1
|
Ning C, Su S, Li J, Kong D, Cai H, Qin Z, Xing H, Chen X, He J. Evaluation of a Clinically Relevant Drug-Drug Interaction Between Rosuvastatin and Clopidogrel and the Risk of Hepatotoxicity. Front Pharmacol 2021; 12:715577. [PMID: 34646133 PMCID: PMC8504577 DOI: 10.3389/fphar.2021.715577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: The combination therapy of rosuvastatin (RSV) and the platelet inhibitor clopidogrel (CP) is widely accepted in the management of cardiovascular diseases. The objective of the present study was to identify the mechanism of RSV–CP DDI and evaluate the risk of hepatotoxicity associated with the concomitant use of CP. Methods: We first studied the effect of CP and its major circulating metabolite, carboxylic acid metabolite (CPC), on RSV transport by overexpressing cells and membrane vesicles. Second, we investigated whether a rat model could replicate this DDI and then be used to conduct mechanistic studies and assess the risk of hepatotoxicity. Then, cytotoxicity assay in hepatocytes, biochemical examination, and histopathology were performed to measure the magnitude of liver injury in the presence and absence of DDI. Results: CP inhibited OATP1B1-mediated transport of RSV with an IC50 value of 27.39 μM. CP and CPC inhibited BCRP-mediated RSV transport with IC50 values of <0.001 and 5.96 μM, respectively. The CP cocktail (0.001 μM CP plus 2 μM CPC) significantly inhibited BCRP-mediated transport of RSV by 26.28%. Multiple p.o. doses of CP significantly increased intravenous RSV plasma AUC0-infinity by 76.29% and decreased intravenous RSV CL by 42.62%. Similarly, multiple p.o. doses of CP significantly increased p.o. RSV plasma AUC0-infinity by 87.48% and decreased p.o. RSV CL by 43.27%. CP had no effect on cell viability, while RSV exhibited dose-dependent cytotoxicity after 96 h incubation. Co-incubation of 100 μM CP and RSV for 96 h significantly increased intracellular concentrations and cell-to-medium concentration ratios of RSV and reduced hepatocyte viability. Histological evaluation of liver specimens showed patterns of drug-induced liver injury. Cholestasis was found in rats in the presence of DDI. Conclusion: CP is not a clinically relevant inhibitor for OATP1B1 and OATP1B3. The primary mechanism of RSV–CP DDI can be attributed to the inhibition of intestinal BCRP by CP combined with the inhibition of hepatic BCRP by CPC. The latter is likely to be more clinically relevant and be a contributing factor for increased hepatotoxicity in the presence of DDI.
Collapse
Affiliation(s)
- Chen Ning
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengdi Su
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaming Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dexuan Kong
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Cai
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiying Qin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Han Xing
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiake He
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Tatham LM, Liptrott NJ, Rannard SP, Owen A. Long-Acting Injectable Statins-Is It Time for a Paradigm Shift? Molecules 2019; 24:E2685. [PMID: 31344834 PMCID: PMC6695729 DOI: 10.3390/molecules24152685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
In recent years, advances in pharmaceutical processing technologies have resulted in development of medicines that provide therapeutic pharmacokinetic exposure for a period ranging from weeks to months following a single parenteral administration. Benefits for adherence, dose and patient satisfaction have been witnessed across a range of indications from contraception to schizophrenia, with a range of long-acting medicines also in development for infectious diseases such as HIV. Existing drugs that have successfully been formulated as long-acting injectable formulations have long pharmacokinetic half-lives, low target plasma exposures, and low aqueous solubility. Of the statins that are clinically used currently, atorvastatin, rosuvastatin, and pitavastatin may have compatibility with this approach. The case for development of long-acting injectable statins is set out within this manuscript for this important class of life-saving drugs. An overview of some of the potential development and implementation challenges is also presented.
Collapse
Affiliation(s)
- Lee M Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
- Tandem Nano Ltd., Liverpool L22 3GL, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | - Steve P Rannard
- Department of Chemistry, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.
- Tandem Nano Ltd., Liverpool L22 3GL, UK.
| |
Collapse
|
3
|
|
4
|
Chavan BB, Kalariya PD, Nimbalkar RD, Garg P, Srinivas R, Kumar Talluri MVN. Identification and characterization of fluvastatin metabolites in rats by UHPLC/Q-TOF/MS/MS and in silico toxicological screening of the metabolites. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:296-314. [PMID: 28295913 DOI: 10.1002/jms.3929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
The present study reports the in vivo and in vitro identification and characterization of metabolites of fluvastatin, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor, using liquid chromatography-mass spectrometry (LC-MS). In vitro studies were conducted by incubating the drug with human liver microsomes and rat liver microsomes. In vivo studies were carried out by administration of the drug in the form of suspension to the Sprague-Dawley rats followed by collection of urine, faeces and blood at different time points up to 24 h. Further, samples were prepared by optimized sample preparation method, which includes freeze liquid extraction, protein precipitation and solid phase extraction. The extracted and concentrated samples were analysed using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry. A total of 15 metabolites were observed in urine, which includes hydroxyl, sulphated, desisopropyl, dehydrogenated, dehydroxylated and glucuronide metabolites. A few of the metabolites were also present in faeces and plasma samples. In in vitro studies, a few metabolites were observed that were also present in in vivo samples. All the metabolites were characterized using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry in combination with accurate mass measurement. Finally, in silico toxicity studies indicated that some of the metabolites show or possess carcinogenicity and skin sensitization. Several metabolites that were identified in rats are proposed to have toxicological significance on the basis of in silico evaluation. However, these metabolites are of no human relevance. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Balasaheb B Chavan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
5
|
Kim SJ, Yoshikado T, Ieiri I, Maeda K, Kimura M, Irie S, Kusuhara H, Sugiyama Y. Clarification of the Mechanism of Clopidogrel-Mediated Drug-Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information. ACTA ACUST UNITED AC 2016; 44:1622-32. [PMID: 27457785 DOI: 10.1124/dmd.116.070276] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/22/2016] [Indexed: 11/22/2022]
Abstract
Clopidogrel is reported to be associated with cerivastatin-induced rhabdomyolysis, and clopidogrel and its metabolites are capable of inhibiting CYP2C8 and OATP 1B1 in vitro. The objective of the present study was to identify the mechanism of clopidogrel-mediated drug-drug interactions (DDIs) on the pharmacokinetics of OATP1B1 and/or CYP2C8 substrates in vivo. A clinical cassette small-dose study using OATPs, CYP2C8, and OATP1B1/CYP2C8 probe drugs (pitavastatin, pioglitazone, and repaglinide, respectively) with or without the coadministration of either 600 mg rifampicin (an inhibitor for OATPs), 200 mg trimethoprim (an inhibitor for CYP2C8), or 300 mg clopidogrel was performed, and the area under the concentration-time curve (AUC) ratios (AUCRs) for probe substrates were predicted using a static model. Clopidogrel increased the AUC of pioglitazone (2.0-fold) and repaglinide (3.1-fold) but did not significantly change the AUC of pitavastatin (1.1-fold). In addition, the AUC of pioglitazone M4, a CYP2C8-mediated metabolite of pioglitazone, was reduced to 70% of the control by coadministration of clopidogrel. The predicted AUCRs using the mechanism-based inhibition of CYP2C8 by clopidogrel acyl-β-glucuronide were similar to the observed AUCRs, and the predicted AUCR (1.1) of repaglinide using only the inhibition of OATP1B1 did not reach the observed AUCR (3.1). In conclusion, a single 300 mg of clopidogrel mainly inhibits CYP2C8-mediated metabolism by clopidogrel acyl-β-glucuronide, but its effect on the pharmacokinetics of OATP1B1 substrates is negligible. Clopidogrel is expected to have an effect not only on CYP2C8 substrates, but also dual CYP2C8/OATP1B1 substrates as seen in the case of repaglinide.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Ichiro Ieiri
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Kazuya Maeda
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Miyuki Kimura
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Shin Irie
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Hiroyuki Kusuhara
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN, Yokohama, Japan (S. K., T.Y., Y.S.); Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan (I.I.); Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.M., H.K.); and Sugioka Memorial Hospital, Fukuoka, Japan (M.K., S.I.)
| |
Collapse
|
6
|
Hirota T, Ieiri I. Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 2015; 11:1435-47. [PMID: 26058399 DOI: 10.1517/17425255.2015.1056149] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lipid-lowering drugs, especially hydroxymethylglutaryl-CoA reductase inhibitors (statins), are widely used in the treatment and prevention of atherosclerotic diseases. The benefits of statins are well documented. However, myotoxic side effects, which can sometimes be severe, including myopathy or rhabdomyolysis, have been associated with the use of statins. In some cases, this toxicity is associated with pharmacokinetic alterations. Potent inhibitors of CYP 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin and atorvastatin. Fluvastatin is metabolized by CYP2C9, while pravastatin, rosuvastatin and pitavastatin are not susceptible to inhibition by any CYP. AREAS COVERED This review discusses the pharmacokinetic aspects of the drug-drug interaction with statins and genetic polymorphisms in CYPs, which are involved in the metabolism of statins, and highlights the importance of establishing a system utilizing electronic medical information practically to avoid adverse drug reactions. EXPERT OPINION An understanding of the mechanisms underlying statin interactions will help to minimize drug interactions and develop statins that are less prone to adverse interactions. Quantitatively analyzed information for the low-density lipoprotein cholesterol lowering effects of statin based on electronic medical records may be useful for avoiding the adverse effect of statins.
Collapse
Affiliation(s)
- Takeshi Hirota
- a Kyushu University, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Department of Clinical Pharmacokinetics , Fukuoka 8128582, Japan +81 92 642 6657 ; +81 92 642 6660 ;
| | | |
Collapse
|
7
|
Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, Zhou Q. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag 2015; 11:449-67. [PMID: 25848291 PMCID: PMC4373598 DOI: 10.2147/tcrm.s80437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Coprescribing of clopidogrel and other drugs is common. Available reviews have addressed the drug–drug interactions (DDIs) when clopidogrel is as an object drug, or focused on combination use of clopidogrel and a special class of drugs. Clinicians may still be ignorant of those DDIs when clopidogrel is a precipitant drug, the factors determining the degree of DDIs, and corresponding risk management. Methods A literature search was performed using PubMed, MEDLINE, Web of Science, and the Cochrane Library to analyze the pharmacokinetic DDIs of clopidogrel and new P2Y12 receptor inhibitors. Results Clopidogrel affects the pharmacokinetics of cerivastatin, repaglinide, ferulic acid, sibutramine, efavirenz, and omeprazole. Low efficacy of clopidogrel is anticipated in the presence of omeprazole, esomeprazole, morphine, grapefruit juice, scutellarin, fluoxetine, azole antifungals, calcium channel blockers, sulfonylureas, and ritonavir. Augmented antiplatelet effects are anticipated when clopidogrel is coprescribed with aspirin, curcumin, cyclosporin, St John’s wort, rifampicin, and angiotensin-converting enzyme inhibitors. The factors determining the degree of DDIs with clopidogrel include genetic status (eg, cytochrome P540 [CYP]2B6*6, CYP2C19 polymorphism, CYP3A5*3, CYP3A4*1G, and CYP1A2-163C.A), species differences, and dose strength. The DDI risk does not exhibit a class effect, eg, the effects of clopidogrel on cerivastatin versus other statins, the effects of proton pump inhibitors on clopidogrel (omeprazole, esomeprazole versus pantoprazole, rabeprazole), the effects of rifampicin on clopidogrel versus ticagrelor and prasugrel, and the effects of calcium channel blockers on clopidogrel (amlodipine versus P-glycoprotein-inhibiting calcium channel blockers). The mechanism of the DDIs with clopidogrel involves modulating CYP enzymes (eg, CYP2B6, CYP2C8, CYP2C19, and CYP3A4), paraoxonase-1, hepatic carboxylesterase 1, P-glycoprotein, and organic anion transporter family member 1B1. Conclusion Effective and safe clopidogrel combination therapy can be achieved by increasing the awareness of potential changes in efficacy and toxicity, rationally selecting alternatives, tailoring drug therapy based on genotype, checking the appropriateness of physician orders, and performing therapeutic monitoring.
Collapse
Affiliation(s)
- Zhi-Yu Wang
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Meng Chen
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ling-Ling Zhu
- VIP Care Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lu-Shan Yu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Mei-Xiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
8
|
Uchiyama S. Clopidogrel Resistance: Identifying and Overcoming a Barrier to Effective Antiplatelet Treatment. Cardiovasc Ther 2011; 29:e100-11. [PMID: 21883990 DOI: 10.1111/j.1755-5922.2010.00202.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Shinichiro Uchiyama
- Department of Neurology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Xie HG, Zou JJ, Hu ZY, Zhang JJ, Ye F, Chen SL. Individual variability in the disposition of and response to clopidogrel: Pharmacogenomics and beyond. Pharmacol Ther 2011; 129:267-89. [DOI: 10.1016/j.pharmthera.2010.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/06/2010] [Indexed: 01/08/2023]
|
10
|
Gurbel PA, Antonino MJ, Tantry US. Recent developments in clopidogrel pharmacology and their relation to clinical outcomes. Expert Opin Drug Metab Toxicol 2009; 5:989-1004. [PMID: 19575629 DOI: 10.1517/17425250903107772] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oral antiplatelet therapy with clopidogrel and aspirin is an important and widely prescribed strategy to prevent ischemic events in patients with cardiovascular diseases. However, the occurrence of thrombotic events including stent thrombosis is still high (> 10%). Current practice guidelines are mainly based on large-scale trials focusing on clinical endpoints and 'one size fits all' strategies of treating all patients with the same clopidogrel doses. Pharmacodynamic studies have demonstrated that the latter strategy is associated with wide response variability where a substantial percentage of patients show nonresponsivenes. Translational research studies have established the relation between clopidogrel nonresponsivenes or high on-treatment platelet reactivity to adverse clinical events, thereby establishing clopidogrel nonresponsivenes as an important emerging clinical entity. Clopidogrel response variability is primarily a pharmacokinetic phenomenon associated with insufficient active metabolite generation that is secondary to i) limited intestinal absorption affected by an ABCB1 gene polymorphism; ii) functional variability in P450 isoenzyme activity; and iii) a genetic polymorphism of CYP450 isoenzymes. Personalized antiplatelet treatment with higher clopidogrel doses in selected patients or with newer more potent P2Y(12) receptor blockers based on individual platelet function measurement can overcome some of the limitations of current clopidogrel treatment.
Collapse
Affiliation(s)
- Paul A Gurbel
- Sinai Hospital of Baltimore, Sinai Center for Thrombosis Research, 2401 W Belvedere Avenue, Baltimore, MD 21215, USA.
| | | | | |
Collapse
|
11
|
Toda T, Eliasson E, Ask B, Inotsume N, Rane A. Roles of different CYP enzymes in the formation of specific fluvastatin metabolites by human liver microsomes. Basic Clin Pharmacol Toxicol 2009; 105:327-32. [PMID: 19663817 DOI: 10.1111/j.1742-7843.2009.00453.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluvastatin has been considered to be metabolised to 5-hydroxy fluvastatin (M-2), 6-hydroxy fluvastatin (M-3) and N-desisopropyl fluvastatin (M-5) in human liver microsomes by primarily CYP2C9. To elucidate the contribution of different CYP enzymes on fluvastatin metabolism, we examined the effect of CYP inhibitors and CYP2C-specific monoclonal antibodies on the formation of fluvastatin metabolites in human liver microsomes. Human liver microsomes were incubated with fluvastatin with or without pre-treatment with CYP inhibitors or monoclonal antibodies. Selective inhibitors of CYP2C9 (sulfaphenazole), CYP3A (ketoconazole) and CYP2C8 (quercetin) were employed and monoclonal antibodies were against CYP2C8, CYP2C9, CYP2C19 and CYP2C8/9/18/19. According to the amount of fluvastatin metabolites produced, the formation of M-3 was found to be major pathway of fluvastatin metabolism (the relative contribution was calculated to be more than 80%). Sulfaphenazole inhibited the formation of M-2 largely, but had little effect on the formation of M-3. It also inhibited the formation of M-5. Ketoconazole markedly inhibited the formation of M-3, but did not inhibit the formation of M-2 and M-5. Quercetin had a moderate inhibitory effect on the formation of all three fluvastatin metabolites. Monoclonal antibodies against CYP2C9 and CYP2C8/9/18/19 markedly inhibited the formation of M-2 and M-5. None of monoclonal antibodies showed clear inhibition on the formation of M-3. In contrast to previous published work, our results suggest that M-2 and M-5 are formed preferentially by CYP2C9, and that M-3 is mainly formed by CYP3A. In summary, the results contribute to a better understanding of the drug-drug interaction potential for fluvastatin in vivo.
Collapse
Affiliation(s)
- Takaki Toda
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Mullangi R, Srinivas NR. Clopidogrel: review of bioanalytical methods, pharmacokinetics/pharmacodynamics, and update on recent trends in drug-drug interaction studies. Biomed Chromatogr 2009; 23:26-41. [DOI: 10.1002/bmc.1128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bhindi R, Ormerod O, Newton J, Banning AP, Testa L. Interaction between statins and clopidogrel: is there anything clinically relevant? QJM 2008; 101:915-25. [PMID: 18676683 DOI: 10.1093/qjmed/hcn089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since their introduction several years ago, the 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase inhibitors-the statins-have been widely used for hyperlipidemia and for the primary/secondary prevention of cardiovascular diseases. They have been shown to be safe as well as efficacious in a number of different clinical trials; however, studies have suggested that they can interact with other co-administered therapies. More recently, the thienopyridines have been successfully integrated with the conventional medical treatment of coronary disease as they showed effectiveness in reducing platelet activity both in stable and unstable settings. They also improve the outcome of patients treated with percutaneous coronary intervention. The potential interaction of statins and thienopyridines is a matter of concern. Despite some preclinical data suggesting an interaction between statins metabolized by the liver cytochrome P3A4-such as atorvastatin, lovastatin and simvastatin-and clopidogrel, there is no compelling clinical evidence to stop their co-administration.
Collapse
Affiliation(s)
- R Bhindi
- Institute of Cardiology, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
14
|
McDonald KJ, Jardine AG. The use of fluvastatin in cardiovascular risk management. Expert Opin Pharmacother 2008; 9:1407-14. [PMID: 18473714 DOI: 10.1517/14656566.9.8.1407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fluvastatin was the first synthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin) to be developed and is used in the management of dyslipidaemia in primary and secondary prevention of cardiovascular disease. OBJECTIVE This article reviews the properties of fluvastatin and experience accrued through its use in clinical practice and clinical trials. METHODS Relevant publications were identified through the PubMed database and product information held by the US Federal Drug Administration was also reviewed. RESULTS/CONCLUSIONS In the authors' opinion, fluvastatin exhibits a favourable safety profile in comparison to other statins, with a low incidence of adverse effects and a reduced propensity for interactions with other drugs. However, fluvastatin is a less potent cholesterol-lowering agent than newer statins on the market and its future predominant use is likely to be in niche patient groups at risk of side effects or drug interactions with other agents.
Collapse
Affiliation(s)
- Kenneth J McDonald
- University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
15
|
Xu SZ, Zhong W, Watson NM, Dickerson E, Wake JD, Lindow SW, Newton CJ, Atkin SL. Fluvastatin reduces oxidative damage in human vascular endothelial cells by upregulating Bcl-2. J Thromb Haemost 2008; 6:692-700. [PMID: 18221360 DOI: 10.1111/j.1538-7836.2008.02913.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been widely used in clinical practise and their efficacy in reducing cardiovascular risk has been well described. OBJECTIVES To investigate the effect of low doses of fluvastatin (nanomolar) on H(2)O(2)-induced cell damage and the underlying mechanism. METHODS AND RESULTS Primary cultures of human umbilical vein endothelial cells were used, and the effects of fluvastatin on H(2)O(2)-induced apoptosis, necrosis, and proliferation were observed. H(2)O(2) at a concentration of 100 mum significantly induced apoptotic cell death after 24-h cell culture. Fluvastatin at low concentrations (10-100 nm) prevented H(2)O(2)-induced apoptosis, as determined by a DNA fragmentation assay and by cell counting with trypan blue and Hoechst 33342 nuclei staining. The protective effect of fluvastatin was mediated by the upregulation of Bcl-2 expression as probed by real-time polymerase chain reaction and Western blotting. Using siRNA to knock down the expression of Bcl-2, the protective effect of fluvastatin was abolished. Fluvastatin had no direct effect on the H(2)O(2)-sensitive TRPM2 calcium channel. CONCLUSIONS These results suggest that fluvastatin has a potent protective effect against H(2)O(2)-induced apoptosis via upregulation of Bcl-2 expression. The findings provide a new insight into the mechanism by which fluvastatin is able to modulate the influence of oxidative stress on vascular endothelial cells.
Collapse
Affiliation(s)
- S Z Xu
- Postgraduate Medical Institute and Hull York Medical School, University of Hull, Hull, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gareri P, Fazio PD, Gallelli L, Fazio SD, Davoli A, Seminara G, Cotroneo A, Sarro GD. Venlafaxine–Propafenone Interaction Resulting in Hallucinations and Psychomotor Agitation. Ann Pharmacother 2008; 42:434-8. [PMID: 18303146 DOI: 10.1345/aph.1k405] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To report a case of visual hallucinations and psychomotor agitation probably induced by an interaction between venlafaxine and propafenone. Case Summary: An 85-year-old woman was admitted for evaluation of a mood disorder on March 20, 2006. Her general practitioner had prescribed sertraline for treatment, which had started about 6 months earlier. The patient's medical history included hypertension, supraventricular tachycardia, chronic bronchitis, and arthritis, for which she received ramipril, ticlopidine, torsemide, theophylline, acetaminophen, and triazolam. The patient had also received propafenone 150 mg every 12 hours for 3 years. Results of biochemical tests were normal; however, a computed tomography (CT) scan of the brain showed signs of cortical atrophy. Sertraline was discontinued after a few days because of its reduced effectiveness and was replaced with extended-re lease venlafaxine 75 mg/day. No other changes to the patient's drug therapy were made. Four weeks later, because of the persistence of psychiatric disturbance, the venlafaxine dosage was increased to 150 mg/day. Ten days later the patient returned to our observation due to the onset of visual hallucinations lasting about 2 hours, especially at night, and psychomotor agitation. Venlafaxine was discontinued, with a complete remission of hallucinations and psychomotor agitation in about 4 days. The Naranjo probability scale indicated a probable relationship between venlafaxine and the patient's symptoms. Citalopram was started one month later for the persistence of mood disorders, with no adverse effects. Discussion: A CT scan documented signs of cortical atrophy in our patient's brain but excluded vascular brain injury, while clinical evaluation and anamnesis excluded a relationship between hallucinations and cortical atrophy. Genetic and pharmacologic factors may be involved in venlafaxine-induced adverse effects. Venlafaxine is metabolized primarily by CYP2D6 and is a substrate of P-glycoprotein. Propafenone, a known substrate and inhibitor of both CYP2D6 and P-glycoprotein, could therefore be involved in venlafaxine-induced hallucinations through the increase of venlafaxine plasma concentrations. Conclusions: To prevent the onset of clinical disturbances during venlafaxine treatment, we suggest careful evaluation of concomitant treatment with CYP2D6 or P-glycoprotein inhibitors (eg, propafenone) and, when possible, venlafaxine serum concentration monitoring.
Collapse
Affiliation(s)
- Pietro Gareri
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University Magna Graecia of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital, Operative Unit Elderly Health Care, Catanzaro, Italy
| | - Pasquale De Fazio
- Clinical Psychiatric Unit, Chair of Psychiatry, Department of Experimental and Clinical Medicine, School of Medicine, University Magna Graecia of Catanzaro, Mater Domini University Hospital
| | - Luca Gallelli
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University Magna Graecia of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital
| | | | | | - Giuseppe Seminara
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University Magna Graecia of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital
| | | | - Giovambattista De Sarro
- Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University Magna Graecia of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital
| |
Collapse
|