1
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
2
|
Fu Z, Yang G, Wang T, Gao D, Lin D, Liu X. Comprehensive Analysis of the Sorafenib-Associated Druggable Targets on Differential Gene Expression and ceRNA Network in Hepatocellular Carcinoma. J Environ Pathol Toxicol Oncol 2023; 42:47-60. [PMID: 37522567 DOI: 10.1615/jenvironpatholtoxicoloncol.2023045721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant pathological type of liver cancer. Several therapeutic treatments, including sorafenib and regorafenib, have only modestly improved survival in patients with HCC. The aim of this study was to investigate the expression profiles and the regulation of competitive endogenous RNAs (ceRNAs) of the sorafenib-related target genes in HCC. Based on clinical information and expression profiles of HCC clinical samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, shared differentially expressed genes (DEGs) were analyzed and identified. Sorafenib-associated DEGs (SADs) were obtained by intersecting the DEGs with the sorafenib target genes from SuperTarget database. The expression patterns of SADs were verified in the Oncomine database. The biological functions of the SADs were annotated by gene set enrichment analysis (GSEA). In addition, a ceRNA network associated with SADs was constructed. Long non-coding RNAs (lncRNAs) in network that were significantly associated with overall survival were identified as prognosis of patients by Cox regression analysis. Finally, the expression levels of prognostic genes in HCC tissues and cell lines were verified using qRT-PCR. Gene expression differential analysis yielded a total of 146 common DEGs were obtained, including 21 upregulated and 125 downregulated DEGs. Among them, ten SADs were detected to be differentially expressed between tumor and normal tissues, including AXL, CYP2C19, CYP2C8, CYP2C9, CYP3A4, FGFR2, GMNN, PDGFRA, and TTK. GSEA analysis grouped them into three categories by function. The first category (CYP2C19, CYP2C8, CYP2C9 and CYP3A4) and second category (GMNN, TTK and EGER2) had the opposite roles in the enriched terms and pathways, while the third class (AXL and PDGFRA) has enrichment terms and pathways that intersect with those of the first and second categories. A ceRNA network associated with SADs was also constructed including 49 lncRNAs, 14 miRNAs, and 8 mRNAs. Three of these lncRNAs, SNHG7, GAS5 and HCP5, were found upregulated in HCC tissues and to be independent predictors in HCC patients. Significant correlations were found in expression between the prognostic lncRNAs and SADs. Ten SADs were systematically identified using expression data from HCC and normal tissues from TCGA and GEO datasets. GSEA analysis provided us with insight into the function of SADs. In the future, we will continue to explore the mechanisms of coordinated regulation of SADs-related prognostic lncRNAs and SADs at the ceRNA axis level and their potential functions in the development of HCC.
Collapse
Affiliation(s)
- Zhi Fu
- General Surgery Center, Capital Medical University Youan Hospital, 100069 Beijing, P.R. China
| | - Guang Yang
- General Surgery Center, Capital Medical University Youan Hospital, 100069 Beijing, P.R. China
| | - Tiezheng Wang
- General Surgery Center, Capital Medical University Youan Hospital, 100069 Beijing, P.R. China
| | - Daming Gao
- General Surgery Center, Capital Medical University Youan Hospital, 100069 Beijing, P.R. China
| | - Dongdong Lin
- General Surgery Center, Capital Medical University Xuanwu Hospital, 100032 Beijing, P.R. China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Capital Medical University Youan Hospital, 100069 Beijing, P.R. China
| |
Collapse
|
3
|
Wang X, Liao X, Yang C, Huang K, Yu T, Yu L, Han C, Zhu G, Zeng X, Liu Z, Zhou X, Qin W, Su H, Ye X, Peng T. Identification of prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy. Oncol Rep 2019; 41:1586-1602. [PMID: 30628708 PMCID: PMC6365689 DOI: 10.3892/or.2019.6953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with high morbidity and mortality rates worldwide. The identification of prognosis-associated biomarkers is crucial to improve HCC patient survival. The present study aimed to explore potential predictive biomarkers for HCC. Differentially expressed genes (DEGs) were analyzed in the GSE36376 dataset using GEO2R. Hub genes were identified and further investigated for prognostic value in HCC patients. A risk score model and nomogram were constructed to predict HCC prognosis using the prognosis-associated genes and clinical factors. Pearson's correlation was employed to show interactions among hub genes. Gene enrichment analysis was performed to identify detailed biological processes and pathways. A total of 71 DEGs were obtained and seven (ADH4, CYP2C8, CYP2C9, CYP8B1, SLC22A1, TAT and HSD17B13, all adjusted P≤0.05) of the 10 hub genes were identified as prognosis-related genes for survival analysis in HCC patients, including alcohol dehydrogenase 4 (class II), pi polypeptide (ADH4), cytochrome p450 family 2 subfamily C member 8 (CYP2C8), cytochrome P450 family 2 subfamily C member 9 (CYP2C9), cytochrome P450 family 8 subfamily B member 1 (CYP8B1), solute carrier family 22 member 1 (SLC22A1), tyrosine aminotransferase (TAT) and hydroxysteroid 17-β dehydrogenase 13 (HSD17B13). The risk score model could predict HCC prognosis and the nomogram visualized gene expression and clinical factors of probability for HCC prognosis. The majority of genes showed significant Pearson's correlations with others (41 Pearson correlations P≤0.01, four Pearson correlations P>0.05). GO analysis revealed that terms such as ‘chemical carcinogenesis’ and ‘drug metabolism-cytochrome P450’ were enriched and may prove helpful to elucidate the mechanisms of hepatocarcinogenesis. Hub genes ADH4, CYP2C8, CYP2C9, CYP8B1, SLC22A1, TAT and HSD17B13 may be useful as predictive biomarkers for HCC prognosis.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Wang X, Yu T, Liao X, Yang C, Han C, Zhu G, Huang K, Yu L, Qin W, Su H, Liu X, Peng T. The prognostic value of CYP2C subfamily genes in hepatocellular carcinoma. Cancer Med 2018; 7:966-980. [PMID: 29479826 PMCID: PMC5911570 DOI: 10.1002/cam4.1299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Cytochrome P2C (CYP2C) subfamily members (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) are known to participate in clinical drug metabolism. However, the association between CYP2C subfamily members and hepatocellular carcinoma (HCC) remains unclear. This study investigated the prognostic value of CYP2C subfamily gene expression levels with HCC prognosis. Data of 360 HCC patients in The Cancer Genome Atlas database and 231 in the Gene Expression Omnibus database were analyzed. Kaplan-Meier analysis and a Cox regression model were used to ascertain overall survival and recurrence-free survival, and to calculate median survival time using hazard ratios (HR) and 95% confidence intervals (CI). In TCGA database, low expression of CYP2C8, CYP2C9, and CYP2C19 in tumor tissue was associated with a short median survival time (all crude P = 0.001, adjusted P = 0.004, P = 0.047, and P = 0.020, respectively). In TCGA database, joint effects analysis of the combinations of CYP2C8 and CYP2C9, CYP2C8 and CYP2C19, and CYP2C9 and CYP2C19 revealed that high expression of two genes (group 4; group IV, group d) was associated with a reduced risk of death as compared to low expression (group 1, group I, and group a) (adjusted P = 0.005, P = 0.013, and P = 0.016, respectively). In TCGA database, joint effects analysis of CYP2C8, CYP2C9, and CYP2C19 showed that the risk of death from HCC was lower for groups C and D than for group A (adjusted P = 0.012 and P = 0.008, respectively). CYP2C8, CYP2C9, and CYP2C19 gene expression levels are potential prognostic markers of HCC following hepatectomy.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Tingdong Yu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Xiwen Liao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Chengkun Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Chuangye Han
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Guangzhi Zhu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Ketuan Huang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Long Yu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan Province 450000China
| | - Wei Qin
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Hao Su
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Xiaoguang Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
- Department of Hepatobiliary SurgeryAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong Province 524001China
| | - Tao Peng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| |
Collapse
|
5
|
Liang Y, Yan X, Li Z, Yang L, Zhang B, Wang Q. Click Chemistry Mediated Eu-Tagging: Activity-Based Specific Quantification and Simultaneous Activity Evaluation of CYP3A4 Using 153Eu Species-Unspecific Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2014; 86:3688-92. [DOI: 10.1021/ac500123z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zhaoxin Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Bo Zhang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation and ‡The State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Brown GT, Cash BG, Blihoghe D, Johansson P, Alnabulsi A, Murray GI. The expression and prognostic significance of retinoic acid metabolising enzymes in colorectal cancer. PLoS One 2014; 9:e90776. [PMID: 24608339 PMCID: PMC3946526 DOI: 10.1371/journal.pone.0090776] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/04/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104-1.390, χ(2) = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034-1.688, χ(2) = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173-1.509, χ(2)= 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110-1.930, χ(2) = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are significantly associated with prognosis both in the total cohort and in those tumours which are mismatch repair proficient. CYP26B1 was independently prognostic in a multivariate model both in the whole patient cohort (HR = 1.177, 95%CI = 1.020-1.216, p = 0.026) and in mismatch repair proficient tumours (HR = 1.255, 95%CI = 1.073-1.467, p = 0.004).
Collapse
Affiliation(s)
- Gordon T Brown
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Beatriz Gimenez Cash
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen, United Kingdom
| | - Daniela Blihoghe
- George S. Wise Faculty of Life Sciences, Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Petronella Johansson
- The Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ayham Alnabulsi
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen, United Kingdom
| | - Graeme I Murray
- Pathology, Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Gong J, Gan J, Iyer RA. Identification of the Oxidative and Conjugative Enzymes Involved in the Biotransformation of Brivanib. Drug Metab Dispos 2011; 40:219-26. [DOI: 10.1124/dmd.111.042457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Chou YC, Chung YT, Liu TY, Wang SY, Chau GY, Chi CW, Soucek P, Krausz KW, Gelboin HV, Lee CH, Ueng YF. The oxidative metabolism of dimemorfan by human cytochrome P450 enzymes. J Pharm Sci 2010; 99:1063-77. [PMID: 19593786 DOI: 10.1002/jps.21866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To characterize the human cytochrome P450 (P450) forms involved in dimemorfan oxidation (DFO), human liver microsomes, and recombinant P450s were investigated. Liquid chromatography-mass spectral analysis suggested that metabolite (M)1 ([M + H](+) m/z at 272.200) and M2 ([M + H](+) m/z at 242.190) were d-3-hydroxymethyl-N-methylmorphinan and d-3-methylmorphinan, respectively. Kinetic analyses of microsomal DFO showed that the substrate concentration showing a half-maximal velocity (S(50)) of M1 formation was less than that of M2. Microsomal M1 and M2 formation activities correlated significantly with the CYP2D6 marker, dextromethorphan O-demethylation activity. The M2 formation activity was also correlated with the CYP3A4 marker, nifedipine oxidation activity. Microsomal M1 and M2 formation was most sensitive to the inhibition by a CYP2D6 inhibitor, paroxetine and a CYP3A4 inhibitor, ketoconazole, respectively. The immunoinhibition-defined P450 contributions indicated the participation of CYP2C9, CYP2C19, and CYP2D6 in the M1 formation and CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in the M2 formation. Among recombinant P450s, CYP2D6 had the highest intrinsic clearance with a K(m) value of 0.02 mM in forming M1. CYP2B6, CYP2C9, and CYP2C19 had the K(m) or S(50) values smaller than those (1 mM) of CYP2D6 and CYP3A4 in forming M2. These results indicated the participation of multiple P450 forms in DFO.
Collapse
Affiliation(s)
- Yueh-Ching Chou
- Pharmacy Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Trubetskoy O, Finel M, Trubetskoy V. High-throughput screening technologies for drug glucuronidation profiling. J Pharm Pharmacol 2010; 60:1061-7. [DOI: 10.1211/jpp.60.8.0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
A significant number of endogenous and exogenous compounds, including many therapeutic agents, are metabolized in humans via glucuronidation, catalysed by uridine diphosphoglucurono-syltransferases (UGTs). The study of the UGTs is a growing field of research, with constantly accumulated and updated information regarding UGT structure, purification, substrate specificity and inhibition, including clinically relevant drug interactions. Development of reliable UGT assays for the assessment of individual isoform substrate specificity and for the discovery of novel isoform-specific substrates and inhibitors is crucial for understanding the function and regulation of the UGT enzyme family and its clinical and pharmacological relevance. High-throughput screening (HTS) is a powerful technology used to search for novel substrates and inhibitors for a wide variety of targets. However, application of HTS in the context of UGTs is complicated because of the poor stability, low levels of expression, low affinity and broad substrate specificity of the enzymes, combined with difficulties in obtaining individual UGT isoforms in purified format, and insufficient information regarding isoform-specific substrates and inhibitors. This review examines the current status of HTS assays used in the search for novel UGT substrates and inhibitors, emphasizing advancements and challenges in HTS technologies for drug glucuronidation profiling, and discusses possible avenues for future advancement of the field.
Collapse
Affiliation(s)
- Olga Trubetskoy
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Moshe Finel
- DDTC, Faculty of Pharmacy, University of Helsinki, Finland
| | | |
Collapse
|
10
|
Qian L, Zolfaghari R, Ross AC. Liver-specific cytochrome P450 CYP2C22 is a direct target of retinoic acid and a retinoic acid-metabolizing enzyme in rat liver. J Lipid Res 2010; 51:1781-92. [PMID: 20147703 DOI: 10.1194/jlr.m002840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Several cytochrome P450 (CYP) enzymes catalyze the C4-hydroxylation of retinoic acid (RA), a potent inducer of cell differentiation and an agent in the treatment of several diseases. Here, we have characterized CYP2C22, a member of the rat CYP2C family with homology to human CYP2C8 and CYP2C9. CYP2C22 was expressed nearly exclusively in hepatocytes, where it was one of the more abundant mRNAs transcripts. In H-4-II-E rat hepatoma cells, CYP2C22 mRNA was upregulated by all-trans (at)-RA, and Am580, a nonmetabolizable analog of at-RA. In comparison, in primary human hepatocytes, at-RA increased CYP2C9 but not CYP2C8 mRNA. Analysis of the CYP2C22 promoter region revealed a RA response element (5'-GGTTCA-(n)5-AGGTCA-3') in the distal flanking region, which bound the nuclear hormone receptors RAR and RXR and which was required for transcriptional activation response of this promoter to RA in CYP2C22-luciferase-transfected RA-treated HepG2 cells. The cDNA-expressed CYP2C22 protein metabolized [3H]at-RA to more polar metabolites. While long-chain polyunsaturated fatty acids competed, 9-cis-RA was a stronger competitor. Our studies demonstrate that CYP2C22 is a high-abundance, retinoid-inducible, hepatic P450 with the potential to metabolize at-RA, providing additional insight into the role of the CYP2C gene family in retinoid homeostasis.
Collapse
Affiliation(s)
- Linxi Qian
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
11
|
Wu B, Yin J, Texier C, Roussel M, Tan KSW. Blastocystis legumain is localized on the cell surface, and specific inhibition of its activity implicates a pro-survival role for the enzyme. J Biol Chem 2009; 285:1790-8. [PMID: 19915007 DOI: 10.1074/jbc.m109.049064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Programmed cell death (PCD) is crucial for cellular growth and development in multicellular organisms. Although distinct PCD features have been described for unicellular eukaryotes, homology searches have failed to reveal clear PCD-related orthologues among these organisms. Our previous studies revealed that a surface-reactive monoclonal antibody (mAb) 1D5 could induce multiple PCD pathways in the protozoan Blastocystis. In this study, we identified, by two-dimensional gel electrophoresis and mass spectrometry, the target of mAb 1D5 as a surface-localized legumain, an asparagine endopeptidase that is usually found in lysosomal/acidic compartments of other organisms. Recombinant Blastocystis legumain displayed biphasic pH optima in substrate assays, with peaks at pH 4 and 7.5. Activity of Blastocystis legumain was greatly inhibited by the legumain-specific inhibitor carbobenzyloxy-Ala-Ala-AAsn-epoxycarboxylate ethyl ester (APE-RR) (where AAsn is aza-asparagine) and moderately inhibited by mAb 1D5, cystatin, and caspase-1 inhibitor. Interestingly, inhibition of legumain activity induced PCD in Blastocystis, observed by increased externalization of phosphatidylserine residues and in situ DNA fragmentation. In contrast to plants, in which legumains have been shown to play a pro-death role, legumain appears to display a pro-survival role in Blastocystis.
Collapse
Affiliation(s)
- Binhui Wu
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore 117597
| | | | | | | | | |
Collapse
|
12
|
Toda T, Eliasson E, Ask B, Inotsume N, Rane A. Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin Pharmacol Toxicol 2009; 105:327-32. [PMID: 19663817 DOI: 10.1111/j.1742-7843.2009.00453.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluvastatin has been considered to be metabolised to 5-hydroxy fluvastatin (M-2), 6-hydroxy fluvastatin (M-3) and N-desisopropyl fluvastatin (M-5) in human liver microsomes by primarily CYP2C9. To elucidate the contribution of different CYP enzymes on fluvastatin metabolism, we examined the effect of CYP inhibitors and CYP2C-specific monoclonal antibodies on the formation of fluvastatin metabolites in human liver microsomes. Human liver microsomes were incubated with fluvastatin with or without pre-treatment with CYP inhibitors or monoclonal antibodies. Selective inhibitors of CYP2C9 (sulfaphenazole), CYP3A (ketoconazole) and CYP2C8 (quercetin) were employed and monoclonal antibodies were against CYP2C8, CYP2C9, CYP2C19 and CYP2C8/9/18/19. According to the amount of fluvastatin metabolites produced, the formation of M-3 was found to be major pathway of fluvastatin metabolism (the relative contribution was calculated to be more than 80%). Sulfaphenazole inhibited the formation of M-2 largely, but had little effect on the formation of M-3. It also inhibited the formation of M-5. Ketoconazole markedly inhibited the formation of M-3, but did not inhibit the formation of M-2 and M-5. Quercetin had a moderate inhibitory effect on the formation of all three fluvastatin metabolites. Monoclonal antibodies against CYP2C9 and CYP2C8/9/18/19 markedly inhibited the formation of M-2 and M-5. None of monoclonal antibodies showed clear inhibition on the formation of M-3. In contrast to previous published work, our results suggest that M-2 and M-5 are formed preferentially by CYP2C9, and that M-3 is mainly formed by CYP3A. In summary, the results contribute to a better understanding of the drug-drug interaction potential for fluvastatin in vivo.
Collapse
Affiliation(s)
- Takaki Toda
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
13
|
Abstract
Cytochrome P450 (P450) is the superfamily of enzymes responsible for biotransformation of endobiotics and xenobiotics. However, their large isoform multiplicity, inducibility, diverse structure, widespread distribution, polymorphic expression, and broad overlapping substrate specificity make it difficult to measure the precise role of each individual P450 to the metabolism of drugs (or carcinogens) and hamper the understanding of the relationship between the genetic/environmental factors that regulate P450 phenotype and the responses of the individual P450s to drugs. The antibodies against P450s have been useful tools for the quantitative determination of expression level and contribution of the epitope-specific P450 to the metabolism of a drug or carcinogen substrate in tissues containing multiple P450 isoforms and for implications in pharmacogenetics and human risk assessment. In particular, the inhibitory antibodies are uniquely suited for reaction phenotyping that helps to predict human pharmacokinetics for clinical drug-drug interaction potential in drug discovery and development.
Collapse
Affiliation(s)
- Magang Shou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 30E-2-B, One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
14
|
Redlich G, Zanger UM, Riedmaier S, Bache N, Giessing ABM, Eisenacher M, Stephan C, Meyer HE, Jensen ON, Marcus K. Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 2008; 7:4678-88. [PMID: 18828626 DOI: 10.1021/pr800231w] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In mammals, Cytochrome P450 (CYP) enzymes are bound to membranes of the endoplasmic reticulum and mitochondria, where they are responsible for the oxidative metabolism of many xenobiotics as well as organic endogenous compounds. In humans, 57 isoforms were identified which are classified based on sequence homology. In the present work, we demonstrate the performance of a mass spectrometry-based strategy to simultaneously detect and differentiate distinct human Cytochrome P450 (CYP) isoforms including the highly similar CYP3A4, CYP3A5, CYP3A7, as well as CYP2C8, CYP2C9, CYP2C18, CYP2C19, and CYP4F2, CYP4F3, CYP4F11, CYP4F12. Compared to commonly used immunodetection methods, mass spectrometry overcomes limitations such as low antibody specificity and offers high multiplexing possibilities. Furthermore, CYP phosphorylation, which may affect various biochemical and enzymatic properties of these enzymes, is still poorly analyzed, especially in human tissues. Using titanium dioxide resin combined with tandem mass spectrometry for phosphopeptide enrichment and sequencing, we discovered eight human P450 phosphorylation sites, seven of which were novel. The data from surgical human liver samples establish that the isoforms CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C8, CYP2D6, CYP3A4, CYP3A7, and CYP8B1 are phosphorylated in vivo. These results will aid in further investigation of the functional significance of protein phosphorylation for this important group of enzymes.
Collapse
Affiliation(s)
- Gorden Redlich
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr. 150, ZKF, D-44801 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Snider NT, Sikora MJ, Sridar C, Feuerstein TJ, Rae JM, Hollenberg PF. The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. J Pharmacol Exp Ther 2008; 327:538-45. [PMID: 18698000 DOI: 10.1124/jpet.108.141796] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the cytochrome P450 (P450) family of drug-metabolizing enzymes are present in the human brain, and they may have important roles in the oxidation of endogenous substrates. The polymorphic CYP2D6 is one of the major brain P450 isoforms and has been implicated in neurodegeneration, psychosis, schizophrenia, and personality traits. The objective of this study was to determine whether the endocannabinoid arachidonoylethanolamide (anandamide) is a substrate for CYP2D6. Anandamide is the endogenous ligand to the cannabinoid receptor CB1, which is also activated by the main psychoactive component in marijuana. Signaling via the CB1 receptor alters sensory and motor function, cognition, and emotion. Recombinant CYP2D6 converted anandamide to 20-hydroxyeicosatetraenoic acid ethanolamide and 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs) with low micromolar K(m) values. CYP2D6 further metabolized the epoxides of anandamide to form novel dioxygenated derivatives. Human brain microsomal and mitochondrial preparations metabolized anandamide to form hydroxylated and epoxygenated products, respectively. An inhibitory antibody against CYP2D6 significantly decreased the mitochondrial formation of the EET-EAs. To our knowledge, anandamide and its epoxides are the first eicosanoid-like molecules to be identified as CYP2D6 substrates. Our study suggests that anandamide may be a physiological substrate for brain mitochondrial CYP2D6, implicating this polymorphic enzyme as a potential component of the endocannabinoid system in the brain. This study also offers support to the hypothesis that neuropsychiatric phenotype differences among individuals with genetic variations in CYP2D6 could be ascribable to interactions of this enzyme with endogenous substrates.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | | | | | | | |
Collapse
|
16
|
Expression of CYP4F2 in human liver and kidney: assessment using targeted peptide antibodies. Arch Biochem Biophys 2008; 478:59-68. [PMID: 18662666 DOI: 10.1016/j.abb.2008.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/21/2008] [Accepted: 06/24/2008] [Indexed: 02/01/2023]
Abstract
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.
Collapse
|
17
|
Detection of electrophoretically separated cytochromes P450 by element-labelled monoclonal antibodies via laser ablation inductively coupled plasma mass spectrometry. Anal Bioanal Chem 2008; 392:1135-47. [DOI: 10.1007/s00216-008-2242-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/06/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
18
|
Goel S, Cohen M, Çömezoglu SN, Perrin L, André F, Jayabalan D, Iacono L, Comprelli A, Ly VT, Zhang D, Xu C, Humphreys WG, McDaid H, Goldberg G, Horwitz SB, Mani S. The Effect of Ketoconazole on the Pharmacokinetics and Pharmacodynamics of Ixabepilone: A First in Class Epothilone B Analogue in Late-Phase Clinical Development. Clin Cancer Res 2008; 14:2701-9. [DOI: 10.1158/1078-0432.ccr-07-4151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Harper TW, Brassil PJ. Reaction phenotyping: current industry efforts to identify enzymes responsible for metabolizing drug candidates. AAPS JOURNAL 2008; 10:200-7. [PMID: 18446520 DOI: 10.1208/s12248-008-9019-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/20/2008] [Indexed: 11/30/2022]
Abstract
Reaction phenotyping studies to identify specific enzymes involved in the metabolism of drug candidates are increasingly important in drug discovery efforts. Experimental approaches used for CYP reaction phenotyping include incubations with cDNA expressed CYP enzyme systems and incubations containing specific CYP enzyme inhibitors. Since both types of experiments present specific advantages as well as known drawbacks, these studies are generally viewed as complementary approaches. Although glucuronidation pathways are also known to present potential drug-drug interaction issues as well as challenges related to their polymorphic expression, reaction phenotyping approaches for glucuronidation are generally limited to cDNA expressed systems due to lack of availability of specific UGT inhibitors. This article presents a limited review of current approaches to reaction phenotyping studies used within the pharmaceutical industry.
Collapse
Affiliation(s)
- Timothy W Harper
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, PO Box 5400, Mail Stop 17-12, Princeton, New Jersey 08543-5400, USA.
| | | |
Collapse
|
20
|
Kornilayev BA, Alterman MA. Utility of polyclonal antibodies targeted toward unique tryptic peptides in the proteomic analysis of cytochrome P450 isozymes. Toxicol In Vitro 2008; 22:779-87. [DOI: 10.1016/j.tiv.2007.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 11/26/2022]
|
21
|
Zhang H, Davis CD, Sinz MW, Rodrigues AD. Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin Drug Metab Toxicol 2008; 3:667-87. [PMID: 17916054 DOI: 10.1517/17425255.3.5.667] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is now widely accepted that the fraction of the dose metabolized by a given drug-metabolizing enzyme is one of the major factors governing the magnitude of a drug interaction and the impact of a polymorphism on (total) drug clearance. Therefore, most pharmaceutical companies determine the enzymes involved in the metabolism of a new chemical entity (NCE) in vitro, in conjunction with human data on absorption, distribution, metabolism and excretion. This so called reaction-phenotyping, or isozyme-mapping, usually involves the use of multiple reagents (e.g., recombinant proteins, liver subcellular fractions, enzyme-selective chemical inhibitors and antibodies). For the human CYPs, reagents are readily available and in vitro reaction-phenotyping data are now routinely included in most regulatory documents. Ideally, the various metabolites have been definitively identified, incubation conditions have afforded robust kinetic analyses, and well characterized (high quality) reagents and human tissues have been employed. It is also important that the various in vitro data are consistent (e.g., scaled turnover with recombinant CYP proteins, CYP inhibition and correlation data with human liver microsomes) and enable an integrated in vitro CYP reaction-phenotype. Results of the in vitro CYP reaction-phenotyping are integrated with clinical data (e.g., human radiolabel and drug interaction studies) and a complete package is then submitted for regulatory review. If the NCE receives market approval, information on key routes of clearance and their associated potential for drug-drug interactions are included in the product label. The present review focuses on in vitro CYP reaction-phenotyping and the integration of data. Relatively simple strategies enabling the design and prioritization of follow up clinical studies are also discussed.
Collapse
Affiliation(s)
- Hongjian Zhang
- Bristol-Myers Squibb Research and Development, Pharmaceutical Candidate Optimization, PO Box 4000, Princeton, NJ 08543, USA.
| | | | | | | |
Collapse
|
22
|
Snider NT, Kornilov AM, Kent UM, Hollenberg PF. Anandamide Metabolism by Human Liver and Kidney Microsomal Cytochrome P450 Enzymes to Form Hydroxyeicosatetraenoic and Epoxyeicosatrienoic Acid Ethanolamides. J Pharmacol Exp Ther 2007; 321:590-7. [PMID: 17272674 DOI: 10.1124/jpet.107.119321] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The endocannabinoid anandamide is an arachidonic acid derivative that is found in most tissues where it acts as an important signaling mediator in neurological, immune, cardiovascular, and other functions. Cytochromes P450 (P450s) are known to oxidize arachidonic acid to the physiologically active molecules hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), which play important roles in blood pressure regulation and inflammation. To determine whether anandamide can also be oxidized by P450s, its metabolism by human liver and kidney microsomes was investigated. The kidney microsomes metabolized anandamide to a single mono-oxygenated product, which was identified as 20-HETE-ethanolamide (EA). Human liver microsomal incubations with anandamide also produced 20-HETE-EA in addition to 5,6-, 8,9-, 11-12, and 14,15-EET-EA. The EET-EAs produced by the liver microsomal P450s were converted to their corresponding dihydroxy derivatives by microsomal epoxide hydrolase. P450 4F2 was identified as the isoform that is most probably responsible for the formation of 20-HETE-EA in both human kidney and human liver, with an apparent Km of 0.7 microM. The apparent Km values of the human liver microsomes for the formation of the EET-EAs were between 4 and 5 microM, and P450 3A4 was identified as the primary P450 in the liver responsible for epoxidation of anandamide. The in vivo formation and biological relevance of the P450-derived HETE and EET ethanolamides remains to be determined.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Pharmacology, University of Michigan, 2301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | |
Collapse
|
23
|
Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, Davis CD, Humphreys WG. Involvement of Multiple Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes in the in Vitro Metabolism of Muraglitazar. Drug Metab Dispos 2006; 35:139-49. [PMID: 17062778 DOI: 10.1124/dmd.106.011932] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes involved in the in vitro metabolism of muraglitazar. [(14)C]Muraglitazar was metabolized by cDNA-expressed CYP2C8, 2C9, 2C19, 2D6, and 3A4, but to a very minimal extent by CYP1A2, 2A6, 2B6, 2C18, 2E1, and 3A5. Inhibition of the in vitro metabolism of muraglitazar in human liver microsomes, at a clinically efficacious concentration, by chemical inhibitors and monoclonal antibodies further supported involvement of CYP2C8, 2C9, 2C19, 2D6, and 3A4 in its oxidation. A combination of intrinsic clearance (V(max)/K(m)) and relative concentrations of each P450 enzyme in the human liver was used to predict the contribution of CYP2C8, 2C9, 2C19, 2D6, and 3A4 to the formation of each primary oxidative metabolite and to the overall oxidative metabolism of muraglitazar. Glucuronidation of [(14)C]muraglitazar was catalyzed by cDNA-expressed UGT1A1, 1A3, and 1A9, but not by UGT1A6, 1A8, 1A10, 2B4, 2B7, and 2B15. The K(m) values for muraglitazar glucuronidation by the three active UGT enzymes were similar (2-4 muM). In summary, muraglitazar was metabolized by multiple P450 and UGT enzymes to form multiple metabolites. This characteristic predicts a low potential for the alteration of the pharmacokinetic parameters of muraglitazar via polymorphic drug metabolism enzymes responsible for clearance of the compound or by coadministration of drugs that inhibit or induce relevant metabolic enzymes.
Collapse
Affiliation(s)
- Donglu Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, P.O. Box 4000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | |
Collapse
|