1
|
Proppe CE, Aldeghi TM, Rivera PM, Gonzalez-Rojas D, Wizenberg AM, Hill EC. 75-repetition versus sets to failure of blood flow restriction exercise on indices of muscle damage in women. Eur J Sport Sci 2023; 23:1993-2001. [PMID: 37032512 DOI: 10.1080/17461391.2023.2201813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
ABSTRACTThere is conflicting evidence regarding the prevalence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance exercise with blood flow restriction (LL + BFR) that may be related to exercise protocols. The purpose of this investigation was to examine the effects of 75-repetition (BFR-75) (1 × 30, 3 × 15) and 4 sets to failure (BFR-4x) protocols on indices of EIMD among untrained women. Thirteen women completed this investigation. One leg was randomly assigned to BFR-75 and the other to BFR-4x. Each leg performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength. Indices of EIMD (muscle soreness, range of motion [ROM], limb circumference, pain pressure threshold [PPT], and maximal voluntary isometric contraction [MVIC]) were recorded before exercise, 0-, 24-, 48-, 72-, and 96-hours post-exercise. There were no changes for ROM, circumference, or PPT. Muscle soreness increased similarly in both conditions 0-, 24-, and 48-hours post-exercise and MVIC increased 24-, 48-, 72-, and 96-hours post-exercise. These findings suggested BFR-75 and BFR-4x were not associated with EIMD and elicited similar physiological responses. The increases in muscle soreness may be due to metabolic stress associated with LL + BFR protocols apart from EIMD.
Collapse
Affiliation(s)
- Christopher E Proppe
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Taylor M Aldeghi
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Paola M Rivera
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - David Gonzalez-Rojas
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Aaron M Wizenberg
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Orlando, FL, USA
| |
Collapse
|
2
|
Gray SM, Cuomo AM, Proppe CE, Traylor MK, Hill EC, Keller JL. Effects of Sex and Cuff Pressure on Physiological Responses during Blood Flow Restriction Resistance Exercise in Young Adults. Med Sci Sports Exerc 2023; 55:920-931. [PMID: 36729632 DOI: 10.1249/mss.0000000000003103] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.
Collapse
Affiliation(s)
- Sylvie M Gray
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Christopher E Proppe
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL
| | - Miranda K Traylor
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| | | | - Joshua L Keller
- Integrated Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL
| |
Collapse
|
3
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. Utilizing the RPE-Clamp model to examine interactions among factors associated with perceived fatigability and performance fatigability in women and men. Eur J Appl Physiol 2023; 123:1397-1409. [PMID: 36856798 DOI: 10.1007/s00421-023-05163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE The purpose of the present study was to examine the interactions between perceived fatigability and performance fatigability in women and men by utilizing the RPE-Clamp model to assess the fatigue-induced effects of a sustained, isometric forearm flexion task anchored to RPE = 8 on time to task failure (TTF), torque, and neuromuscular responses. METHODS Twenty adults (10 men and 10 women) performed two, 3 s forearm flexion maximal voluntary isometric contractions (MVICs) followed by a sustained, isometric forearm flexion task anchored to RPE = 8 using the OMNI-RES (0-10) scale at an elbow joint angle of 100°. Electromyographic amplitude (EMG AMP) was recorded from the biceps brachii. Torque and EMG AMP values resulting from the sustained task were normalized to the pretest MVIC. Neuromuscular efficiency was defined as NME = normalized torque/normalized EMG AMP. Mixed factorial ANOVAs and Bonferroni corrected dependent t tests and independent t tests were used to examine differences across time and between sex for torque and neuromuscular parameters. RESULTS There were no differences between the women and men for the fatigue-induced decreases in torque, EMG AMP, or NME, and the mean decreases (collapsed across sex) were 50.3 ± 8.6 to 2.8 ± 2.9% MVIC, 54.7 ± 12.0 to 19.6 ± 5.3% MVIC, and 0.94 ± 0.19 to 0.34 ± 0.16, respectively. Furthermore, there were no differences between the women and men for TTF (251.8 ± 74.1 vs. 258.7 ± 77.9 s). CONCLUSION The results suggested that the voluntary reductions in torque to maintain RPE and the decreases in NME were likely due to group III/IV afferent feedback from peripheral fatigue that resulted in excitation-contraction coupling failure.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
- , 840 N 14th Street, Lincoln, NE, 68508, USA.
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
4
|
Peterson JA, Lohman C, Larson RD, Bemben MG, Black CD. Lean Mass is Associated with, but Does Not Mediate Sex Differences in Pressure Pain Sensitivity in Healthy Adults. J Pain Res 2022; 15:3981-3994. [PMID: 36561645 PMCID: PMC9767032 DOI: 10.2147/jpr.s387635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Background Sex differences exist in pain sensitivity, however, the underlying mechanism(s) that explain these differences are not fully understood. Pain sensitivity has been shown to be influenced by body mass index, but limited data exist on the role of body composition on pain sensitivity. The purpose was to examine the influence of body composition on pain sensitivity in males and females. Methods This cross-sectional study design used pressure pain thresholds (PPT) of 87 participants (45 female) who were assessed in the vastus lateralis (leg PPT) and brachioradialis (arm PPT) using a pressure algometer. Fat and lean tissue were assessed via dual-energy X-ray absorptiometry (DXA). A two group by two limb, repeated measured ANOVA was used to assess differences between limbs and sex. Spearman correlations and hierarchical regression analyses were employed to determine the association between body composition and PPT. Results Males had higher PPTs then females (P<0.05) and had higher DXA assessed lean and lower levels fat mass (P<0.05). Total body and limb specific lean mass was associated with PPTs (r≥0.34; P<0.05). Hierarchical regression analysis revealed lean mass was a significant predictor of 8% of the variance in arm PPT (P<0.006) and 18% of the variance in leg PPT (P<0.001). However, lean mass was not found to statistically mediate the observed sex differences in PPT. Conclusion This finding suggests lean mass may play a previously unknown role in sex differences in pressure pain sensitivity. Future studies are needed to confirm this finding and a larger sample size is likely required to have sufficient power to perform the mediation analysis.
Collapse
Affiliation(s)
- Jessica A Peterson
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA,Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Cameron Lohman
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Rebecca D Larson
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA,Correspondence: Christopher D Black, Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73069, USA, Tel +1 706-255-3750, Email
| |
Collapse
|
5
|
Keller JL, Anders JPV, Neltner TJ, Housh TJ, Schmidt RJ, Johnson GO. Sex differences in muscle excitation and oxygenation, but not in force fluctuations or active hyperemia resulting from a fatiguing, bilateral isometric task. Physiol Meas 2021; 42. [PMID: 34847546 DOI: 10.1088/1361-6579/ac3e86] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/25/2023]
Abstract
It remains to be fully elucidated if there are sex-specific physiological adjustments within the human neuromuscular and vascular systems that contribute to symptoms of fatigue during a sustained bilateral task. This, in part, is likely due to various limitations in experimental design such as an inability to independently record force fluctuations from each limb.Objective. Therefore, the purpose of the current study was to examine the fatigue-induced changes in muscle excitation, force fluctuations, skeletal muscle tissue saturation (StO2), and muscle blood flow resulting from a sustained, bilateral task.Approach. Thirty healthy, college-aged adults (15 males, 15 females) performed a bilateral leg task at 25% of maximum voluntary isometric (MVIC). Before and after the task, MVICs were completed. Resting and post-task femoral artery blood flow (FABF) were determined. Muscle excitation was quantified as electromyographic amplitude (EMG AMP) from the right and left vastus lateralis. During the task, force fluctuations were determined independently from each leg. The StO2signal was collected with a near-infrared spectroscopy device attached to the right vastus lateralis. The rate of change in these variables was calculated via simple linear regression. The exercise-induced magnitude of change in MVIC (i.e. performance fatigability) and FABF (i.e. active hyperemia) was determined.Main Results. There was no sex difference in the percent decline in MVIC (20.5 ± 20.1% versus 16.4 ± 3.5%;p> 0.05). There were no inter-leg differences in EMG AMP or force fluctuations. The males exhibited a faster rate of increase in EMG AMP (b= 0.13 versusb= 0.08;p< 0.001), whereas the females exhibited a slower rate of decline in StO2(b= -0.049 versusb= -0.080). There was no sex difference in force fluctuations or change in FABF.Significance. Males and females likely have different neuromuscular strategies and muscle characteristics, but these did not elicit a sex difference in performance fatigability.
Collapse
Affiliation(s)
- Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL 36606, United States of America
| | - John Paul V Anders
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| |
Collapse
|