1
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. Stem Cell Res Ther 2024; 15:123. [PMID: 38679747 PMCID: PMC11057170 DOI: 10.1186/s13287-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
- Justin Vercellino
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beata Małachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brett I Bell
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shahin Shajahan
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, New Brunswick, NJ, USA
- Bioconvergent Health, LLC, Purchase, NY, USA
| | - Amit K Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Bioconvergent Health, LLC, Purchase, NY, USA.
| |
Collapse
|
2
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
3
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. RESEARCH SQUARE 2024:rs.3.rs-3946910. [PMID: 38463959 PMCID: PMC10925435 DOI: 10.21203/rs.3.rs-3946910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
| | | | - Shilpa Kulkarni
- NIAID: National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Holmes-Hampton GP, Kumar VP, Biswas S, Stone S, Sharma NK, Legesse B, Vercellino J, Guha C, Eichenbaum G, Ghosh SP. PEGylated thrombopoietin mimetic, JNJ‑26366821 a novel prophylactic radiation countermeasure for acute radiation injury. Sci Rep 2023; 13:15211. [PMID: 37709916 PMCID: PMC10502090 DOI: 10.1038/s41598-023-42443-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Thrombopoietin (TPO) is the primary regulator of platelet generation and a stimulator of multilineage hematopoietic recovery following exposure to total body irradiation (TBI). JNJ‑26366821, a novel PEGylated TPO mimetic peptide, stimulates platelet production without developing neutralizing antibodies or causing any adverse effects. Administration of a single dose of JNJ‑26366821 demonstrated its efficacy as a prophylactic countermeasure in various mouse strains (males CD2F1, C3H/HeN, and male and female C57BL/6J) exposed to Co-60 gamma TBI. A dose dependent survival efficacy of JNJ‑26366821 (- 24 h) was identified in male CD2F1 mice exposed to a supralethal dose of radiation. A single dose of JNJ‑26366821 administered 24, 12, or 2 h pre-radiation resulted in 100% survival from a lethal dose of TBI with a dose reduction factor of 1.36. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pre-treated with JNJ‑26366821. The drug also increased bone marrow cellularity and megakaryocytes, accelerated multi-lineage hematopoietic recovery, and alleviated radiation-induced soluble markers of bone marrow aplasia and endothelial damage. These results indicate that JNJ‑26366821 is a promising prophylactic radiation countermeasure for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Sasha Stone
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Neel K Sharma
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Justin Vercellino
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, 410 George Street, New Brunswick, NJ, 08901, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| |
Collapse
|
5
|
Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821). Sci Rep 2022; 12:3485. [PMID: 35241733 PMCID: PMC8894488 DOI: 10.1038/s41598-022-07426-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.
Collapse
|
6
|
Dosne AG, Valade E, Stuyckens K, De Porre P, Avadhani A, O'Hagan A, Li LY, Ouellet D, Faelens R, Leirens Q, Poggesi I, Perez Ruixo JJ. Erdafitinib's effect on serum phosphate justifies its pharmacodynamically guided dosing in patients with cancer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:569-580. [PMID: 34755484 PMCID: PMC9124353 DOI: 10.1002/psp4.12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
A population pharmacokinetic (PK)–pharmacodynamic (PD) model was developed using data from 345 patients with cancer. The population PK‐PD model evaluated the effect of erdafitinib total and free plasma concentrations on serum phosphate concentrations after once‐daily oral continuous (0.5–12 mg) and intermittent (10–12 mg for 7 days on/7 days off) dosing, and investigated the potential covariates affecting erdafitinib‐related changes in serum phosphate levels. Phosphate is used as a biomarker for erdafitinib's efficacy and safety: increases in serum phosphate were observed after dosing with erdafitinib, which were associated with fibroblast growth factor receptor target engagement via inhibition of renal fibroblast growth factor 23–mediated signaling. PK‐PD model‐based simulations were performed to assess the approved PD‐guided dosing algorithm of erdafitinib (8 mg once‐daily continuous dosing, with up‐titration to 9 mg based on phosphate levels [<5.5 mg/dl] and tolerability at 14–21 days of treatment). The serum phosphate concentrations increased after the first dose and reached near maximal level after 14 days of continuous treatment. Serum phosphate increased with erdafitinib free drug concentrations: doubling the free concentration resulted in a 1.8‐fold increase in drug‐related phosphate changes. Dose adjustment after at least 14 days of dosing was supported by achievement of >95% maximal serum phosphate concentration. The peak‐to‐trough fluctuation within a dosing interval was limited for serum phosphate concentrations (5.68–5.65 mg/dl on Day 14), supporting phosphate monitoring at any time relative to dosing. Baseline phosphate was higher in women, otherwise, none of the investigated covariate–parameter relationships were considered clinically relevant. Simulations suggest that the starting dose of 8‐mg with up‐titration to 9‐mg on Days 14–21 maximized the number of patients within the target serum phosphate concentrations (5.5–7 mg/dl) while limiting the number of treatment interruptions. The findings from the PK‐PD model provided a detailed understanding of the erdafitinib concentration‐related phosphate changes over time, which supports erdafitinib's dosing algorithm.
Collapse
Affiliation(s)
| | | | | | | | - Anjali Avadhani
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Anne O'Hagan
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Lilian Y Li
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Daniele Ouellet
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | | | | | - Italo Poggesi
- Janssen Research & Development, Cologno Monzese, Italy
| | | |
Collapse
|
7
|
Yan X, Bauer R, Koch G, Schropp J, Perez Ruixo JJ, Krzyzanski W. Delay differential equations based models in NONMEM. J Pharmacokinet Pharmacodyn 2021; 48:763-802. [PMID: 34302262 DOI: 10.1007/s10928-021-09770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022]
Abstract
Delay differential equations (DDEs) are commonly used in pharmacometric models to describe delays present in pharmacokinetic and pharmacodynamic data analysis. Several DDE solvers have been implemented in NONMEM 7.5 for the first time. Two of them are based on algorithms already applied elsewhere, while others are extensions of existing ordinary differential equations (ODEs) solvers. The purpose of this tutorial is to introduce basic concepts underlying DDE based models and to show how they can be developed using NONMEM. The examples include previously published DDE models such as logistic growth, tumor growth inhibition, indirect response with precursor pool, rheumatoid arthritis, and erythropoiesis-stimulating agents. We evaluated the accuracy of NONMEM DDE solvers, their ability to handle stiff problems, and their performance in parameter estimation using both first-order conditional estimation (FOCE) and the expectation-maximization (EM) method. NONMEM control streams and excerpts from datasets are provided for all discussed examples. All DDE solvers provide accurate and precise solutions with the number of significant digits controlled by the error tolerance parameters. For estimation of population parameters, the EM method is more stable than FOCE regardless of the DDE solver.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Robert Bauer
- Pharmacometrics R&D, ICON Clinical Research LLC, Gaithersburg, MD, USA
| | - Gilbert Koch
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Johannes Schropp
- Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany
| | | | - Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Loisios-Konstantinidis I, Paraiso RLM, Fotaki N, McAllister M, Cristofoletti R, Dressman J. Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review. J Pharm Pharmacol 2019; 71:699-723. [DOI: 10.1111/jphp.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The objective of this review was to provide an overview of pharmacokinetic/pharmacodynamic (PK/PD) models, focusing on drug-specific PK/PD models and highlighting their value added in drug development and regulatory decision-making.
Key findings
Many PK/PD models, with varying degrees of complexity and physiological understanding have been developed to evaluate the safety and efficacy of drug products. In special populations (e.g. paediatrics), in cases where there is genetic polymorphism and in other instances where therapeutic outcomes are not well described solely by PK metrics, the implementation of PK/PD models is crucial to assure the desired clinical outcome. Since dissociation between the pharmacokinetic and pharmacodynamic profiles is often observed, it is proposed that physiologically based pharmacokinetic and PK/PD models be given more weight by regulatory authorities when assessing the therapeutic equivalence of drug products.
Summary
Modelling and simulation approaches already play an important role in drug development. While slowly moving away from ‘one-size fits all’ PK methodologies to assess therapeutic outcomes, further work is required to increase confidence in PK/PD models in translatability and prediction of various clinical scenarios to encourage more widespread implementation in regulatory decision-making.
Collapse
Affiliation(s)
| | - Rafael L M Paraiso
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, UK
| | | | - Rodrigo Cristofoletti
- Division of Therapeutic Equivalence, Brazilian Health Surveillance Agency (ANVISA), Brasilia, Brazil
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Bihorel S, Raddad E, Fiedler-Kelly J, Stille JR, Hing J, Ludwig E. Population Pharmacokinetic and Pharmacodynamic Modeling of LY2510924 in Patients With Advanced Cancer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017. [PMID: 28643374 PMCID: PMC5613202 DOI: 10.1002/psp4.12221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objectives of this study were to characterize the pharmacokinetics (PK) of LY2510924, a potent peptide antagonist of the CXCR4 receptor, after subcutaneous administration in patients with advanced cancer forms and quantify LY2510924 stimulatory effects on the mobilization of cells bearing the cluster of differentiation 34 (CD34) as an indirect reflection of the chemokine C-X-C motif ligand 12/CXCR4 axis inhibition. LY2510924 PK were best characterized by a two-compartment model with first-order absorption and dose-dependent clearance predicting steady state after three daily doses and little accumulation (accumulation ratio <1.17). The dynamics of CD34+ cell counts were best characterized with a precursor model with reversible transfer from the precursor to the central compartment and LY2510924-driven stimulation of cell mobilization. Model-based simulations show that once-daily doses of 20 mg LY2510924 produce maximum CD34+ cell response and that peak effect typically occurs after three daily doses and slowly wanes over time.
Collapse
Affiliation(s)
- S Bihorel
- Cognigen Corporation, a Simulations Plus Company, Buffalo, New York, USA
| | - E Raddad
- Chorus, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - J Fiedler-Kelly
- Cognigen Corporation, a Simulations Plus Company, Buffalo, New York, USA
| | - J R Stille
- Chorus, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - J Hing
- Cognigen Corporation, a Simulations Plus Company, Buffalo, New York, USA
| | - E Ludwig
- Cognigen Corporation, a Simulations Plus Company, Buffalo, New York, USA
| |
Collapse
|
10
|
Katsube T, Ishibashi T, Kano T, Wajima T. Population Pharmacokinetic and Pharmacodynamic Modeling of Lusutrombopag, a Newly Developed Oral Thrombopoietin Receptor Agonist, in Healthy Subjects. Clin Pharmacokinet 2017; 55:1423-1433. [PMID: 27209291 DOI: 10.1007/s40262-016-0411-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study was to develop a population pharmacokinetic (PK)/pharmacodynamic (PD) model for describing plasma lusutrombopag concentrations and platelet response following oral lusutrombopag dosing and for evaluating covariates in the PK/PD profiles. METHODS A population PK/PD model was developed using a total of 2539 plasma lusutrombopag concentration data and 1408 platelet count data from 78 healthy adult subjects following oral single and multiple (14-day once-daily) dosing. Covariates in PK and PK/PD models were explored for subject age, body weight, sex, and ethnicity. RESULTS A three-compartment model with first-order rate and lag time for absorption was selected as a PK model. A three-transit and one-platelet compartment model with a sigmoid E max model for drug effect and feedback of platelet production was selected as the PD model. The PK and PK/PD models well described the plasma lusutrombopag concentrations and the platelet response, respectively. Body weight was a significant covariate in PK. The bioavailability of non-Japanese subjects (White and Black/African American subjects) was 13 % lower than that of Japanese subjects, while the simulated platelet response profiles using the PK/PD model were similar between Japanese and non-Japanese subjects. There were no significant covariates of the tested background data including age, sex, and ethnicity (Japanese or non-Japanese) for the PD sensitivity. CONCLUSION A population PK/PD model was developed for lusutrombopag and shown to provide good prediction for the PK/PD profiles. The model could be used as a basic PK/PD model in the drug development of lusutrombopag.
Collapse
Affiliation(s)
- Takayuki Katsube
- Clinical Research Department, Shionogi & Co., Ltd., 1-1-4 Shibata, Kita-ku, Osaka, 530-0012, Japan.
| | - Toru Ishibashi
- Clinical Research Department, Shionogi & Co., Ltd., 1-1-4 Shibata, Kita-ku, Osaka, 530-0012, Japan
| | - Takeshi Kano
- Global Project Management Department, Shionogi & Co., Ltd., Kita-ku, Osaka, Japan
| | - Toshihiro Wajima
- Clinical Research Department, Shionogi & Co., Ltd., 1-1-4 Shibata, Kita-ku, Osaka, 530-0012, Japan
| |
Collapse
|
11
|
Nguyen THT, Mouksassi M, Holford N, Al‐Huniti N, Freedman I, Hooker AC, John J, Karlsson MO, Mould DR, Pérez Ruixo JJ, Plan EL, Savic R, van Hasselt JGC, Weber B, Zhou C, Comets E, Mentré F. Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics. CPT Pharmacometrics Syst Pharmacol 2017; 6:87-109. [PMID: 27884052 PMCID: PMC5321813 DOI: 10.1002/psp4.12161] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used.
Collapse
Affiliation(s)
- THT Nguyen
- INSERM, IAME, UMR 1137, Paris, France, Université Paris DiderotSorbonne Paris CitéParisFrance
| | | | - N Holford
- Department of Pharmacology and Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
| | - N Al‐Huniti
- Quantitative Clinical Pharmacology, AstraZenecaWalthamMassachusettsUSA
| | - I Freedman
- Dr Immanuel Freedman Inc.HarleysvillePennsylvaniaUSA
| | - AC Hooker
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| | - J John
- Center for Drug Evaluation and Research, U.S. Food and Drug AdministrationWashingtonDCUSA
| | - MO Karlsson
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| | - DR Mould
- Projections Research Inc.PhoenixvillePennsylvaniaUSA
| | - JJ Pérez Ruixo
- The Janssen Pharmaceutical Companies of Johnson & JohnsonBelgium
| | | | - R Savic
- Department of Bioengineering and Therapeutic SciencesUniversity of California – San FranciscoSan FranciscoCaliforniaUSA
| | - JGC van Hasselt
- Division of PharmacologyLeiden Academic Centre for Drug Research, Leiden UniversityLeidenNetherlands
| | - B Weber
- Boehringer Ingelheim Pharmaceuticals, Inc.RidgefieldConnecticutUSA
| | - C Zhou
- GenentechSan FranciscoCaliforniaUSA
| | - E Comets
- INSERM, IAME, UMR 1137, Paris, France, Université Paris DiderotSorbonne Paris CitéParisFrance
- INSERM CIC 1414, Rennes, France, University Rennes‐1RennesFrance
| | - F Mentré
- INSERM, IAME, UMR 1137, Paris, France, Université Paris DiderotSorbonne Paris CitéParisFrance
| | | |
Collapse
|
12
|
|
13
|
Dua P, Hawkins E, van der Graaf PH. A Tutorial on Target-Mediated Drug Disposition (TMDD) Models. CPT Pharmacometrics Syst Pharmacol 2015; 4:324-37. [PMID: 26225261 PMCID: PMC4505827 DOI: 10.1002/psp4.41] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/07/2015] [Indexed: 12/16/2022] Open
Abstract
Target-mediated drug disposition (TMDD) is the phenomenon in which a drug binds with high affinity to its pharmacological target site (such as a receptor) to such an extent that this affects its pharmacokinetic characteristics.1 The aim of this Tutorial is to provide an introductory guide to the mathematical aspects of TMDD models for pharmaceutical researchers. Examples of Berkeley Madonna2 code for some models discussed in this Tutorial are provided in the Supplementary Materials.
Collapse
Affiliation(s)
- P Dua
- Pharmatherapeutics Research Clinical Pharmacology, Pfizer NeusentisCambridge, UK
| | - E Hawkins
- Pharmatherapeutics Research Clinical Pharmacology, Pfizer NeusentisCambridge, UK
- Department of Mathematics, University of SurreyGuildford, UK
| | - PH van der Graaf
- Leiden Academic Centre for Drug Research (LACDR), Systems PharmacologyLeiden, The Netherlands
| |
Collapse
|
14
|
Li C, Zheng L. The pharmacology and clinical application of thrombopoietin receptor agonists. Int J Hematol 2014; 100:529-39. [DOI: 10.1007/s12185-014-1660-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022]
|
15
|
Koch G, Krzyzanski W, Pérez-Ruixo JJ, Schropp J. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations. J Pharmacokinet Pharmacodyn 2014; 41:291-318. [DOI: 10.1007/s10928-014-9368-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/26/2014] [Indexed: 01/09/2023]
|
16
|
Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 2014; 52:855-68. [PMID: 23719681 DOI: 10.1007/s40262-013-0079-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptides, defined as polymers of less than 50 amino acids with a molecular weight of less than 10 kDa, represent a fast-growing class of new therapeutics which has unique pharmacokinetic characteristics compared to large proteins or small molecule drugs. Unmodified peptides usually undergo extensive proteolytic cleavage, resulting in short plasma half-lives. As a result of their low permeability and susceptibility to catabolic degradation, therapeutic peptides usually have very limited oral bioavailability and are administered either by the intravenous, subcutaneous, or intramuscular route, although other routes such as nasal delivery are utilized as well. Distribution processes are mainly driven by a combination of diffusion and to a lesser degree convective extravasation dependent on the size of the peptide, with volumes of distribution frequently not larger than the volume of the extracellular body fluid. Owing to the ubiquitous availability of proteases and peptidases throughout the body, proteolytic degradation is not limited to classic elimination organs. Since peptides are generally freely filtered by the kidneys, glomerular filtration and subsequent renal metabolism by proteolysis contribute to the elimination of many therapeutic peptides. Although small peptides have usually limited immunogenicity, formation of anti-drug antibodies with subsequent hypersensitivity reactions has been described for some peptide therapeutics. Numerous strategies have been applied to improve the pharmacokinetic properties of therapeutic peptides, especially to overcome their metabolic instability, low permeability, and limited tissue residence time. Applied techniques include amino acid substitutions, modification of the peptide terminus, inclusion of disulfide bonds, and conjugation with polymers or macromolecules such as antibody fragments or albumin. Application of model-based pharmacokinetic-pharmacodynamic correlations has been widely used for therapeutic peptides in support of drug development and dosage regimen design, especially because their targets are often well-described endogenous regulatory pathways and processes.
Collapse
|
17
|
hGH promotes megakaryocyte differentiation and exerts a complementary effect with c-Mpl ligands on thrombopoiesis. Blood 2014; 123:2250-60. [DOI: 10.1182/blood-2013-09-525402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
hGH has a distinct capacity to promote the differentiation, especially the terminal differentiation of human primary megakaryocytes. hGH exerts a complementary and synergistic effect with c-Mpl ligands on thrombopoiesis.
Collapse
|
18
|
Krzyzanski W, Sutjandra L, Perez-Ruixo JJ, Sloey B, Chow AT, Wang YM. Pharmacokinetic and pharmacodynamic modeling of romiplostim in animals. Pharm Res 2012; 30:655-69. [PMID: 23250851 DOI: 10.1007/s11095-012-0894-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/24/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE Romiplostim is a novel thrombopoiesis-stimulating peptibody that targets the thrombopoietin c-Mpl receptor, resulting in increased platelet production. The pharmacodynamic-mediated disposition (PDMDD) and its stimulatory effect on platelet production in Sprague-Dawley rats, rhesus monkeys, and cynomolgus monkeys following IV bolus and SC administration at various dose levels were determined. METHODS The pharmacokinetic (PK) profile was described by a PDMDD model that accounts for romiplostim binding to the c-Mpl receptor. The PD model contained a series of aging compartments for precursor cells in bone marrow and platelets. The stimulatory function was described by an on-and-off function operating on the fractional receptor occupancy (RO). The threshold effect, RO(thr), and K(D) parameters were determinants of drug potency, whereas S(max) reflected drug efficacy. RESULTS The model implicated that receptor-mediated clearance was negligible. RO(thr) estimated occupancies were 0.288, 0.385, 0.771 for rats, rhesus, and cynomolgus monkeys, respectively. The analogous estimated values of K(D) were 4.05, 2320, and 429 ng/mL, implying that romiplostim was much more potent in rats, which was confirmed by a dose-response (ratio of peak platelet count to baseline) relationship. CONCLUSIONS The model adequately described romiplostim serum concentrations and platelet counts in rats, rhesus monkeys, and cynomolgus monkeys, and quantified linear clearance, PDMDD, and potency of romiplostim.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cheng TL, Chuang KH, Chen BM, Roffler SR. Analytical Measurement of PEGylated Molecules. Bioconjug Chem 2012; 23:881-99. [DOI: 10.1021/bc200478w] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tian-Lu Cheng
- Department of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Hsiang Chuang
- Department of Biomedical Science
and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Krzyzanski W, Perez Ruixo JJ. Lifespan based indirect response models. J Pharmacokinet Pharmacodyn 2012; 39:109-23. [PMID: 22212685 PMCID: PMC3684441 DOI: 10.1007/s10928-011-9236-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023]
Abstract
In the field of hematology, several mechanism-based pharmacokinetic-pharmacodynamic models have been developed to understand the dynamics of several blood cell populations under different clinical conditions while accounting for the essential underlying principles of pharmacology, physiology and pathology. In general, a population of blood cells is basically controlled by two processes: the cell production and cell loss. The assumption that each cell exits the population when its lifespan expires implies that the cell loss rate is equal to the cell production rate delayed by the lifespan and justifies the use of delayed differential equations for compartmental modeling. This review is focused on lifespan models based on delayed differential equations and presents the structure and properties of the basic lifespan indirect response (LIDR) models for drugs affecting cell production or cell lifespan distribution. The LIDR models for drugs affecting the precursor cell production or decreasing the precursor cell population are also presented and their properties are discussed. The interpretation of transit compartment models as LIDR models is reviewed as the basis for introducing a new LIDR for drugs affecting the cell lifespan distribution. Finally, the applications and limitations of the LIDR models are discussed.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | |
Collapse
|
21
|
Perez-Ruixo JJ, Green B, Doshi S, Wang YM, Mould DR. Romiplostim dose response in patients with immune thrombocytopenia. J Clin Pharmacol 2011; 52:1540-51. [PMID: 22167563 DOI: 10.1177/0091270011420843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A pharmacodynamic model was developed for platelet counts in 52 patients with immune thrombocytopenia (ITP) receiving subcutaneous romiplostim in 3 phase I/II studies (dose range, 0.2-10 µg/kg). The model consisted of a drug-sensitive progenitor cell compartment linked to a peripheral blood compartment through 4 transition compartments. The baseline platelet count, mean transit time, and kinetics of drug effect constant were 11.1 × 10(9)/L, 170 hours, and 0.6 day(-1), respectively. The ITP patients had a shorter platelet life span and lower progenitor cell production rates than healthy volunteers. Romiplostim response was described for 2 subpopulations. The romiplostim stimulatory effect in ITP patients was 351%/100 µg/wk and 12%/100 µg/wk in 68% and 32% of patients, respectively. Visual and numerical predictive checks suggested accurate prediction of platelet time course and durable response rate in ITP patients. Model-based simulations confirmed the effectiveness of dose reduction to prevent platelet counts >400 × 10(9)/L.
Collapse
|
22
|
Yan X, Lowe PJ, Fink M, Berghout A, Balser S, Krzyzanski W. Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human Epoetin Alfa and the Biosimilar HX575. J Clin Pharmacol 2011; 52:1624-44. [PMID: 22162538 DOI: 10.1177/0091270011421911] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to develop an integrated pharmacokinetic and pharmacodynamic (PK/PD) model and assess the comparability between epoetin alfa HEXAL/Binocrit (HX575) and a comparator epoetin alfa by a model-based approach. PK/PD data-including serum drug concentrations, reticulocyte counts, red blood cells, and hemoglobin levels-were obtained from 2 clinical studies. In sum, 149 healthy men received multiple intravenous or subcutaneous doses of HX575 (100 IU/kg) and the comparator 3 times a week for 4 weeks. A population model based on pharmacodynamics-mediated drug disposition and cell maturation processes was used to characterize the PK/PD data for the 2 drugs. Simulations showed that due to target amount changes, total clearance may increase up to 2.4-fold as compared with the baseline. Further simulations suggested that once-weekly and thrice-weekly subcutaneous dosing regimens would result in similar efficacy. The findings from the model-based analysis were consistent with previous results using the standard noncompartmental approach demonstrating PK/PD comparability between HX575 and comparator. However, due to complexity of the PK/PD model, control of random effects was not straightforward. Whereas population PK/PD model-based analyses are suited for studying complex biological systems, such models have their limitations (statistical), and their comparability results should be interpreted carefully.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Department of Pharmaceutical Sciences, 565 B Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | |
Collapse
|
23
|
Budha NR, Kovar A, Meibohm B. Comparative performance of cell life span and cell transit models for describing erythropoietic drug effects. AAPS JOURNAL 2011; 13:650-61. [PMID: 22005901 DOI: 10.1208/s12248-011-9302-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/23/2011] [Indexed: 01/19/2023]
Abstract
Prolonged time delay in response to drug action is a common feature of hematological responses to pharmacotherapy such as erythropoiesis. The objective of this study was to compare the performance of two competing modeling approaches for delayed drug effects, mechanistic cell life span models, and semi-mechanistic cell transit models. The comparison was performed with an experimental dataset from multiple dose administrations of an erythropoietin mimetic to Cynomolgus monkeys. Comparative performance measures include visual predictive checks, goodness-of-fit plots, model estimation time, estimation status, and estimation error. The analysis revealed that both models resulted in a similarly good description of the erythropoietic drug effect, with precision and bias of the model-based predictions of red blood cell counts of less than 11%. The cell transit model needed slightly longer time to converge compared to the cell life span model. The system and drug effect parameters were similar in both models indicating that the models can be interchangeably used to describe the current data. Thus, model selection would be dependent on the purpose of the modeling exercise, the available data, and the time allocated for model development.
Collapse
Affiliation(s)
- Nageshwar R Budha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, USA
| | | | | |
Collapse
|
24
|
Knight E, Eichenbaum G, Hillsamer V, Greway T, Tonelli A, Han-Hsu H, Zakszewski C, Yurkow E, Shukla U, End D, Louden C. Nonclinical safety assessment of a synthetic peptide thrombopoietin agonist: effects on platelets, bone homeostasis, and immunogenicity and the implications for clinical safety monitoring of adverse bone effects. Int J Toxicol 2011; 30:385-404. [PMID: 21832269 DOI: 10.1177/1091581811404708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RWJ-800088 is a novel, potent polyethylene glycol (PEG)-conjugated thrombopoietin (TPO) mimetic that increases platelet levels and protects against thrombocytopenia. A nonclinical safety program was customized for this peptide that takes into account its protein-like structure, synthetic chemical nature, agonist pharmacologic activity, and mode of administration. In repeat-dose toxicity studies, the salient findings were dose-related increases in circulating platelet counts, mean platelet volume, and megakaryocytes in the bone marrow with no antibody formation. Reversible myelofibrosis and hyperostosis were observed in rats, but not dogs, when the circulating platelet levels exceeded 3× those of vehicle controls. The bone effects were due to the exaggerated pharmacologic effect and excessive stimulation and elevation of megakaryocytes by TPO, which results in intramedullary proliferation of fibroblasts and mesenchymal cells followed by osseous metaplasia. These findings support the use of platelet elevations of >3× as a stopping criterion to prevent potential adverse bone-related effects in humans.
Collapse
Affiliation(s)
- Elaine Knight
- Johnson and Johnson Pharmaceutical Research and Development, L.L.C., Raritan, NJ 08869, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Krzyzanski W. Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn 2011; 38:179-204. [PMID: 21107661 PMCID: PMC3177953 DOI: 10.1007/s10928-010-9183-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Transit compartments (TC) models are used to describe pharmacodynamic responses that involve drug action on cells undergoing differentiation and maturation. Such pharmacodynamic systems can also be described by lifespan based indirect response (LIDR) models. The purpose of this report is to investigate conditions under which the transit compartments models can be considered a special case of LIDR models. An integral representation of a solution to TC model has been used to determine the lifespan distribution for cell population described by this model. The distribution served as a basis for definition of new LIDRE (lifespan based indirect response with an effect on the lifespan distribution) models. Time courses of responses described by both types of models were simulated for a monoexponential pharmacokinetic function. The limit response was calculated as the number of transit compartments approached infinity. The difference between the limit response and TC responses were evaluated by computer simulations using MATLAB 7.7. TC models are a special case of LIDR models with the lifespan distribution described by the gamma function. If drug affects only the production of cells, then the cell lifespan distribution is time invariant. In this case an increase in the number of compartments results in a basic LIDR model with a point lifespan distribution. When the drug inhibits or stimulates cell aging, the cell lifespan distribution becomes time dependent revealing a new mechanism for drug effect on the gamma probability density function. The TC model with a large number of transit compartments converges to an LIDRE model. The limit LIDR models are approximated by the TC models when the number of compartments is at least 5. A moderate improvement in the approximation is observed if this number exceeds 20. The lifespan distribution for a cell population described by a TC model is described by the gamma probability density function. A drug affects this distribution only if it stimulates or inhibits the rate of cell maturation. If the number of transit compartments increases, then the TC model converges to a new type of LIDR model.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, University at Buffalo, 565B Hochstetter Hall, Buffalo, NY 14260, USA.
| |
Collapse
|
26
|
Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, Balser S. Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol 2011; 50:101S-112S. [PMID: 20881223 DOI: 10.1177/0091270010376966] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Filgrastim is a recombinant human granulocyte colony stimulating factor (G-CSF) that stimulates production of neutrophils. The objective of this analysis was to develop a pharmacokinetic (PK) and pharmacodynamic (PD) model to account for an increase in G-CSF clearance on multiple dosing because of an increase of the G-CSF receptor-mediated endocytosis. Data from 4 randomized studies involving healthy volunteers were used for analysis. Subjects received filgrastim (Neupogen) via subcutaneous (SC) and intravenous (IV) routes. Filgrastim was administered SC daily for 1 week at 2.5, 5, and 10 µg/kg doses and as single IV infusions (5 µg/kg over 0.5 hours) and SC (1 µg/kg) doses. PK data comprised serum concentration-time measurements and the blood absolute neutrophil count (ANC) was used for PD evaluations. Population nonlinear mixed-effect modeling was done using NONMEM VI (Version 6.1.0, Icon Development Solutions, Ellicott City, Maryland). The model depicted the decaying trend in C(max) values with repeated doses and an increase in ANC(max) values consistently with an increase in the G-CSF receptor pool. Simulated time courses of the total clearance exhibited an increasing pattern. The increase in filgrastim clearance on multiple dosing was attributed to the increased neutrophil count in the bone marrow and blood paralleled by an increase in the total G-CSF receptor density.
Collapse
Affiliation(s)
- Wojciech Krzyzanski
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang YMC, Krzyzanski W, Doshi S, Xiao JJ, Pérez-Ruixo JJ, Chow AT. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS JOURNAL 2010; 12:729-40. [PMID: 20963535 DOI: 10.1208/s12248-010-9234-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/20/2010] [Indexed: 02/04/2023]
Abstract
The objective of this study was to characterize the pharmacokinetics and pharmacodynamics (PK-PD) of romiplostim after single-dose administration in healthy subjects. The mean serum romiplostim concentrations (PK data) and mean platelet counts (PD data) collected from 32 subjects receiving a single intravenous (0.3, 1 and 10 μg/kg) or subcutaneous (0.1, 0.3, 1, and 2 μg/kg) dose were fitted simultaneously to a mechanistic PK-PD model based on pharmacodynamics-mediated drug disposition (PDMDD) and a precursor pool lifespan concept. The two-compartment PK model incorporated receptor-mediated endocytosis and linear mechanisms as parallel elimination pathways. The maximal concentration of receptors (assumed to be proportional to the platelet count), the equilibrium dissociation constant, and the first-order internalization rate constant for endocytosis of the drug-receptor complex were 0.022 fg/platelet, 0.131 ng/mL, and 0.173 h⁻¹, respectively. Romiplostim concentration stimulates the production of platelet precursors via the Hill function, where the SC₅₀ was 0.052 ng/mL and S (max) was 11.2. The estimated precursor cell and platelet lifespans were 5.9 and 10.5 days, respectively. Model-based simulations revealed that the romiplostim exposure and the platelet response are both dependent on the dose administered and the baseline platelet counts. Also, weekly dosing produced a sustained PD response while dosing intervals ≥2 weeks resulted in fluctuating platelet counts. Thus, the mechanistic PK-PD model was suitable for describing the romiplostim PK-PD interplay (PDMDD), the dose-dependent platelet stimulation, and the lifespans of thrombopoietic cell populations.
Collapse
Affiliation(s)
- Yow-Ming C Wang
- Pharmacokinetics and Drug Metabolism Department, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Xiao JJ, Krzyzanski W, Wang YM, Li H, Rose MJ, Ma M, Wu Y, Hinkle B, Perez-Ruixo JJ. Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9m and hepcidin in cynomolgus monkeys. AAPS JOURNAL 2010; 12:646-57. [PMID: 20737261 DOI: 10.1208/s12248-010-9222-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/09/2010] [Indexed: 12/21/2022]
Abstract
Hepcidin is a key regulator responsible for systemic iron homeostasis. A semi-mechanistic PK model for hepcidin and a fully human anti-hepcidin monoclonal antibody (Ab 12B9m) was developed to describe their total (free + bound) serum concentration-time data after single and multiple weekly intravenous or subcutaneous doses of Ab 12B9m. The model was based on target mediated drug disposition and the IgG-FcRn interaction concepts published previously. Both total Ab 12B9m and total hepcidin exhibited nonlinear kinetics due to saturable Fc-FcRn interaction. Ab 12B9m showed a limited volume of distribution and negligible linear elimination from serum. The nonlinear elimination of Ab 12B9m was attributed to the endosomal degradation of Ab 12B9m that was not bound to the FcRn receptor. The terminal half-life, assumed to be the same for free and total serum Ab 12B9m, was estimated to be 16.5 days. The subcutaneous absorption of Ab 12B9m was described with a first-order absorption rate constant k(a) of 0.0278 h⁻¹, with 86% bioavailability. The model suggested a rapid hepcidin clearance of approximately 800 mL h⁻¹ kg⁻¹. Only the highest-tested Ab 12B9m dose of 300 mg kg⁻¹ week⁻¹ was able to maintain free hepcidin level below the baseline during the dosing intervals. Free Ab 12B9m and free hepcidin concentrations were simulated, and their PK profiles were nonlinear as affected by their binding to each other. Additionally, the total amount of FcRn receptor involved in Ab 12B9m recycling at a given time was calculated empirically, and the temporal changes in the free FcRn levels upon Ab 12B9m administration were inferred.
Collapse
Affiliation(s)
- Jim J Xiao
- AMGEN, Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Salinger DH, Shen DD, Thummel K, Wittkowsky AK, Vicini P, Veenstra DL. Pharmacogenomic trial design: use of a PK/PD model to explore warfarin dosing interventions through clinical trial simulation. Pharmacogenet Genomics 2009; 19:965-71. [PMID: 19881396 PMCID: PMC3164437 DOI: 10.1097/fpc.0b013e3283333b80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Variants of two genes, CYP2C9 and VKORC1, explain approximately one third of variability in warfarin maintenance dose requirements. However, the clinical utility of using this information in addition to clinical and demographic data ('pharmacogenomic-guidance') is unclear, as few comparative clinical trials have been conducted to date. The objective of this study was to explore the incremental effect of pharmacogenomic-guided warfarin dosing under various conditions using clinical trial simulation. METHODS We used an existing pharmacokinetic/pharmacodynamic model to perform clinical trial simulations of pharmacogenomic-guided versus standard of care warfarin therapy. The primary outcome was the percentage of patient time spent in therapeutic range over the first month of therapy. We assessed the influence of the frequency of INR monitoring, and the use of a loading dose and dose increase delay in patients with CYP2C9 variants. RESULTS Pharmacogenomic guidance resulted in a 3-4 percentage point absolute increase in time spent in therapeutic range over the first month of therapy compared with standard of care. The improvement in time in range was greater when the frequency of INR monitoring in both arms was assumed to be lower. The absolute difference increased to 6-8 percentage points with the use of a loading dose and dose increase delay in patients with a CYP2C9 variant. CONCLUSION Our initial results imply that pharmacogenomic-guided warfarin dosing may be more useful in settings with less intensive patient follow-up, and when adjustments are made for slower therapeutic response in patients with a CYP2C9 variant. Further pharmacokinetic/pharmacodynamic model development may be useful for warfarin pharmacogenomic trial design.
Collapse
Affiliation(s)
| | - Danny D. Shen
- University of Washington, Department of Pharmacy, Seattle, WA
| | - Kenneth Thummel
- University of Washington, Department of Pharmaceutics, Seattle, WA
| | | | - Paolo Vicini
- University of Washington, Department of Bioengineering, Seattle, WA
| | | |
Collapse
|