1
|
Liu Y, Zhang W, Sun M, Liang X, Wang L, Zhao J, Hou Y, Li H, Yang X. The severity assessment and nucleic acid turning-negative-time prediction in COVID-19 patients with COPD using a fused deep learning model. BMC Pulm Med 2024; 24:515. [PMID: 39402509 PMCID: PMC11476205 DOI: 10.1186/s12890-024-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Previous studies have shown that patients with pre-existing chronic obstructive pulmonary diseases (COPD) were more likely to be infected with coronavirus disease (COVID-19) and lead to more severe lung lesions. However, few studies have explored the severity and prognosis of COVID-19 patients with different phenotypes of COPD. PURPOSE The aim of this study is to investigate the value of the deep learning and radiomics features for the severity evaluation and the nucleic acid turning-negative time prediction in COVID-19 patients with COPD including two phenotypes of chronic bronchitis predominant patients and emphysema predominant patients. METHODS A total of 281 patients were retrospectively collected from Hohhot First Hospital between October 2022 and January 2023. They were divided to three groups: COVID-19 group of 95 patients, COVID-19 with emphysema group of 94 patients, COVID-19 with chronic bronchitis group of 92 patients. All patients underwent chest computed tomography (CT) scans and recorded clinical data. The U-net model was pretrained to segment the pulmonary involvement area on CT images and the severity of pneumonia were evaluated by the percentage of pulmonary involvement volume to lung volume. The 107 radiomics features were extracted by pyradiomics package. The Spearman method was employed to analyze the correlation of the data and visualize it through a heatmap. Then we establish a deep learning model (model 1) and a fusion model (model 2) combined deep learning with radiomics features to predict nucleic acid turning-negative time. RESULTS COVID-19 patients with emphysema was lowest in the lymphocyte count compared to COVID-19 patients and COVID-19 companied with chronic bronchitis, and they have the most extensive range of pulmonary inflammation. The lymphocyte count was significantly correlated with pulmonary involvement and the time for nucleic acid turning negative (r=-0.145, P < 0.05). Importantly, our results demonstrated that model 2 achieved an accuracy of 80.9% in predicting nucleic acid turning-negative time. CONCLUSION The pre-existing emphysema phenotype of COPD severely aggravated the pulmonary involvement of COVID-19 patients. Deep learning and radiomics features may provide more information to accurately predict the nucleic acid turning-negative time, which is expected to play an important role in clinical practice.
Collapse
Affiliation(s)
- Yanhui Liu
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Wenxiu Zhang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shanghai, P.R. China
| | - Mengzhou Sun
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Beijing, P.R. China
| | - Xiaoyun Liang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shanghai, P.R. China
| | - Lu Wang
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Jiaqi Zhao
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Yongquan Hou
- Respiratory and Critical Care Medicine Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Haina Li
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Xiaoguang Yang
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China.
| |
Collapse
|
2
|
Markovic M, Ranin J, Bukumiric Z, Jerotic D, Savic-Radojevic A, Pljesa-Ercegovac M, Djukic T, Ercegovac M, Asanin M, Milosevic I, Stevanovic G, Simic T, Coric V, Matic M. GPX3 Variant Genotype Affects the Risk of Developing Severe Forms of COVID-19. Int J Mol Sci 2023; 24:16151. [PMID: 38003341 PMCID: PMC10671662 DOI: 10.3390/ijms242216151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In SARS-CoV-2 infection, excessive activation of the immune system intensively increases reactive oxygen species levels, causing harmful hyperinflammatory and oxidative state cumulative effects which may contribute to COVID-19 severity. Therefore, we assumed that antioxidant genetic profile, independently and complemented with laboratory markers, modulates COVID-19 severity. The study included 265 COVID-19 patients. Polymorphism of GSTM1, GSTT1, Nrf2 rs6721961, GSTM3 rs1332018, GPX3 rs8177412, GSTP1 rs1695, GSTO1 rs4925, GSTO2 rs156697, SOD2 rs4880 and GPX1 rs1050450 genes was determined with appropriate PCR-based methods. Inflammation (interleukin-6, CRP, fibrinogen, ferritin) and organ damage (urea, creatinine, transaminases and LDH) markers, complete blood count and coagulation status (d-dimer, fibrinogen) were measured. We found significant association for COVID-19 progression for patients with lymphocytes below 1.0 × 109/L (OR = 2.97, p = 0.002). Increased IL-6 and CRP were also associated with disease progression (OR = 8.52, p = 0.001, and OR = 10.97, p < 0.001, respectively), as well as elevated plasma AST and LDH (OR = 2.25, p = 0.021, and OR = 4.76, p < 0.001, respectively). Of all the examined polymorphisms, we found significant association with the risk of developing severe forms of COVID-19 for GPX3 rs8177412 variant genotype (OR = 2.42, p = 0.032). This finding could be of particular importance in the future, complementing other diagnostic tools for prediction of COVID-19 disease course.
Collapse
Affiliation(s)
- Marko Markovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Jovan Ranin
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Zoran Bukumiric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical Statistics and Informatics, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Tatjana Djukic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Neurology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Ivana Milosevic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Goran Stevanovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Jing X, Han M, Wang X, Zhou L. SARS-CoV-2 vaccine breakthrough infection in the older adults: a meta-analysis and systematic review. BMC Infect Dis 2023; 23:577. [PMID: 37667195 PMCID: PMC10478381 DOI: 10.1186/s12879-023-08553-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Corona Virus Disease 2019 (COVID-19) mRNA vaccine effectiveness (VE) has recently declined, and reports about COVID-19 breakthrough infection have increased. We aimed to conduct a meta-analysis on population-based studies of the prevalence and incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection amongst older adults worldwide. METHODS Studies from PubMed, Embase, Cochrane Library, and Web of Science were systematically screened to determine the prevalence and incidence of SARS-CoV-2 breakthrough infection in older adults from inception to November 2, 2022. Our meta-analysis included 30 studies, all published in English. Pooled estimates were calculated using a random-effect model through the inverse variance method. Publication bias was tested through funnel plots and Egger's regression test, and sensitivity analyses were performed to confirm the robustness of the results. This research was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Thirty publications were included in this meta-analysis (17 on prevalence, 17 on incidence, and 4 on both). The pooled prevalence of COVID-19 breakthrough infection among older adults was 7.7 per 1,000 persons (95% confidence interval [95%CI] 4.0-15.0). At the same time, the pooled incidence was 29.1 per 1000 person-years (95%CI 15.2-55.7). CONCLUSIONS This meta-analysis provides estimates of prevalence and incidence in older adults. We concluded that the prevalence and incidence of SARS-CoV-19 breakthrough infection in older people was low. The prevalence and incidence of breakthrough infection admitted to hospital, severe-critical, and deathly was significantly lower. Otherwise, there was considerable heterogeneity among estimates in this study, which should be considered when interpreting the results.
Collapse
Affiliation(s)
- Xiaohui Jing
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China.
| | - Menglin Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| | - Xiaoxuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| | - Li Zhou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Tianjin, 301617, P.R. China
| |
Collapse
|
4
|
Ling X, Cao Z, Sun P, Zhang H, Sun Y, Zhong J, Yin W, Fan K, Zheng X, Li H, Sun N. Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling. Int J Mol Sci 2023; 24:11526. [PMID: 37511286 PMCID: PMC10381006 DOI: 10.3390/ijms241411526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) seriously endangers the sustainable development of the pig industry. Our previous studies have shown that matrine can resist porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study aimed to explore the anti-PRRSV targets of matrine in Marc-145 cells. Biotin-labeled matrine 1 and 2 were used as probes. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each probe in Marc-145 cells. The anti-PRRSV activity of each probe was evaluated via MTT, qPCR and Western blot, and its anti-inflammatory activity was evaluated via qPCR and Western blot. The targets of matrine in Marc-145 cells were searched using activity-based protein profiling (ABPP), and compared with the targets predicted via network pharmacology for screening the potential targets of matrine against PRRSV. The protein-protein interaction networks (PPI) of potential targets were constructed using a network database and GO/KEGG enrichment analysis was performed. ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1 were identified as potential targets of matrine, and their functions were related to antiviral capacity and immunity. Matrine may play an anti-PRRSV role by directly acting on ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1.
Collapse
Affiliation(s)
- Xiaoya Ling
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Zhigang Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030600, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| |
Collapse
|
5
|
Capraru ID, Vulcanescu DD, Bagiu IC, Horhat FG, Popescu IM, Baditoiu LM, Muntean D, Licker M, Radulescu M, Mot IC, Diaconu MM, Marian C. COVID-19 Biomarkers Comparison: Children, Adults and Elders. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050877. [PMID: 37241109 DOI: 10.3390/medicina59050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: this study aimed to research links between C-reactive protein (CRP), lactate dehydrogenase (LDH), creatinekinase (CK), 25-OH vitamin D (25-OHD), ferritin (FER), high-density lipoprotein cholesterol (HDL)cholesterol and clinical severity in patients from the western part of Romania, and compare their potential use as biomarkers for intensive care units (ICU) admission and death in children, adults and elders. Materials and Methods: this study is a retrospective cohort study, performed on patients positively diagnosed with COVID-19. Available CRP, LDH, CK 25-OH vitamin D, ferritin, HDL cholesterol and clinical severity were recorded. The following were assessed: median group differences, association, correlation and receiver operating characteristic. Results: 381 children, 614 adults and 381 elders were studied between 1 March 2021 and 1 March 2022. Most children and adults presented mild symptomatology (53.28%, 35.02%, respectively), while most elders presented severe symptomatology (30.04%). ICU admission was 3.67% for children, 13.19% for adults and 46.09% for elders, while mortality was 0.79% for children, 8.63% for adults and 25.1% for elders. With the exception of CK, all other biomarkers showed some significant associations with clinical severity, ICU admission and death. Conclusions: CRP, LDH, 25-OH vitamin D, ferritin and HDL are important biomarkers for COVID-19 positive patients, especially in the pediatric population, while CK was mostly within normal ranges.
Collapse
Affiliation(s)
- Ionut Dragos Capraru
- Department of Epidemiology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
- Clinical Laboratory, Emergency Hospital for Children "Louis Turcanu", 300011 Timișoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
- Clinical Laboratory, Emergency Hospital for Children "Louis Turcanu", 300011 Timișoara, Romania
| | - Florin George Horhat
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
- Clinical Laboratory, Emergency Hospital for Children "Louis Turcanu", 300011 Timișoara, Romania
| | - Irina Maria Popescu
- Department of Epidemiology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
| | - Luminita Mirela Baditoiu
- Department of Epidemiology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
| | - Delia Muntean
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
- Microbiology Laboratory, "Pius Brinzeu" County Clinical Emergency Hospital, No. 156 L. Rebreanu, 300723 Timisoara, Romania
| | - Monica Licker
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
- Microbiology Laboratory, "Pius Brinzeu" County Clinical Emergency Hospital, No. 156 L. Rebreanu, 300723 Timisoara, Romania
| | - Matilda Radulescu
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- ENT Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. Nr.2, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Qin R, He L, Yang Z, Jia N, Chen R, Xie J, Fu W, Chen H, Lin X, Huang R, Luo T, Liu Y, Yao S, Jiang M, Li J. Identification of Parameters Representative of Immune Dysfunction in Patients with Severe and Fatal COVID-19 Infection: a Systematic Review and Meta-analysis. Clin Rev Allergy Immunol 2023; 64:33-65. [PMID: 35040086 PMCID: PMC8763427 DOI: 10.1007/s12016-021-08908-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/26/2023]
Abstract
Abnormal immunological indicators associated with disease severity and mortality in patients with COVID-19 have been reported in several observational studies. However, there are marked heterogeneities in patient characteristics and research methodologies in these studies. We aimed to provide an updated synthesis of the association between immune-related indicators and COVID-19 prognosis. We conducted an electronic search of PubMed, Scopus, Ovid, Willey, Web of Science, Cochrane library, and CNKI for studies reporting immunological and/or immune-related parameters, including hematological, inflammatory, coagulation, and biochemical variables, tested on hospital admission of COVID-19 patients with different severities and outcomes. A total of 145 studies were included in the current meta-analysis, with 26 immunological, 11 hematological, 5 inflammatory, 4 coagulation, and 10 biochemical variables reported. Of them, levels of cytokines, including IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, IFN-γ, IgA, IgG, and CD4+ T/CD8+ T cell ratio, WBC, neutrophil, platelet, ESR, CRP, ferritin, SAA, D-dimer, FIB, and LDH were significantly increased in severely ill patients or non-survivors. Moreover, non-severely ill patients or survivors presented significantly higher counts of lymphocytes, monocytes, lymphocyte/monocyte ratio, eosinophils, CD3+ T,CD4+T and CD8+T cells, B cells, and NK cells. The currently updated meta-analysis primarily identified a hypercytokinemia profile with the severity and mortality of COVID-19 containing IL-1β, IL-1Ra, IL-2R, IL-4, IL-6, IL-8, IL-10, IL-18, TNF-α, and IFN-γ. Impaired innate and adaptive immune responses, reflected by decreased eosinophils, lymphocytes, monocytes, B cells, NK cells, T cells, and their subtype CD4+ and CD8+ T cells, and augmented inflammation, coagulation dysfunction, and nonpulmonary organ injury, were marked features of patients with poor prognosis. Therefore, parameters of immune response dysfunction combined with inflammatory, coagulated, or nonpulmonary organ injury indicators may be more sensitive to predict severe patients and those non-survivors.
Collapse
Affiliation(s)
- Rundong Qin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li He
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wanyi Fu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinliu Lin
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renbin Huang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yukai Liu
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Bagiu IC, Scurtu IL, Horhat DI, Mot IC, Horhat RM, Bagiu RV, Capraru ID, Diaconu MM, Adam O, Ciornei B, Vulcanescu DD, Juganaru I, Bondar AC, Horhat FG. COVID-19 Inflammatory Markers and Vitamin D Relationship in Pediatric Patients. Life (Basel) 2022; 13:91. [PMID: 36676040 PMCID: PMC9864767 DOI: 10.3390/life13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Biomarkers play an important role in COVID-19, and more research in this regard is needed, especially in the case of children. This study aimed to look for a link between the C reactive protein (CRP), lactate dehydrogenase (LDH), creatine kinase (CK), vitamin D and COVID-19 in pediatric patients. METHODS This is a retrospective cohort study, performed on children diagnosed positively with COVID-19 at a children's hospital in western Romania. Available CRP, LDH, CK vitamin D and clinical severity were recorded. For each biomarker, groups were formed by patients' age. Mean/median group differences were assessed using Student's t test or Mann-Whitney and Kruskal-Wallis with Dunn's post hoc tests. Association was assessed using the chi2 test, while correlation was assessed using Spearman's rank correlation. RESULTS 181 positive children were studied between 1 August 2021 and 1 February 2022. Average age was 8.76 years (SD = 3.93). There were 94 (51.93%) males and 87 (48.07%) females. The cases were: 62 asymptomatic (34.25%), 107 mild (59.12%), 9 moderate (4.97%), 3 severe (1.66%). Regarding CRP, a significant difference between older and younger patients was observed (p = 0.0034). Clinical severity was associated with CRP (p = 0.0281), LDH (p = 0.0410) and vitamin D (p = 0.0444). Regarding CK, no differences or associations proved significant. Correlation testing was conducted for CRP, LDH, vitamin D and clinical signs. With the exception of LDH-CRP and LDH-vitamin D, all relationships proved statistically significant. CONCLUSIONS CRP, LDH and vitamin D levels are important biomarkers for COVID-19-positive pediatric patients, while CK was mostly within normal ranges.
Collapse
Affiliation(s)
- Iulia Cristina Bagiu
- Emergency Hospital for Children “Louis Turcanu”, 300011 Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ileana Luminita Scurtu
- Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Delia Ioana Horhat
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Razvan Mihai Horhat
- 3rd Department, Discipline of Odontotherapy and Endodontics, Faculty of Dental Medicine, TADERP Research Center, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Radu Vasile Bagiu
- Department of Hygiene, Preventive Medicine Study Center, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ionut Dragos Capraru
- Department of Parasitology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ovidiu Adam
- Emergency Hospital for Children “Louis Turcanu”, 300011 Timisoara, Romania
- Department of Pediatric Surgery and Orthopedics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Bogdan Ciornei
- Emergency Hospital for Children “Louis Turcanu”, 300011 Timisoara, Romania
- Department of Pediatric Surgery and Orthopedics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Dan Dumitru Vulcanescu
- Emergency Hospital for Children “Louis Turcanu”, 300011 Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Iulius Juganaru
- Department XI, First Discipline of Pediatrics, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Andrei-Cristian Bondar
- Psychiatry Hospital “Prof. Dr. Alexandru Obregia”, Soseaua Berceni 10, 041914 Bucuresti, Romania
| | - Florin George Horhat
- Emergency Hospital for Children “Louis Turcanu”, 300011 Timisoara, Romania
- Department of Microbiology, Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
8
|
Qi JH, Dong FX, Wang K, Zhang SY, Liu ZM, Wang WJ, Sun FZ, Zhang HM, Wang XL. Feasibility analysis and mechanism exploration of Rhei Radix et Rhizome-Schisandrae Sphenantherae Fructus (RS) against COVID-19. J Med Microbiol 2022; 71. [PMID: 35584000 DOI: 10.1099/jmm.0.001528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction. As a novel global epidemic, corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 brought great suffering and disaster to mankind. Recently, although significant progress has been made in vaccines against SARS-CoV-2, there are still no drugs for treating COVID-19. It is well known that traditional Chinese medicine (TCM) has achieved excellent efficacy in the treatment of COVID-19 in China. As a treasure-house of natural drugs, Chinese herbs offer a promising prospect for discovering anti-COVID-19 drugs.Hypothesis/Gap Statement. We proposed that Rhei Radix et Rhizome-Schisandrae Sphenantherae Fructus (RS) may have potential value in the treatment of COVID-19 patients by regulating immune response, protecting the cardiovascular system, inhibiting the production of inflammatory factors, and blocking virus invasion and replication processes.Aim. We aimed to explore the feasibility and molecular mechanisms of RS against COVID-19, to provide a reference for basic research and clinical applications.Methodology. Through literature mining, it is found that a Chinese herbal pair, RS, has potential anti-COVID-19 activity. In this study, we analysed the feasibility of RS against COVID-19 by high-throughput molecular docking and molecular dynamics simulations. Furthermore, we predicted the molecular mechanisms of RS against COVID-19 based on network pharmacology.Results. We proved the feasibility of RS anti-COVID-19 by literature mining, virtual docking and molecular dynamics simulations, and found that angiotensin converting enzyme 2 (ACE2) and 3C-like protease (3 CL pro) were also two critical targets for RS against COVID-19. In addition, we predicted the molecular mechanisms of RS in the treatment of COVID-19, and identified 29 main ingredients, 21 potential targets and 16 signalling pathways. Rhein, eupatin, (-)-catechin, aloe-emodin may be important active ingredients in RS. ALB, ESR1, EGFR, HMOX1, CTSL, and RHOA may be important targets against COVID-19. Platelet activation, renin secretion, ras signalling pathway, chemokine signalling pathway, and human cytomegalovirus infection may be important signalling pathways against COVID-19.Conclusion. RS plays a key role in the treatment of COVID-19, which may be closely related to immune regulation, cardiovascular protection, anti-inflammation, virus invasion and replication processes.
Collapse
Affiliation(s)
- Jian-Hong Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Fang-Xu Dong
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shan-Yu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zi-Ming Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Wen-Jing Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Feng-Zhi Sun
- The Pharmacy Department, Maternal and Child Health Care Hospital of Shandong Province, Jinan 250014, PR China
| | - Hui-Min Zhang
- Shandong Academy of Chinese Medicine, Jinan 250014, PR China
| | - Xiao-Long Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|