However, the body weight course analysis algorithm predicted endpoints in 97% of animals without confounding observer-dependent factors. Clinical scoring together with the novel algorithm enables highly reliable and observer-independent endpoint determination in a rodent intracranial tumour model.
Collapse
|
20
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
21
|
Chartier LC, Hebart ML, Howarth GS, Whittaker AL, Mashtoub S. Affective state determination in a mouse model of colitis-associated colorectal cancer. PLoS One 2020; 15:e0228413. [PMID: 31986185 PMCID: PMC6984705 DOI: 10.1371/journal.pone.0228413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Behavioural indicators of affective state, including burrowing, clinical scores and the Mouse Grimace Score have not yet been validated in mouse models of chronic gastrointestinal disease. Additionally, a comparison of these methods has not been characterised. This study aimed to determine which behavioural assessment was the optimal indicator of disease, evidenced by correlation with clinically-assessed measures, in an azoxymethane (AOM)/dextran sulphate sodium (DSS) mouse model of colitis-associated colorectal cancer. C57BL/6 mice were allocated to four groups (n = 10/group); 1) saline control, 2) saline+buprenorphine, 3) AOM+DSS+water, 4) AOM+DSS+buprenorphine. Mice were gavaged thrice weekly with water or buprenorphine (0.5mg/kg; 80μL) for 9 weeks. Disease activity index (DAI) was measured daily; burrowing and grimace analyses occurred on days -1, 5, 19, 26, 40, 47 and 61. Colonoscopies were performed on days 20, 41 and 62. All animals were euthanized on day 63. Burrowing activity and retrospective grimace analyses were unaffected (P>0.05), whilst DAI was significantly increased (P<0.05) in mice with colitis-associated colorectal cancer compared to normal controls. In addition, DAI was positively correlated with colonoscopically-assessed severity and tumour number (P<0.05). We conclude that traditional measures of DAI or clinical scoring provide the most reliable assessment of wellbeing in mice with colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Lauren C. Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Michelle L. Hebart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Gordon S. Howarth
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Medicine, The University of Western Australia, Murdoch, Western Australia, Australia
- * E-mail:
| |
Collapse
|
22
|
Matisz CE, Vicentini FA, Hirota SA, Sharkey KA, Gruber AJ. Behavioral adaptations in a relapsing mouse model of colitis. Physiol Behav 2020; 216:112802. [PMID: 31931038 DOI: 10.1016/j.physbeh.2020.112802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by relapsing periods of gut inflammation, and is comorbid with depression, anxiety, and cognitive deficits. Animal models of IBD that explore the behavioral consequences almost exclusively use acute models of gut inflammation, which fails to recapitulate the cyclic, chronic nature of IBD. This study sought to identify behavioral differences in digging, memory, and stress-coping strategies in mice exposed to one (acute) or three (chronic) cycles of gut inflammation, using the dextran sodium sulfate (DSS) model of colitis. Similar levels of gut pathology were observed between acute and chronically exposed mice, although mice in the chronic treatment had significantly shorter colons, suggesting more severe disease. Behavioral measures revealed an unexpected pattern in which chronic treatment evoked fewer deficits than acute treatment. Specifically, acutely-treated mice showed alterations in measures of object burying, novel object recognition, object location memory, and stress-coping (forced swim task). Chronically-treated animals, however, showed similar alterations in object burying, but not the other measures. These data suggest an adaptive or tolerizing effect of repeated cycles of peripheral gut inflammation on mnemonic function and stress-coping, whereas some other behaviors continue to be affected by gut inflammation. We speculate that the normalization of some functions may involve the reversion to the baseline state of the hypothalamic-pituitary-adrenal axis and/or levels of neuroinflammation, which are both activated by the first exposure to the colitic agent.
Collapse
Affiliation(s)
- Chelsea E Matisz
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, AB, Canada.
| | - Fernando A Vicentini
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Inflammation Research Network, Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Inflammation Research Network, Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron J Gruber
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge T1K 3M4, AB, Canada
| |
Collapse
|
23
|
Gjendal K, Ottesen JL, Olsson IAS, Sørensen DB. Effect of Repeated Exposure to Isoflurane on Nest Building and Burrowing in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:30-36. [PMID: 31896393 DOI: 10.30802/aalas-jaalas-19-000027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nest building and burrowing are highly motivated natural behaviors in rodents, and changes in these behaviors can serve as welfare assessment tools. In this study, we investigated: 1) the limits of agreement between 2 observers for a refined scoring method for nest-building behavior; 2) the effect of repeated exposure to 15 min of isoflurane on nest-building behavior; 3) the effect of 24 h of grid-floor housing, repeated exposure to 15 min isoflurane, and daily intraperitoneal injection of 0.2 mL 0.9% isotonic saline for 3 d on burrowing behavior; and 4) the effect of exposure to grid-floor housing, isoflurane, and intraperitoneal injections on fecal corticosterone metabolites, body weight, fur status, and sucrose preference in mice. SPF C57BL/6NTac female mice (n = 27) were included in the study and were assessed first for burrowing behavior, followed by 2 wk of rest and then for nesting behavior. The refined scoring method for nest-building activity had good inter observer agreement. According to this method, a single exposure to anesthesia with isoflurane led to a decrease in nest-building activity and sucrose preference; a second exposure to anesthesia with isoflurane had no effect on nest building. Neither grid-floor housing nor repeated exposure to isoflurane anesthesia had any effect on burrowing behavior in mice. In contrast, intraperitoneal injections increased burrowing behavior. In conclusion, a refined scoring method for nest-building activity test that we developed for this study proved to be objective and sensitive to the effect of an initial exposure to anesthesia with isoflurane.
Collapse
|
24
|
Sliepen SHJ, Diaz-Delcastillo M, Korioth J, Olsen RB, Appel CK, Christoph T, Heegaard AM, Rutten K. Cancer-induced Bone Pain Impairs Burrowing Behaviour in Mouse and Rat. In Vivo 2019; 33:1125-1132. [PMID: 31280201 DOI: 10.21873/invivo.11582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer-induced bone pain remains a serious public health concern, with a need for translational behavioural tests in order to assess nociception in preclinical models of this condition. Burrowing is an innate, ethologically relevant rodent behaviour that has been proven sensitive to chronic pain conditions. Herein, we studied for the first time whether burrowing performance is altered in preclinical models of cancer-induced bone pain. MATERIALS AND METHODS Mice and rats were inoculated with syngeneic breast cancer cells. Bone degradation was radiographically evaluated and nociception was assessed in limb-use and burrowing tests. RESULTS Cancer-bearing rodents showed reduced relative bone density and limb-use scores, confirming disease development. Burrowing performance decreased over time in both rodent models. CONCLUSION Burrowing performance was reduced in both rodent models, indicating that the burrowing test is a relevant and reproducible behavioural test for assessing disease development in both mouse and rat models of cancer-induced bone pain.
Collapse
Affiliation(s)
- Sonny Hermanus Johannes Sliepen
- Grünenthal GmbH, Grünenthal Innovation, Aachen, Germany.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Diaz-Delcastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rikke Brix Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Kristine Appel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kris Rutten
- Grünenthal GmbH, Grünenthal Innovation, Aachen, Germany
| |
Collapse
|
25
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Barbee RW, Turner PV. Incorporating Laboratory Animal Science into Responsible Biomedical Research. ILAR J 2019; 60:9-16. [DOI: 10.1093/ilar/ilz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Biomedical research has made great strides in the past century leading to rapid advances in human life expectancy, all derived from improved understanding, prevention, and treatment of many diseases and conditions. Research involving laboratory animals has played a significant role in this medical progress. However, there continues to be controversy surrounding the use of animals in research, and animal models have been questioned regarding their relevance to human conditions. While research fraud and questionable research practices could potentially contribute to this problem, we argue that a relative ignorance of laboratory animal science has contributed to the “uncontrolled vivarium experiment” that runs parallel to the more controlled scientific experiment. Several variables are discussed, including husbandry, animal environment, social housing, and more, that can contribute to this uncontrolled experiment, and that can simultaneously decrease quality of life for rodent test subjects when ignored. An argument is put forward that laboratory animal veterinarians and scientists can and should play an important role in better controlling such variables. Similarly, the laboratory animal veterinarian and scientist should play an important role in responsible science by addressing complex interdisciplinary challenges.
Collapse
Affiliation(s)
- R Wayne Barbee
- Virginia Commonwealth University, Office of Research and Innovation
| | - Patricia V Turner
- Charles River Laboratories Inc., Global Animal Welfare & Training, University of Guelph Pathobiology
| |
Collapse
|
27
|
Abdelrahman A, Kumstel S, Zhang X, Liebig M, Wendt EHU, Eichberg J, Palme R, Thum T, Vollmar B, Zechner D. A novel multi-parametric analysis of non-invasive methods to assess animal distress during chronic pancreatitis. Sci Rep 2019; 9:14084. [PMID: 31575986 PMCID: PMC6773730 DOI: 10.1038/s41598-019-50682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Ethical responsibility, legal requirements and the need to improve the quality of research create a growing interest in the welfare of laboratory animals. Judging the welfare of animals requires readout parameters, which are valid and sensitive as well as specific to assess distress after different interventions. In the present study, we evaluated the sensitivity and specificity of different non-invasive parameters (body weight change, faecal corticosterone metabolites concentration, burrowing and nesting activity) by receiver operating characteristic curves and judged the merit of a multi-parametric analysis by logistic regression. Chronic pancreatitis as well as laparotomy caused significant changes in all parameters. However, the accuracy of these parameters was different between the two animal models. In both animal models, the multi-parametric analysis relying on all the readout parameters had the highest accuracy when predicting distress. This multi-parametric analysis revealed that C57BL/6 mice during the course of chronic pancreatitis often experienced less distress than mice after laparotomy. Interestingly these data also suggest that distress does not steadily increase during chronic pancreatitis. In conclusion, combining these non-invasive methods for severity assessment represents a reliable approach to evaluate animal distress in models such as chronic pancreatitis.
Collapse
Affiliation(s)
- Ahmed Abdelrahman
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| | - Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Marie Liebig
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Edgar Heinz Uwe Wendt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Johanna Eichberg
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
28
|
Kumstel S, Vasudevan P, Palme R, Zhang X, Wendt EHU, David R, Vollmar B, Zechner D. Benefits of non-invasive methods compared to telemetry for distress analysis in a murine model of pancreatic cancer. J Adv Res 2019; 21:35-47. [PMID: 31641536 PMCID: PMC6796693 DOI: 10.1016/j.jare.2019.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
Prospective severity assessment is legally required in many countries to ensure high-quality research along with high welfare standards for laboratory animals. Mice and rats, the most common laboratory species, are prey animals that usually suppress signs of pain and suffering. Therefore, highly sensitive readout parameters are necessary to adequately quantify distress. The present study compared the performance of different non-invasive methods in determining animal distress, such as measuring body weight, distress score, faecal corticosterone metabolites, burrowing, and nesting behaviour, with continuous monitoring of heart rate, body temperature and activity by telemetry. The distress caused by two surgical interventions was compared and the burden caused by tumour growth was described. Transmitter implantation caused higher distress than laparotomy plus carcinoma cell injection into the pancreas. Surprisingly, no significant increase in distress was observed during tumour growth. The receiver operating characteristic curve analysis revealed that some non-invasive distress-parameters, i.e., distress-score and burrowing activity, exhibited slightly better performance to quantify distress than the most suitable parameters measured by telemetry. Due to the high burden caused by the implantation of the telemetric device, the use of non-invasive methods to assess distress in laboratory animals after surgical interventions should be favoured in future studies.
Collapse
Affiliation(s)
- Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, 18057 Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, School of Medicine, University of Rostock, 18057 Rostock, Germany.,Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Xianbin Zhang
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, 18057 Rostock, Germany
| | - Edgar Heinz Uwe Wendt
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, 18057 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, School of Medicine, University of Rostock, 18057 Rostock, Germany.,Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, 18057 Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
29
|
Gjendal K, Ottesen JL, Olsson IAS, Sørensen DB. Burrowing and nest building activity in mice after exposure to grid floor, isoflurane or ip injections. Physiol Behav 2019; 206:59-66. [DOI: 10.1016/j.physbeh.2019.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/22/2019] [Accepted: 02/16/2019] [Indexed: 01/23/2023]
|
30
|
Safaeian R, Howarth GS, Lawrance IC, Trinder D, Mashtoub S. Emu Oil reduces disease severity in a mouse model of chronic ulcerative colitis. Scand J Gastroenterol 2019; 54:273-280. [PMID: 30907169 DOI: 10.1080/00365521.2019.1581253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective: Ulcerative colitis (UC) is characterized by mucosal inflammation and ulceration of the large intestine. Emu Oil (EO) has been reported to protect the intestine against mucositis, NSAID-enteropathy, UC-associated colorectal cancer and acute UC. We aimed to determine whether EO could reduce the severity chronic UC in mice. Methods: Female C57BL/6 mice (n = 10/group) were orally administered (gavage) water (Groups 1-2) or EO (Groups 3: low dose-80 µl and 4: high dose-160 µl), thrice weekly. Group 1 mice consumed plain drinking water throughout the trial. Groups 2-4 mice underwent two cycles [each consisting of seven days dextran sulfate sodium (DSS; 2% w/v) and 14 days water], followed by a third DSS week. All mice were euthanized two days later (day 51). Bodyweight, disease activity index (DAI), burrowing activity, myeloperoxidase activity, crypt depth and histologically assessed damage severity were assessed. p < .05 was considered significant. Results: DSS decreased bodyweight and increased DAI compared to normal controls (p < .05), which was partially attenuated by both EO doses (p < .05). Burrowing activity was impaired in DSS-controls compared to normal controls (days 27 and 40); an effect prevented by both EO doses (p < .05). DSS increased colonic myeloperoxidase activity and crypt depth compared to controls (p < .05), with no significant EO effect. Moreover, DSS increased colonic damage severity compared to normal controls (p < .001). Importantly, both EO doses decreased distal colonic damage severity compared to DSS-controls (p < .001). Conclusions: Emu Oil attenuated clinically- and histologically-assessed disease severity in a mouse model of chronic UC. Emu Oil demonstrates promise as an adjunct to conventional treatment options for UC management.
Collapse
Affiliation(s)
- Romina Safaeian
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia
| | - Gordon S Howarth
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia.,c School of Animal and Veterinary Sciences , The University of Adelaide , Roseworthy , South Australia
| | - Ian C Lawrance
- d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia.,e Centre for Inflammatory Bowel Diseases , Saint John of God Hospital , Subiaco , Western Australia
| | - Debbie Trinder
- d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia.,f Harry Perkins Institute of Medical Research , Murdoch , Western Australia
| | - Suzanne Mashtoub
- a Discipline of Physiology, Adelaide Medical School , The University of Adelaide , Adelaide , South Australia.,b Gastroenterology Department , Women's and Children's Hospital , North Adelaide , South Australia.,d School of Medicine , The University of Western Australia , Fiona Stanley Hospital, Murdoch , Western Australia
| |
Collapse
|
31
|
Leung VS, Benoit-Biancamano MO, Pang DS. Performance of behavioral assays: the Rat Grimace Scale, burrowing activity and a composite behavior score to identify visceral pain in an acute and chronic colitis model. Pain Rep 2019; 4:e718. [PMID: 31041420 PMCID: PMC6455688 DOI: 10.1097/pr9.0000000000000712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The Rat Grimace Scale (RGS), a facial expression scale, quantifies the affective component of pain in rats. The RGS was developed to identify acute and inflammatory pain, and applicability in acute and chronic visceral pain is unknown. The dextran sulfate sodium (DSS) colitis model is commonly used in rats, but pain is rarely assessed, instead, disease progression is monitored with the Disease Activity Index (DAI; assessing fecal blood, stool consistency, and weight loss). OBJECTIVES The aim of this study was to assess whether the RGS and 2 additional behavioral tools (composite behavior score [CBS] and burrowing) could identify pain in an acute and chronic DSS colitis model. METHODS Male and female Sprague-Dawley rats were block randomized to (1) acute colitis (4 days DSS in drinking water); (2) chronic colitis (4 days DSS, 7 days water, and 3 days DSS); or (3) control (14 days water). Disease Activity Index, RGS, CBS, and burrowing assessments were performed daily. RESULTS Rat Grimace Scale scores increased as DAI scores increased during both acute and chronic phases. Burrowing only decreased during the acute phase. By contrast, CBS scores did not increase significantly during either colitis phase. CONCLUSIONS These data show that the RGS and burrowing did not decrease in a sustained manner during chronic phase visceral pain, and that variables assessed in the DAI are indicative of pain. This suggests that the RGS can be applied to a wider range of pain types and chronicity than originally suggested. These findings increase the application of the RGS as a pain scale and welfare improvement tool.
Collapse
Affiliation(s)
- Vivian S.Y. Leung
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | - Daniel S.J. Pang
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
32
|
Lang A, Schulz A, Ellinghaus A, Schmidt-Bleek K. Osteotomy models - the current status on pain scoring and management in small rodents. Lab Anim 2018; 50:433-441. [PMID: 27909193 DOI: 10.1177/0023677216675007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fracture healing is a complex regeneration process which produces new bone tissue without scar formation. However, fracture healing disorders occur in approximately 10% of human patients and cause severe pain and reduced quality of life. Recently, the development of more standardized, sophisticated and commercially available osteosynthesis techniques reflecting clinical approaches has increased the use of small rodents such as rats and mice in bone healing research dramatically. Nevertheless, there is no standard for pain assessment, especially in these species, and consequently limited information regarding the welfare aspects of osteotomy models. Moreover, the selection of analgesics is restricted for osteotomy models since non-steroidal anti-inflammatory drugs (NSAIDs) are known to affect the initial, inflammatory phase of bone healing. Therefore, opioids such as buprenorphine and tramadol are often used. However, dosage data in the literature are varied. Within this review, we clarify the background of osteotomy models, explain the current status and challenges of animal welfare assessment, and provide an example score sheet including model specific parameters. Furthermore, we summarize current refinement options and present a brief outlook on further 3R research.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany .,Berlin Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.,German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Anja Schulz
- German Rheumatism Research Centre Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
33
|
Chartier LC, Howarth GS, Lawrance IC, Trinder D, Barker SJ, Mashtoub S. Emu Oil Improves Clinical Indicators of Disease in a Mouse Model of Colitis-Associated Colorectal Cancer. Dig Dis Sci 2018; 63:135-145. [PMID: 29214422 DOI: 10.1007/s10620-017-4876-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS Ulcerative colitis is a remitting and relapsing inflammatory bowel disorder. Current treatments are limited, and if poorly controlled, colitis may progress to colorectal cancer. Previously, Emu Oil protected the intestine in experimental models of gut damage. We aimed to determine whether Emu Oil could reduce the severity of chronic colitis and prevent the onset of neoplasia in a mouse model of colitis-associated colorectal cancer. METHODS Female C57BL/6 mice were injected (day 0) with azoxymethane, followed by ad libitum access to three dextran sulfate sodium/water cycles (7 days of dextran sulfate sodium and 14 days of water). Mice (n = 9/group) were orally administered either water or Emu Oil (low dose 80 µL or high dose 160 µL), thrice weekly for 9 weeks. Bodyweight and disease activity index were measured daily. Colitis progression was monitored by colonoscopy on days 20, 41 and 62. At killing, tumor number and size were recorded. RESULTS Azoxymethane/dextran sulfate sodium induced significant bodyweight loss (maximum 24%) which was attenuated by Emu Oil treatment (low dose days 9, 10, 14: maximum 7%; high dose days 7-15, 30-36: maximum 11%; p < 0.05). Emu Oil reduced disease activity index of azoxymethane/dextran sulfate sodium mice at most time points (maximum 20%; p < 0.05). Additionally, Emu Oil reduced colonoscopically assessed colitis severity (days 20 and 62) compared to disease controls (p < 0.05). Finally, in azoxymethane/dextran sulfate sodium mice, low-dose Emu Oil resulted in fewer small colonic tumors (p < 0.05) compared to controls. CONCLUSIONS Emu Oil improved clinical indicators and reduced severity of colitis-associated colorectal cancer, suggesting therapeutic potential in colitis management.
Collapse
Affiliation(s)
- Lauren C Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Gastroenterology Department, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Gordon S Howarth
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Gastroenterology Department, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ian C Lawrance
- School of Medicine, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia.,Centre for Inflammatory Bowel Diseases, Saint John of God Hospital, Subiaco, WA, Australia
| | - Debbie Trinder
- School of Medicine, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Scott J Barker
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Gastroenterology Department, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia. .,Gastroenterology Department, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia. .,School of Medicine, The University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia.
| |
Collapse
|
34
|
Whittaker AL, Zhu Y, Howarth GS, Loung CS, Bastian SEP, Wirthensohn MG. Effects of commercially produced almond by-products on chemotherapy-induced mucositis in rats. World J Gastrointest Pathophysiol 2017; 8:176-187. [PMID: 29184703 PMCID: PMC5696615 DOI: 10.4291/wjgp.v8.i4.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine if almond extracts reduce the severity of chemotherapy-induced mucositis as determined through biochemical, histological and behavioural markers.
METHODS Intestinal mucositis is a debilitating condition characterized by inflammation and ulceration of the gastrointestinal mucosa experienced by cancer patients undergoing chemotherapy. Certain bioactive plant products have shown promise in accelerating mucosal repair and alleviating clinical symptoms. This study evaluated almond extracts for their potential to reduce the severity of chemotherapy-induced mucositis in Dark Agouti rats. Female Dark Agouti rats were gavaged (days 3-11) with either PBS, almond hull or almond blanched water extract at two doses, and were injected intraperitoneally with 5-fluorouracil (5-FU-150 mg/kg) or saline on day 9 to induce mucositis. Burrowing behavior, histological parameters and myeloperoxidase activity were assessed.
RESULTS Bodyweight was significantly reduced in rats that received 5-FU compared to saline-treated controls (P < 0.05). Rats administered 5-FU significantly increased jejunal and ileal MPO levels (1048%; P < 0.001 and 409%; P < 0.001), compared to healthy controls. Almond hull extract caused a pro-inflammatory response in rats with mucositis as evidenced by increased myeloperoxidase activity in the jejunum when compared to 5-FU alone (rise 50%, 1088 ± 96 U/g vs 723 ± 135 U/g, P = 0.02). Other extract-related effects on inflammatory activity were minimal. 5-FU significantly increased histological severity score compared to healthy controls confirming the presence of mucositis (median of 9.75 vs 0; P < 0.001). The extracts had no ameliorating effect on histological severity score in the jejunum or ileum. Burrowing behavior was significantly reduced in all chemotherapy-treated groups (P = 0.001). The extracts failed to normalize burrowing activity to baseline levels.
CONCLUSION Almond extracts at these dosages offer little beneficial effect on mucositis severity. Burrowing provides a novel measure of affective state in studies of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Ying Zhu
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chi S Loung
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
35
|
Wodarski R, Delaney A, Ultenius C, Morland R, Andrews N, Baastrup C, Bryden LA, Caspani O, Christoph T, Gardiner NJ, Huang W, Kennedy JD, Koyama S, Li D, Ligocki M, Lindsten A, Machin I, Pekcec A, Robens A, Rotariu SM, Voß S, Segerdahl M, Stenfors C, Svensson CI, Treede RD, Uto K, Yamamoto K, Rutten K, Rice AS. Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study. Pain 2016; 157:2350-65. [PMID: 27643836 PMCID: PMC5028161 DOI: 10.1097/j.pain.0000000000000657] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Burrowing, an ethologically relevant rodent behaviour, has been proposed as a novel outcome measure to assess the global impact of pain in rats. In a prospective multicentre study using male rats (Wistar, Sprague-Dawley), replication of suppressed burrowing behaviour in the complete Freund adjuvant (CFA)-induced model of inflammatory pain (unilateral, 1 mg/mL in 100 µL) was evaluated in 11 studies across 8 centres. Following a standard protocol, data from participating centres were collected centrally and analysed with a restricted maximum likelihood-based mixed model for repeated measures. The total population (TP-all animals allocated to treatment; n = 249) and a selected population (SP-TP animals burrowing over 500 g at baseline; n = 200) were analysed separately, assessing the effect of excluding "poor" burrowers. Mean baseline burrowing across studies was 1113 g (95% confidence interval: 1041-1185 g) for TP and 1329 g (1271-1387 g) for SP. Burrowing was significantly suppressed in the majority of studies 24 hours (7 studies/population) and 48 hours (7 TP, 6 SP) after CFA injections. Across all centres, significantly suppressed burrowing peaked 24 hours after CFA injections, with a burrowing deficit of -374 g (-479 to -269 g) for TP and -498 g (-609 to -386 g) for SP. This unique multicentre approach first provided high-quality evidence evaluating suppressed burrowing as robust and reproducible, supporting its use as tool to infer the global effect of pain on rodents. Second, our approach provided important informative value for the use of multicentre studies in the future.
Collapse
Affiliation(s)
- Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | - Ada Delaney
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Ultenius
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Rosie Morland
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Nick Andrews
- Department of Neurobiology, Boston Children's Hospital, MA, USA
| | - Catherine Baastrup
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | - Luke A. Bryden
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Thomas Christoph
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Natalie J. Gardiner
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Wenlong Huang
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | - Suguru Koyama
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Dominic Li
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Marcin Ligocki
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | | | - Ian Machin
- Deal, Kent, United Kingdom. L. A. Bryden is now with the Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom. W. Huang is now with the Institute of Medical Sciences, University of Aberdeen, United Kingdom. C. Stenfors is now with the R&D CNS Research, Orion Corporation, Orion Pharma, Espoo, Finland
| | - Anton Pekcec
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Angela Robens
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Sanziana M. Rotariu
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sabrina Voß
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Marta Segerdahl
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
- H. Lundbeck A/S, Valby, Denmark
| | - Carina Stenfors
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Katsuhiro Uto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazumi Yamamoto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kris Rutten
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
36
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Muralidharan A, Kuo A, Jacob M, Lourdesamy JS, Carvalho LMSPD, Nicholson JR, Corradini L, Smith MT. Comparison of Burrowing and Stimuli-Evoked Pain Behaviors as End-Points in Rat Models of Inflammatory Pain and Peripheral Neuropathic Pain. Front Behav Neurosci 2016; 10:88. [PMID: 27242458 PMCID: PMC4862327 DOI: 10.3389/fnbeh.2016.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 01/30/2023] Open
Abstract
Establishment and validation of ethologically-relevant, non-evoked behavioral end-points as surrogate measures of spontaneous pain in rodent pain models has been proposed as a means to improve preclinical to clinical research translation in the pain field. Here, we compared the utility of burrowing behavior with hypersensitivity to applied mechanical stimuli for pain assessment in rat models of chronic inflammatory and peripheral neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the burrowing environment and trained over a 5-day period. Rats that burrowed ≤ 450 g of gravel on any 2 days of the individual training phase were excluded from the study. The remaining rats received either a unilateral intraplantar injection of Freund's complete adjuvant (FCA) or saline, or underwent unilateral chronic constriction injury (CCI) of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked pain behaviors were assessed prior to model induction, and twice-weekly until study completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner for both FCA-and CCI- rats, there was considerable inter-animal variability. By contrast, mechanical hyperalgesia and mechanical allodynia in the ipsilateral hindpaws of FCA- and CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show that burrowing behavior is altered in rodent models of chronic inflammatory pain and peripheral neuropathic pain. However, large group sizes are needed to ensure studies are adequately powered due to considerable inter-animal variability.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Meera Jacob
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Jacintha S Lourdesamy
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | | | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach, Germany
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of Queensland, St Lucia CampusBrisbane, QLD, Australia
| |
Collapse
|
38
|
Pharmacological characterization of intraplantar Complete Freund's Adjuvant-induced burrowing deficits. Behav Brain Res 2015; 301:142-51. [PMID: 26704218 DOI: 10.1016/j.bbr.2015.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND It has recently been suggested that non-reflex behavioral readouts, such as burrowing, may be used to evaluate the efficacy of analgesics in rodent models of pain. OBJECTIVE To confirm whether intraplantar Complete Freund's Adjuvant (CFA)-induced pain reliably results in burrowing deficits which can be ameliorated by clinically efficacious analgesics as previously suggested. METHODS Uni- or bilateral intraplantar CFA injections were performed in male Wistar Han rats. The time- and concentration-response of burrowing deficits and the ability of various analgesics to reinstate burrowing performance were studied. An anxiolytic was also tested to evaluate the motivational cue that drives this behavior. RESULTS Burrowing deficits were dependent on the concentration of CFA injected, most pronounced 24h after CFA injections and even more pronounced after bilateral compared with unilateral injections. Celecoxib and ibuprofen reversed CFA-induced burrowing deficits whereas indomethacin failed to significantly reinstate burrowing performance. Morphine and tramadol failed to reinstate burrowing performance, but sedation was observed in control rats at doses thought to be efficacious. An antibody directed against the nerve growth factor significantly improved CFA-induced burrowing deficits. Neither gabapentin nor the anxiolytic diazepam reinstated burrowing performance and the opportunity to find shelter did not modify burrowing performance. CONCLUSION Burrowing is an innate behavior reliably exhibited by rats. It is suppressed in a model of inflammatory pain and differently reinstated by clinically efficacious analgesics that lack motor impairing side effects, but not an anxiolytic, suggesting that this assay is suitable for the assessment of analgesic efficacy of novel drugs.
Collapse
|
39
|
Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther 2015; 22:88-101. [PMID: 26663896 DOI: 10.1111/cns.12486] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
While acute inflammation is a natural physiological response to tissue injury or infection, chronic inflammation is maladaptive and engenders a considerable amount of adverse pain. The chemical mediators responsible for tissue inflammation act on nociceptive nerve endings to lower neuronal excitation threshold and sensitize afferent firing rate leading to the development of allodynia and hyperalgesia, respectively. Animal models have aided in our understanding of the pathophysiological mechanisms responsible for the generation of chronic inflammatory pain and allowed us to identify and validate numerous analgesic drug candidates. Here we review some of the commonly used models of skin, joint, and gut inflammatory pain along with their relative benefits and limitations. In addition, we describe and discuss several behavioral and electrophysiological approaches used to assess the inflammatory pain in these preclinical models. Despite significant advances having been made in this area, a gap still exists between fundamental research and the implementation of these findings into a clinical setting. As such we need to characterize inherent pathophysiological pathways and develop new endpoints in these animal models to improve their predictive value of human inflammatory diseases in order to design safer and more effective analgesics.
Collapse
Affiliation(s)
- Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
40
|
Häger C, Keubler LM, Biernot S, Dietrich J, Buchheister S, Buettner M, Bleich A. Time to Integrate to Nest Test Evaluation in a Mouse DSS-Colitis Model. PLoS One 2015; 10:e0143824. [PMID: 26637175 PMCID: PMC4670219 DOI: 10.1371/journal.pone.0143824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023] Open
Abstract
Severity assessment in laboratory animals is an important issue regarding the implementation of the 3R concept into biomedical research and pivotal in current EU regulations. In mouse models of inflammatory bowel disease severity assessment is usually undertaken by clinical scoring, especially by monitoring reduction of body weight. This requires daily observance and handling of each mouse, which is time consuming, stressful for the animal and necessitates an experienced observer. The time to integrate to nest test (TINT) is an easily applicable test detecting disturbed welfare by measuring the time interval mice need to integrate nesting material to an existing nest. Here, TINT was utilized to assess severity in a mouse DSS-colitis model. TINT results depended on the group size of mice maintained per cage with most consistent time intervals measured when co-housing 4 to 5 mice. Colitis was induced with 1% or 1.5% DSS in group-housed WT and Cd14-deficient mice. Higher clinical scores and loss of body weight were detected in 1.5% compared to 1% DSS treated mice. TINT time intervals showed no dose dependent differences. However, increased clinical scores, body weight reductions, and increased TINT time intervals were detected in Cd14-/- compared to WT mice revealing mouse strain related differences. Therefore, TINT is an easily applicable method for severity assessment in a mouse colitis model detecting CD14 related differences, but not dose dependent differences. As TINT revealed most consistent results in group-housed mice, we recommend utilization as an additional method substituting clinical monitoring of the individual mouse.
Collapse
Affiliation(s)
- Christine Häger
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Lydia M. Keubler
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Svenja Biernot
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jana Dietrich
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Stephanie Buchheister
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Manuela Buettner
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
41
|
Deficits in spontaneous burrowing behavior in the rat bilateral monosodium iodoacetate model of osteoarthritis: an objective measure of pain-related behavior and analgesic efficacy. Osteoarthritis Cartilage 2015; 23:1605-12. [PMID: 25966657 DOI: 10.1016/j.joca.2015.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/30/2015] [Accepted: 05/01/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To characterize deficits in burrowing behavior - an ethologically-relevant rodent behavior - in the monosodium iodoacetate (MIA) rat model of osteoarthritis (OA), and the sensitivity of these deficits to reversal by analgesic drugs of both prototypical and novel mechanisms of action. A second objective was to compare the burrowing assay to a spontaneous locomotor activity (sLA) assay. METHOD Male Wistar Han rats (200-220 g) received intrarticular (i.a.) injections of MIA or saline for sham animals. A deficit in the amount of sand burrowed from steel tubes filled with 2.5 kg of sand was used as a measure of pain-related behavior, and sensitivity to reversal of these deficits by analgesic drugs was assessed in bilaterally MIA-injected rats. RESULTS Bilateral MIA injections induced a significant impairment of burrowing behavior, which was concentration-dependent. The temporal pattern of the deficits was biphasic: a large deficit at 3 days post-injection, resolving by day 14 and returning at the 21 and 28 day time points. At the 3 day time point ibuprofen, celecoxib and an anti-nerve growth factor (NGF) monoclonal antibody (mAb) were able to significantly reinstate burrowing behavior, whereas the fatty acid amide hydrolase (FAAH) inhibitor PF-04457845 and morphine displayed no reversal effect. Morphine impaired burrowing behavior at 3 mg/kg in sham animals. Deficits in rearing frequency in the locomotor activity assay proved irreversible by analgesics. CONCLUSION Burrowing behavior provides an objective, non-reflexive read-out for pain-related behavior in the MIA model that has predictive validity in detecting analgesic efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) and an anti-NGF mAb.
Collapse
|
42
|
Moon ML, Joesting JJ, Blevins NA, Lawson MA, Gainey SJ, Towers AE, McNeil LK, Freund GG. IL-4 Knock Out Mice Display Anxiety-Like Behavior. Behav Genet 2015; 45:451-60. [PMID: 25772794 PMCID: PMC4459943 DOI: 10.1007/s10519-015-9714-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety.
Collapse
Affiliation(s)
- Morgan L. Moon
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA
| | - Jennifer J. Joesting
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana IL, USA
| | - Neil A. Blevins
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana IL, USA
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - Stephen J. Gainey
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - Albert E. Towers
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA
| | - Leslie K. McNeil
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana IL, USA
| | - Gregory G. Freund
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| |
Collapse
|
43
|
Salgado-Puga K, Prado-Alcalá RA, Peña-Ortega F. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation. Behav Neurol 2015; 2015:526912. [PMID: 26229236 PMCID: PMC4502279 DOI: 10.1155/2015/526912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| |
Collapse
|
44
|
Janus C, Flores AY, Xu G, Borchelt DR. Behavioral abnormalities in APPSwe/PS1dE9 mouse model of AD-like pathology: comparative analysis across multiple behavioral domains. Neurobiol Aging 2015; 36:2519-32. [PMID: 26089165 DOI: 10.1016/j.neurobiolaging.2015.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by dysfunction in cognitive and noncognitive domains with clinical diagnosis based on multiple neuropsychological tests. Here, we evaluated cognitive and noncognitive behaviors in 2 age cohorts (8 and 14 months at the start of the study) of APPSwe/PS1dE9 transgenic mice that model AD-like amyloidosis. We used a battery of tests that included fear-conditioned context and tone memories, swimming activity, and orientation to a proximal cue in a visible platform water maze test and burrowing and nest building activity. To compare the performance of mice across all tests, we used z-score normalization of data. The analyses revealed that the behavior of the transgenic mice was significantly compromised in cognitive as well as in noncognitive domains. Combining scores across multiple behavioral tests produced an integrated index characterizing the overall phenotypic abnormality in this model of AD-like amyloidosis. Assessing multiple behavioral domains provides a broader view of the breadth of impairments in multiple behavioral systems. Greater implementation of such approaches could enable reliable and clinically predictive evaluation of therapeutics in mouse models of amyloidosis.
Collapse
Affiliation(s)
- Christopher Janus
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Diseases (CTRND), McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Abigail Y Flores
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Diseases (CTRND), McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Guilian Xu
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Diseases (CTRND), McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Diseases (CTRND), McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
45
|
The power of automated behavioural homecage technologies in characterizing disease progression in laboratory mice: A review. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2014.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
The amount of cage bedding preferred by female BALB/c and C57BL/6 mice. Lab Anim (NY) 2014; 44:17-22. [PMID: 25526055 DOI: 10.1038/laban.659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/22/2014] [Indexed: 11/08/2022]
Abstract
In order to improve the welfare of laboratory mice, a number of different environmental enrichment strategies have been developed to provide opportunities for mice to engage in naturalistic behaviors. Providing sufficient cage bedding for mice to use as a burrowing substrate could be considered an environmental enrichment strategy, but few studies have considered the welfare aspects of cage bedding amount. The authors compared the preferences of group-housed female BALB/c and C57BL/6 mice for three different volumes of cage bedding (0.5 l, 1.5 l and 6 l). Mice of both strains but especially C57BL/6 mice showed strong preferences for cages with more bedding. The results highlight the importance of providing a sufficient amount of cage bedding to laboratory mice.
Collapse
|
47
|
Pfeiffenberger U, Yau T, Fink D, Tichy A, Palme R, Egerbacher M, Rülicke T. Assessment and refinement of intra-bone marrow transplantation in mice. Lab Anim 2014; 49:121-31. [PMID: 25416608 DOI: 10.1177/0023677214559627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intra-bone marrow transplantation (IBMT) may improve the seeding efficiency of transplanted hematopoietic stem cells compared to the routinely used intravenous injection. Current IBMT protocols are optimized for ease of use and to improve experimental results. However, there have been no investigations to assess the impact of IBMT on animal welfare. Here, we report the results of pain assessment after IBMT and the effects of refinements to the current standard procedure. IBMT was performed in either the tibia or the femur of a recipient mouse under general anesthesia. Impact was determined using clinical scoring of different parameters (lameness, grip capacity, body weight loss, footprint analysis), behavioural tests (burrowing, open-field), monitoring of stress hormones and post-mortem histology. The results revealed that IBMT definitely induces severe post-operative distress. Although IBMT in the tibia is technically easier, the degree of impairment and the distress observed were consistently higher than for transplantation in the femur. A refinement for IBMT in the tibia was achieved by using 30- instead of 26-gauge needles and by sparing the patellar tendon. Consequently, for IBMT, we recommend either using the femur, or if the tibia is required due to its better feasibility, using our refined protocol. Furthermore, IBMT should definitely be limited to one leg per animal.
Collapse
Affiliation(s)
| | - T Yau
- Institute of Laboratory Animal Science
| | - D Fink
- Institute of Laboratory Animal Science
| | - A Tichy
- Platform Bioinformatics and Biostatistics
| | - R Palme
- Institute of Medical Biochemistry
| | - M Egerbacher
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - T Rülicke
- Institute of Laboratory Animal Science
| |
Collapse
|
48
|
Jackson E, Demarest K, Eckert WJ, Cates-Gatto C, Nadav T, Cates LN, Howard H, Roberts AJ. Aspen shaving versus chip bedding: effects on breeding and behavior. Lab Anim 2014; 49:46-56. [DOI: 10.1177/0023677214553320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The choice of laboratory cage bedding material is often based on both practical and husbandry issues, whereas behavioral outcomes rarely appear to be considered. It has been noted that a breeding success difference appears to be associated with the differential use of aspen chip and aspen shaving bedding in our facility; therefore, we sought to analyze breeding records maintained over a 20-month period. In fact, in all four mouse strains analyzed, shaving bedding was associated with a significant increase in average weanlings per litter relative to chip bedding. To determine whether these bedding types also resulted in differences in behaviors associated with wellbeing, we examined nest building, anxiety-like, depressive-like (or helpless-like), and social behavior in mice housed on chip versus shaving bedding. We found differences in the nests built, but no overall effect of bedding type on the other behaviors examined. Therefore, we argue that breeding success, perhaps especially in more challenging strains, is improved on shaving bedding and this is likely due to improved nest-building potential. For standard laboratory practices, however, these bedding types appear equivalent.
Collapse
Affiliation(s)
- E Jackson
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - K Demarest
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - W J Eckert
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - C Cates-Gatto
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - T Nadav
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - L N Cates
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| | - H Howard
- Department of Animal Resources, The Scripps Research Institute, La Jolla, CA, USA
| | - A J Roberts
- Mouse Behavioral Assessment Core Facility, The Scripps Research Institute, LA Jolla, CA, USA
| |
Collapse
|
49
|
Whittaker AL, Lymn KA, Nicholson A, Howarth GS. The assessment of general well-being using spontaneous burrowing behaviour in a short-term model of chemotherapy-induced mucositis in the rat. Lab Anim 2014; 49:30-9. [PMID: 25112495 DOI: 10.1177/0023677214546913] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mucositis is a common and serious side-effect experienced by cancer patients during treatment with chemotherapeutic agents. Consequently, programmes of research focus on the elucidation of novel therapeutics for alleviation of mucositis symptoms, and these frequently use animal models. However, although these models are assumed to be painful and distressing to the animal, endpoints are difficult to determine. The aim of this study was to evaluate whether a change in burrowing behaviour could provide an indication of disease onset and potentially be applied as a humane endpoint. Baseline burrowing behaviour was measured in healthy animals on three occasions by determining the weight of gravel displaced from a hollow tube. Mucositis was then induced in the same animals by intraperitoneal injection of 5-fluorouracil (150 mg/kg) and burrowing behaviour recorded over three consecutive days. Standard measures of disease progression, including body weight loss and clinical score, were also made. The presence of mucositis was confirmed at necropsy by findings of decreased duodenal and colon lengths, and reduced liver, spleen and thymus weights in comparison with non-treated control animals. Histological score of the jejunum and ileum was also significantly increased. Mucositis onset coincided with a decrease in mean burrowing behaviour which was progressive, however this result did not achieve statistical significance (P = 0.66).We conclude that burrowing may be a useful indicator of inflammation in the mucositis model, although this requires further characterization. Pre-selection of animals into treatment groups based on their prior burrowing performance should be pursued in further studies.
Collapse
Affiliation(s)
- A L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - K A Lymn
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - A Nicholson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia Gastroenterology Department, Children, Youth and Women's Health Services, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|