1
|
Heida A, Jager NGL, Aarnoutse RE, de Winter BCM, de Jong H, Keizer RJ, Cornelissen EAM, Ter Heine R. Model-informed dose optimization of mycophenolic acid in pediatric kidney transplant patients. Eur J Clin Pharmacol 2024; 80:1761-1771. [PMID: 39153087 PMCID: PMC11458656 DOI: 10.1007/s00228-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE We aimed to develop and evaluate a population PK model of mycophenolic acid (MPA) in pediatric kidney transplant patients to aid MPA dose optimization. METHODS Data were collected from pediatric kidney transplant recipients from a Dutch academic hospital (Radboudumc, the Netherlands). Pharmacokinetic model-building and model-validation analyses were performed using NONMEM. Subsequently, we externally evaluated the final model using data from another academic hospital. The final model was used to develop an optimized dosing regimen. RESULTS Thirty pediatric patients were included of whom 266 measured MPA plasma concentrations, including 20 full pharmacokinetic (PK) curves and 24 limited sampling curves, were available. A two-compartment model with a transition compartment for Erlang-type absorption best described the data. The final population PK parameter estimates were Ktr (1.48 h-1; 95% CI, 1.15-1.84), CL/F (16.0 L h-1; 95% CI, 10.3-20.4), Vc/F (24.9 L; 95% CI, 93.0-6.71E25), Vp/F (1590 L; 95% CI, 651-2994), and Q/F (36.2 L h-1; 95% CI, 9.63-74.7). The performance of the PK model in the external population was adequate. An optimized initial dose scheme based on bodyweight was developed. With the licensed initial dose, 35% of patients were predicted to achieve the target AUC, compared to 42% using the optimized scheme. CONCLUSION We have successfully developed a pharmacokinetic model for MPA in pediatric renal transplant patients. The optimized dosing regimen is expected to result in better target attainment early in treatment. It can be used in combination with model-informed follow-up dosing to further individualize the dose when PK samples become available.
Collapse
Affiliation(s)
- Astrid Heida
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Nynke G L Jager
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Huib de Jong
- The Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Elisabeth A M Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Xu C, Jiang Z, Qian M, Zuo L, Xue H, Hu N. Influence of UDP-Glucuronosyltransferase Polymorphisms on Mycophenolic Acid Metabolism in Renal Transplant Patients. Transplant Proc 2024; 56:1280-1289. [PMID: 39054222 DOI: 10.1016/j.transproceed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the effects of UDP-glucuronosyltransferase (UGT) polymorphisms on mycophenolic acid (MPA) metabolism in renal transplant patients. A total of 11 single nucleotide polymorphisms (SNPs) of UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B7 were genotyped in 79 renal transplant patients. The associations of SNPs and clinical factors with dose-adjusted MPA area under the plasma concentration-time curve (AUC/D), the dose-adjusted plasma concentration (C0/D) of 7-O-MPA-glucuronide (MPAG), and the dose-adjusted plasma concentration (C0/D) of acyl MPAG (AcMPAG) were analyzed. In the univariate analysis, UGT1A1 rs4148323, age, and anion gap were associated with MPA AUC/D. MPA AUC/D was higher in patients with the GA genotype of UGT1A1 rs4148323 compared to patients with the GG genotype. UGT1A1 rs4148323, UGT1A9 rs2741049 and clinical factors, including age, serum total bilirubin, adenosine deaminase, anion gap, urea, and creatinine, were associated with MPAG C0/D. UGT2B7 rs7438135, UGT2B7 rs7439366, and UGT2B7 rs7662029 also were associated with AcMPAG C0/D. Multiple linear regression analysis showed that UGT1A9 rs2741049 and indirect bilirubin were negatively correlated with MPAG C0/D (P = .001; P = .039), and UGT2B7 rs7662029 was positively correlated with AcMPAG C0/D (P = .008). This study demonstrates a significant influence of UGT1A9 rs2741049 and UGT2B7 rs7662029 polymorphisms on the metabolism of MPA in vivo.
Collapse
Affiliation(s)
- Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Hui Xue
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
4
|
Koloskoff K, Benito S, Chambon L, Dayan F, Marquet P, Jacqz-Aigrain E, Woillard JB. Limited sampling strategy and population pharmacokinetic model of mycophenolic acid in pediatric patients with systemic lupus erythematosus: application of a double gamma absorption model with SAEM algorithm. Eur J Clin Pharmacol 2024; 80:83-92. [PMID: 37897528 DOI: 10.1007/s00228-023-03587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is widely used in the treatment of systemic lupus erythematosus (SLE). It has been shown that its therapeutic drug monitoring based on the area under the curve (AUC) improves treatment efficacy. MPA exhibits a complex bimodal absorption, and a double gamma distribution model has been already proposed in the past to accurately describe this phenomenon. These previous population pharmacokinetics models (POPPK) have been developed using iterative two stage Bayesian (IT2B) or non-parametric adaptive grid (NPAG) methods. However, non-linear mixed effect (NLME) approaches based on stochastic approximation expectation-maximization (SAEM) algorithms have never been published so far for this particular model. The objectives of this study were (i) to implement the double absorption gamma model in Monolix, (ii) to compare different absorption models to describe the pharmacokinetics of MMF, and (iii) to develop a limited sampling strategy (LSS) to estimate AUC in pediatric SLE patients. MATERIAL AND METHODS A data splitting of full pharmacokinetic profiles sampled in 67 children extracted either from the expert system ISBA (n = 34) or the hospital Saint Louis (n = 33) was performed into train (75%) and test (25%) sets. A POPPK was developed for MPA in the train set using a NLME and the SAEM algorithm and different absorption models were implemented and compared (first order, transit, or simple and double gamma). The best limited sampling strategy was then determined in the test set using a maximum-a-posteriori Bayesian method to estimate individual PK parameters and AUC based on three blood samples compared to the reference AUC calculated using the trapezoidal rule applied on all samples and performances were assessed in the test set. RESULTS Mean patient age and dose was 13 years old (5-18) and 18.1 mg/kg (7.9-47.6), respectively. MPA concentrations (764) from 107 occasions were included in the analysis. A double gamma absorption with a first-order elimination from the central compartment best fitted the data. The optimal LSS with samples at 30 min, 2 h, and 3 h post-dose exhibited good performances in the test set (mean bias - 0.32% and RMSE 21.0%). CONCLUSION The POPPK developed in this study adequately estimated the MPA AUC in pediatric patients with SLE based on three samples. The double absorption gamma model developed with the SAEM algorithm showed very accurate fit and reduced computation time.
Collapse
Affiliation(s)
- Kévin Koloskoff
- INSERM, University of Limoges, CHU Limoges, P&T, U1248, Limoges, France
- EXACTCURE, Nice, France
| | | | | | | | - Pierre Marquet
- INSERM, University of Limoges, CHU Limoges, P&T, U1248, Limoges, France
| | - Evelyne Jacqz-Aigrain
- Department of Pharmacology and Pharmacogenetics, Université Paris Cité, Hôpital Saint-Louis, Paris, France
| | | |
Collapse
|
5
|
Merdita S, Ryšánek P, Hartinger JM, Slanař O, Šíma M. Pharmacokinetic-based Dosing Individualization of Mycophenolate Mofetil in Solid Organ Transplanted Patients. Prague Med Rep 2024; 125:187-194. [PMID: 39171547 DOI: 10.14712/23362936.2024.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Mycophenolate mofetil (MMF) is an immunosuppressant drug approved for prophylaxis of transplant rejection in patients undergoing solid organ transplantation and is further employed in management of various autoimmune disorders. MMF exhibits notable pharmacokinetic inter- and intraindividual variability necessitating tailored therapeutic approaches to achieve optimal therapeutic outcomes while mitigating risks of adverse effects. The objective of this review was to summarize factors that influence the pharmacokinetics of MMF and its active metabolite mycophenolic acid in order to deduce recommendations for personalized treatment strategies. Presumed predictors were analysed in relation to each of the four pharmacokinetic phases, providing tools and targets for MMF dosing optimization amenable to clinical implementation.
Collapse
Affiliation(s)
- Sara Merdita
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ryšánek
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Miroslav Hartinger
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
6
|
Park HJ, Hong KT, Han N, Kim IW, Oh JM, Kang HJ. Body Surface Area-Based Dosing of Mycophenolate Mofetil in Pediatric Hematopoietic Stem Cell Transplant Recipients: A Prospective Population Pharmacokinetic Study. Pharmaceutics 2023; 15:2741. [PMID: 38140082 PMCID: PMC10748085 DOI: 10.3390/pharmaceutics15122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mycophenolate mofetil (MMF) is commonly used for acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). However, limited population pharmacokinetic (PPK) data are available for pediatric HSCT patients. This study aimed to develop a PPK model and recommend optimal oral MMF dosage in pediatric HSCT patients. This prospective study involved pediatric HSCT patients at a tertiary academic institution. Patients received oral MMF 15-20 mg/kg twice daily for aGVHD prophylaxis and treatment. The PPK analysis was conducted using a nonlinear mixed-effects modeling method. Simulation was performed considering different body surface areas (BSAs) (0.5 m2, 1.0 m2, 1.5 m2) and dosing (400 mg/m2, 600 mg/m2, 900 mg/m2 twice daily). Based on the simulation, an optimal dosage of oral MMF was suggested. A total of 20 patients and 80 samples were included in the PPK model development. A one-compartment model with first-order absorption adequately described the pharmacokinetics of mycophenolic acid (MPA). BSA was a statistically significant covariate on Vd/F. Simulation suggested the optimal dosage of oral MMF as 900 mg/m2 twice daily, respectively. A reliable PPK model was developed with good predictive performance. This model-informed optimal MMF dosage in pediatric HSCT patients can provide valuable dosing guidance in real-world clinical practice.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul 03080, Republic of Korea;
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul 03080, Republic of Korea;
- Wide River Institute of Immunology, Hongcheon 25159, Republic of Korea
| |
Collapse
|
7
|
Rong Y, Wichart J, Hamiwka L, Kiang TKL. Significant Effects of Renal Function on Mycophenolic Acid Total Clearance in Pediatric Kidney Transplant Recipients with Population Pharmacokinetic Modeling. Clin Pharmacokinet 2023; 62:1289-1303. [PMID: 37493886 DOI: 10.1007/s40262-023-01280-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Mycophenolic acid (MPA) is an immunosuppressant commonly prescribed in pediatric kidney transplantation to prevent graft rejection. Large variabilities in MPA plasma exposures have been observed in this population, which could result in severe adverse effects. The majority of the MPA pharmacokinetic data have been reported in adult populations, whereas information in pediatric patients is still very limited. The objective of this study was to establish a novel, nonlinear mixed-effects model for MPA and investigate the clinical variables affecting MPA population pharmacokinetics in pediatric kidney transplant recipients. METHODS Data were collected retrospectively from pediatric kidney transplant patients (≤ 18 years when MPA concentrations were initially collected; on oral administration of mycophenolate mofetil) in Calgary, Alberta, Canada. Nonlinear mixed-effect modeling was conducted using stochastic approximation expectation-maximization in Monolix 2021R2 (Lixoft SAS, France) to determine population pharmacokinetic estimates, interindividual variabilities, and interoccasional variabilities. Covariate models were constructed using the Model Proposal function in Monolix in conjunction with a systematic stepwise inclusion/elimination protocol. The best model was selected based on objective function values, relative standard errors, goodness-of-fit plots, prediction-corrected visual predictive checks, and numerical predictive checks. RESULTS A total of 50 pediatric kidney transplant patients (25 female) with 219 MPA plasma concentration-time profiles were included. The average age (± standard deviation) and posttransplant time for the sample population were 12.8 ± 4.8 years and 762 ± 1160 days, respectively. The majority of study subjects (i.e., > 85% based on all occasions) were co-administered tacrolimus. A two-compartment, first-order absorption with lag time and linear elimination structural model with lognormal distributed proportional residual errors best described the MPA concentration-time data. The absorption rate constant (2.52 h-1 or 0.042 min-1), lag time (0.166 h or 9.96 min), volumes of distributions of the central (22.8 L) and peripheral (216 L) compartments, and intercompartment clearance (17.6 L h-1 or 0.293 L min-1) were consistent with literature values; whereas total MPA clearance (0.72 L h-1 or 0.012 L min-1) was relatively reduced, likely due to the general lack of cyclosporine interactions and the stabilized graft functions from significantly longer posttransplant time in our sample population. Of the clinical variables tested, only estimated glomerular filtration rate (eGFR) was identified a significant covariate affecting total MPA clearance with a positive, exponential relationship. The final population pharmacokinetic model was successfully evaluated/validated using a variety of complementary methods. CONCLUSION We have successfully constructed and validated a novel population pharmacokinetic model of MPA in pediatric kidney transplant patients. A positive, nonlinear relationship between eGFR and total MPA clearance identified in our model is likely attributed to multiple concurrent mechanisms, which warrant further systematic investigations.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Jenny Wichart
- Alberta Health Services, Pharmacy Services, Calgary, AB, Canada
| | - Lorraine Hamiwka
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
8
|
Rong Y, Kiang T. Clinical Evidence on the Purported Pharmacokinetic Interactions between Corticosteroids and Mycophenolic Acid. Clin Pharmacokinet 2023; 62:157-207. [PMID: 36848031 DOI: 10.1007/s40262-023-01212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 03/01/2023]
Abstract
Corticosteroids (steroids) are commonly used concurrently with mycophenolic acid (MPA) as the first-line immunosuppression therapy for the prevention of rejection in solid organ transplantations. Steroids are also commonly administered with MPA in various autoimmune disorders such as systemic lupus erythematosus and idiopathic nephrotic syndrome. Despite various review articles having suggested the presence of pharmacokinetic interactions between MPA and steroids, definitive data have not yet been demonstrated. The aim of this Current Opinion is to critically evaluate the available clinical data and propose the optimal study design for characterising the MPA-steroid pharmacokinetic interactions. The PubMed and Embase databases were searched for relevant clinical articles in English as of September 29, 2022, where a total of 8 papers have been identified as supporting and 22 as non-supporting the purported drug interaction. To objectively evaluate the data, novel assessment criteria to effectively diagnose the interaction based on known MPA pharmacology were formulated, including the availability of independent control groups, prednisolone concentrations, MPA metabolite data, unbound MPA concentrations, and the characterisations of entero-hepatic recirculation and MPA renal clearance. Overall, the majority of the identified corticosteroid data were pertaining to prednisone or prednisolone. Our assessment indicated that no conclusive mechanistic data supporting the interaction are available in the current clinical literature, and further studies are required to quantify the effects/mechanisms of steroid-tapering or withdrawal on MPA pharmacokinetics. This current opinion provides justification for further translational investigations, as this particular drug interaction has the potential to exert significant adverse outcomes in patients prescribed MPA.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada
| | - Tony Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Katz Group Centre for Pharmacy and Health Research, Room 3-142D, 11361-87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
9
|
Borić-Bilušić AA, Božina N, Lalić Z, Lovrić M, Nađ-Škegro S, Penezić L, Barišić K, Trkulja V. Loss of Function ABCG2 c.421C>A (rs2231142) Polymorphism Increases Steady-State Exposure to Mycophenolic Acid in Stable Renal Transplant Recipients: An Exploratory Matched Cohort Study. Adv Ther 2023; 40:601-618. [PMID: 36434147 DOI: 10.1007/s12325-022-02378-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Polymorphism ABCG2 c.421C>A (rs2231142) results in reduced activity of the important drug efflux transporter breast cancer-resistance protein (BCRP/ABCG2). One study has suggested that it may affect enterohepatic recirculation of mycophenolic acid (MPA). We evaluated the effect of rs2231142 on steady-state exposure to MPA in renal transplant recipients. METHODS Consecutive, stable adult (age ≥ 16 years) renal transplant recipients on standard MPA-based immunosuppressant protocols (N = 68; 43 co-treated with cyclosporine, 25 with tacrolimus) underwent routine therapeutic drug monitoring after a week of initial treatment, and were genotyped for ABCG2 c.421C>A and 11 polymorphisms in genes encoding enzymes and transporters implicated in MPA pharmacokinetics. ABCG2 c.421C>A variant versus wild-type (wt) patients were matched with respect to demographic, biopharmaceutic, and genetic variables (full optimal combined with exact matching) and compared for dose-adjusted steady-state MPA pharmacokinetics [frequentist and Bayes (skeptical neutral prior) estimates of geometric means ratios, GMR]. RESULTS Raw data (12 variant versus 56 wt patients) indicated around 40% higher total exposure (frequentist GMR = 1.45, 95% CI 1.10-1.91; Bayes = 1.38, 95% CrI 1.07-1.81) and around 30% lower total body clearance (frequentist GMR = 0.66, 0.58-0.90; Bayes = 0.71, 0.53-0.95) in variant carriers than in wt controls. The estimates were similar in matched data (11 variant versus 43 wt patients): exposure GMR = 1.41 (1.11-1.79) frequentist, 1.39 (1.15-1.81) Bayes, with 90.7% and 85.5% probability of GMR > 1.20, respectively; clearance GMR = 0.73 (0.58-0.93) frequentist, 0.71 (0.54-0.95) Bayes. Sensitivity analysis indicated low susceptibility of the estimates to unmeasured confounding. CONCLUSIONS Loss-off-function polymorphism ABCG2 c.421C>A increases steady-state exposure to MPA in stable renal transplant patients.
Collapse
Affiliation(s)
- A Ana Borić-Bilušić
- Agency for Medicinal Products and Medical Devices of Croatia, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, Zagreb University School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - Zdenka Lalić
- Department of Laboratory Diagnostics, Analytical Toxicology and Pharmacology Division, University Hospital Center Zagreb, Zagreb, Croatia
| | - Mila Lovrić
- Department of Laboratory Diagnostics, Analytical Toxicology and Pharmacology Division, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sandra Nađ-Škegro
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luka Penezić
- Department of Urology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, Zagreb University, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, Zagreb University School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| |
Collapse
|
10
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
11
|
Liu Y, Zhang H, Li J, Liu L, Wu C, Fu Q, Huang M, Chen X, Wang C, Chen P. Pharmacokinetics of free and total mycophenolic acid in paediatric and adult renal transplant recipients: Exploratory analysis of the effects of clinical factors and gene variants. Basic Clin Pharmacol Toxicol 2022; 131:60-73. [PMID: 35567285 DOI: 10.1111/bcpt.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Clinical and genetic influencing factors on free fraction of mycophenolic acid (MPA) have rarely been discussed. The present study investigated whether the clinical and genetic factors could explain the variability in the pharmacokinetics of free MPA (fMPA) and total MPA (tMPA) in Chinese paediatric and adult renal transplant recipients. Twenty-eight paediatric and 31 adult patients were enrolled, and the concentrations of tMPA and fMPA were determined at 0 h (predose) and 0.5, 1, 1.5, 2, 4, 5, 8, 9, 10 and 12 h after mycophenolate mofetil administration. Genetic polymorphisms of UGTs (rs671448, rs1042597, rs2741049, rs62298861, rs7439366, rs12233719) and ABCC2 (rs717620) were simultaneously determined. The clinical and genetic data were analysed and reported. tMPA and fMPA concentrations adjusted for dose per body weight were consistently higher in adults than in paediatric patients. In the paediatric group, only albumin and time after transplantation correlated significantly with the MPA-free fraction variation, which could explain 32.4% of the variability. Besides, ABCC2 polymorphism, albumin and time after transplantation correlated significantly with the MPA-free fraction variation in adults, which could explain 56.9% of the variability. The influencing factors in the paediatric group are different from those in adults, which may be due to age-related transporter expression.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, First hospital of Nanchang, Nanchang, China.,Institule of Clinical Pharmacology, School of Pharmaceutical sciences, Sun Yat-sen University, Guangzhou, China
| | - Huanxi Zhang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Institule of Clinical Pharmacology, School of Pharmaceutical sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changxi Wang
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol 2022; 17:1369-1406. [PMID: 35000505 DOI: 10.1080/17425255.2021.2027906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mycophenolic acid (MPA) is a widely used immunosuppressant in transplantation and autoimmune disease. Highly variable pharmacokinetics have been observed with MPA, but the exact mechanisms remain largely unknown. AREAS COVERED The current review provided a critical, comprehensive update of recently published population pharmacokinetic/dynamic models of MPA (n=16 papers identified from PubMed and Embase, inclusive from January 2017 to August 2021), with specific emphases on the intrinsic and extrinsic factors influencing the pharmacology of MPA. The significance of the identified covariates, potential mechanisms, and comparisons to historical literature have been provided. EXPERT OPINION While select covariates affecting the population pharmacokinetics of MPA are consistently observed and mechanistically supported, some variables have not been regularly reported and/or lacked mechanistic explanation. Very few pharmacodynamic models were available, pointing to the need to extrapolate pharmacokinetic findings. Ideal models of MPA should consist of: i) utilizing optimal sampling points to allow the characterizations of absorption, re-absorption, and elimination phases; ii) characterizing unbound/total MPA, MPA metabolites, plasma/urinary concentrations, and genetic polymorphisms to facilitate mechanistic interpretations; and iii) incorporating actual outcomes and pharmacodynamic data to establish clinical relevance. We anticipate the field will continue to expand in the next 5 to 10 years.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Vrunda Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
14
|
Job KM, Roberts JK, Enioutina EY, IIIamola SM, Kumar SS, Rashid J, Ward RM, Fukuda T, Sherbotie J, Sherwin CM. Treatment optimization of maintenance immunosuppressive agents in pediatric renal transplant recipients. Expert Opin Drug Metab Toxicol 2021; 17:747-765. [PMID: 34121566 PMCID: PMC10726690 DOI: 10.1080/17425255.2021.1943356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Graft survival in pediatric kidney transplant patients has increased significantly within the last three decades, correlating with the discovery and utilization of new immunosuppressants as well as improvements in patient care. Despite these developments in graft survival for patients, there is still improvement needed, particularly in long-term care in pediatric patients receiving grafts from deceased donor patients. Maintenance immunosuppressive therapies have narrow therapeutic indices and are associated with high inter-individual and intra-individual variability.Areas covered: In this review, we examine the impact of pharmacokinetic variability on renal transplantation and its association with age, genetic polymorphisms, drug-drug interactions, drug-disease interactions, renal insufficiency, route of administration, and branded versus generic drug formulation. Pharmacodynamics are outlined in terms of the mechanism of action for each immunosuppressant, potential adverse effects, and the utility of pharmacodynamic biomarkers.Expert opinion: Acquiring abetter quantitative understanding of immunosuppressant pharmacokinetics and pharmacodynamic components should help clinicians implement treatment regimens to maintain the balance between therapeutic efficacy and drug-related toxicity.
Collapse
Affiliation(s)
- Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jessica K Roberts
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Sílvia M IIIamola
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Shaun S Kumar
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jahidur Rashid
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert M Ward
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tsuyoshi Fukuda
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Sherbotie
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Catherine M Sherwin
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children’s Hospital, Wright State University, Dayton, OH, USA
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Na Takuathung M, Sakuludomkan W, Koonrungsesomboon N. The Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Mycophenolic Acid: Systematic Review and Meta-analysis. Clin Pharmacokinet 2021; 60:1291-1302. [PMID: 34105062 DOI: 10.1007/s40262-021-01037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mycophenolic acid (MPA) is among the most commonly prescribed medications for immunosuppression following organ transplantation. Highly variable MPA exposure and drug response are observed among individuals receiving the same dosage of the drug. Identification of candidate genes whose polymorphisms could be used to predict MPA exposure and clinical outcome is of clinical value. OBJECTIVES This study aimed to determine the impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of MPA in humans by means of a systematic review and meta-analysis. METHODS A systematic search was conducted on PubMed, EMBASE, Web of Sciences, Scopus, and the Cochrane Library databases. A meta-analysis was conducted to determine any associations between genetic polymorphisms and pharmacokinetic or pharmacodynamic parameters of MPA. Pooled-effect estimates were calculated by means of the random-effects model. RESULTS A total of 37 studies involving 3844 individuals were included in the meta-analysis. Heterozygous carriers of the UGT1A9 -275T>A polymorphism were observed to have a significantly lower MPA exposure than wild-type individuals. Four single nucleotide polymorphisms (SNPs), namely UGT1A9 -2152C>T, UGT1A8 518C>G, UGT2B7 211G>T, and SLCO1B1 521T>C, were also significantly associated with altered MPA pharmacokinetics. However, none of the investigated SNPs, including SNPs in the IMPDH gene, were found to be associated with the clinical efficacy of MPA. The only SNP that was associated with adverse outcomes was SLCO1B3 344T>G. CONCLUSIONS The present systematic review and meta-analysis identified six SNPs that were significantly associated with pharmacokinetic variability or adverse effects of MPA. Our findings represent the basis for future research and clinical implications with regard to the role of pharmacogenetics in MPA pharmacokinetics and drug response.
Collapse
Affiliation(s)
- Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Wannachai Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros Road, Sriphoom, Muang, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research (MSTR) Center, , Chiang Mai University, Muang, Chiang Mai, Thailand.
| |
Collapse
|
16
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87:1730-1757. [PMID: 33118201 DOI: 10.1111/bcp.14590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mycophenolic acid (MPA) is widely used in paediatric kidney transplant patients and sometimes prescribed for additional indications. Population pharmacokinetic or pharmacodynamic modelling has been frequently used to characterize the fixed, random and covariate effects of MPA in adult patients. However, MPA population pharmacokinetic data in the paediatric population have not been systematically summarized. The objective of this narrative review was to provide an up-to-date critique of currently available paediatric MPA population pharmacokinetic models, with emphases on modelling techniques, pharmacological findings and clinical relevance. PubMed and EMBASE were searched from inception of database to May 2020, where a total of 11 studies have been identified representing kidney transplant (n = 4), liver transplant (n = 1), haematopoietic stem cell transplant (n = 1), idiopathic nephrotic syndrome (n = 2), systemic lupus erythematosus (n = 2), and a combined population consisted of kidney, liver and haematopoietic stem cell transplant patients (n = 1). Critical analyses were provided in the context of MPA absorption, distribution, metabolism, excretion and bioavailability in this paediatric database. Comparisons to adult patients were also provided. With respect to clinical utility, Bayesian estimation models (n = 6) with acceptable accuracy and precision for MPA exposure determination have also been identified and systematically evaluated. Overall, our analyses have identified unique features of MPA clinical pharmacology in the paediatric population, while recognizing several gaps that still warrant further investigations. This review can be used by pharmacologists and clinicians for improving MPA pharmacokinetic-pharmacodynamic modelling and patient care.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Heajin Jun
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol 2020; 17:201-213. [PMID: 33107768 DOI: 10.1080/17425255.2021.1843633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Mycophenolate mofetil (MMF) is an ester prodrug of the immunosuppressant mycophenolic acid (MPA) and is recommended and widely used for maintenance immunosuppressive therapy in solid organ and stem-cell transplantation as well as in immunological kidney diseases. MPA is a potent, reversible, noncompetitive inhibitor of the inosine monophosphate dehydrogenase (IMPDH), a crucial enzyme in the de novo purine synthesis in T- and B-lymphocytes, thereby inhibiting cell-mediated immunity and antibody formation. The use of therapeutic drug monitoring (TDM) of MMF is still controversial as outcome data of clinical trials are equivocal. Areas covered: This review covers in great depth the existing literature on TDM of MMF in the field of pediatric (kidney) transplantation. In addition, the relevance of TDM in immunological kidney diseases, in particular childhood nephrotic syndrome is highlighted. Expert opinion: TDM of MMF has the potential to optimize therapy in pediatric transplantation as well as in nephrotic syndrome. Limited sampling strategies to estimate MPA exposure increase its feasibility. Future perspectives rather encompass approaches reflecting total immunosuppressive load than single drug TDM.
Collapse
Affiliation(s)
- Rasmus Ehren
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Anne M Schijvens
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Agnes Hackl
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Lutz T Weber
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne , Cologne, Germany
| |
Collapse
|
19
|
Long-lasting chronic high load carriage of Epstein-Barr virus is more common in young pediatric renal transplant recipients. Pediatr Nephrol 2020; 35:427-439. [PMID: 31802220 PMCID: PMC6969008 DOI: 10.1007/s00467-019-04401-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/22/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) infections can induce post-transplant lymphoproliferative disorder (PTLD). A chronic high load (CHL), as indicated by long-term high EBV DNA levels after transplantation, has been associated with an enhanced risk of PTLD. We aimed to evaluate incidence, time of occurrence, risk factors, and outcome of EBV CHL carrier state after pediatric renal transplantation. METHODS A retrospective study of 58 children aged 1-17 years (median 10), who underwent renal transplantation between January 2004 and June 2017 at a single medical center. EBV IgG antibodies in serum were analyzed before and yearly after transplantation. EBV DNA in whole blood were analyzed weekly for the first 3 months post-transplant, monthly up to 1 year and then at least once yearly. CHL was defined as EBV DNA ≥ 4.2 log10 Geq/ml in > 50% of the samples during ≥ 6 months. RESULTS At transplantation, 31 (53%) patients lacked EBV IgG and 25 (81%) of them developed primary EBV infection post-transplant. Of the 27 seropositive patients, 20 (74%) experienced reactivation of EBV. Altogether, 14 (24%) children developed CHL, starting at a median of 69 days post-transplant and lasting for a median time of 2.3 years (range 0.5-6.5), despite reduction of immunosuppression. Patients with CHL were younger and 11/14 were EBV seronegative at transplantation. No child developed PTLD during median clinical follow-up of 7.8 years (range 0.7-13). CONCLUSIONS CHL was frequent, long lasting, and occurred mainly in young transplant recipients. The absence of PTLD suggests that monitoring of EBV DNA to guide immunosuppression was effective.
Collapse
|
20
|
Mycophenolate mofetil for sustained remission in nephrotic syndrome. Pediatr Nephrol 2018; 33:2253-2265. [PMID: 29750317 DOI: 10.1007/s00467-018-3970-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Abstract
The clinical application of mycophenolate mofetil (MMF) has significantly widened beyond the prophylaxis of acute and chronic rejections in solid organ transplantation. MMF has been recognized as an excellent treatment option in many immunologic glomerulopathies. For children with frequently relapsing nephrotic syndrome (FRNS) or steroid-dependent nephrotic syndrome (SDNS) experiencing steroid toxicity, MMF has been recommended as a steroid-sparing drug. Uncontrolled studies in patients with FRNS and SDSN have shown that many patients can achieve sustained remission of proteinuria with MMF monotherapy. Three randomized controlled trials have similarly demonstrated that MMF is beneficial in these patients, but less effective than the calcineurin inhibitors cyclosporin A or tacrolimus. Some, but not all, patients with steroid-resistant nephrotic syndrome (SRNS) may also respond to MMF, usually given in combination with other drugs, with partial or complete remission. There are important limitations to the interpretation and comparability of these studies including study design, sample size, patient selection, clinical endpoints, carry-over effects, and duration of follow-up. In all studies, MMF had relatively few side effects, no nephrotoxicity, or no systemic toxicity. MMF is teratogenic, and contraceptive advice is required in females. There is a poor correlation between MMF dose and mycophenolic acid (MPA) exposure and significant inter- and intra-patient variability in drug pharmacokinetics. A higher estimated MPA-AUC0-12 target range than recommended for pediatric renal transplant recipients is essential to prevent relapses. Therefore, therapy should be guided by drug monitoring to avoid relapses. Further studies are needed to test the efficacy of MMF in inducing remission and, as part of a combination therapy, achieving sustained remission in patients with SRNS.
Collapse
|
21
|
Li LQ, Chen DN, Li CJ, Li QP, Chen Y, Fang P, Zheng P, Lu HJ, Ye DM, Wan HY, Li J, Li L. Impact of UGT2B7 and ABCC2 genetic polymorphisms on mycophenolic acid metabolism in Chinese renal transplant recipients. Pharmacogenomics 2018; 19:1323-1334. [PMID: 30345879 DOI: 10.2217/pgs-2018-0114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To evaluate genetic variants affecting mycophenolic acid (MPA) metabolism in Chinese renal transplant recipients. METHODS Total 11 SNPs of UGT1A9, UGT1A8, UGT2B7, ABCC2, ABCG2 and SLCO1B3 were genotyped in 408 Chinese renal transplant recipients. Associations between SNPs and MPA concentration/dose ratio (C0/D) were analyzed using different genetic models. Multivariate linear regression was used to analyze associations between log (C0/D) and clinical factors. Results: After adjustment by clinical factors, UGT2B7 rs7662029 was associated with log (C0/D) using a dominant (p = 0.041) and an additive (p = 0.038) model, ABCC2 rs717620 was associated with log (C0/D) using a recessive model (p = 0.019). Using additive model, SNP-SNP interactions were identified (p = 0.002) between ABCC2 rs717620 and UGT1A9 rs2741049, with interactions (p = 0.002) between ABCC2 rs717620 and UGT1A8 rs1042597. Age, albumin and serum creatinine were associated with log (C0/D). CONCLUSION rs7662029 and rs717620 may affect MPA pharmacokinetics. SNP-SNP interactions and clinical factors may have significant effects on MPA metabolism.
Collapse
Affiliation(s)
- Li-Qing Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Di-Na Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Chuan-Jiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Qing-Ping Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Ping Fang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Hui-Jie Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - De-Mei Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Hao-Yang Wan
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jie Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, PR China.,Key Laboratory of single cell technology and application in Guangzhou, Guangdong, PR China
| |
Collapse
|
22
|
Laurent A, Klich A, Roy P, Lina B, Kassai B, Bacchetta J, Cochat P. Pediatric renal transplantation: A retrospective single-center study on epidemiology and morbidity due to EBV. Pediatr Transplant 2018; 22:e13151. [PMID: 29430795 DOI: 10.1111/petr.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 11/29/2022]
Abstract
Pediatric R-Tx patients are at high risk of developing EBV primary infection. Although high DNA replication is a risk factor for PTLD, some patients develop PTLD with low viral load. In this retrospective single-center study including all pediatric patients having received R-Tx (2003-2012 period), we aimed to identify risk factors for uncontrolled reactions to EBV (defined as the presence of a viral load >10 000 copies/mL or PTLD). A Cox proportional hazard model was performed. A total of 117 patients underwent R-Tx at a mean age of 9.7 ± 5.3 years, 46 of them being seronegative for EBV at the time of R-Tx. During follow-up, 54 patients displayed positive EBV viral load, 22 of whom presenting with primary infection. An uncontrolled reaction to EBV was observed in 24 patients, whilst 4 patients developed PTLD. Univariate and multivariate analyses suggested the following risk factors for an uncontrolled reaction: age below 5 years, graft from a deceased donor, ≥5 HLA mismatches, EBV-seronegative status at the time of R-Tx, and a secondary post-Tx loss of anti-EBNA. Monitoring anti-EBNA after R-Tx may contribute to the early identification of patients at risk for uncontrolled reaction.
Collapse
Affiliation(s)
- A Laurent
- Hospices Civils de Lyon, Service de Néphrologie, Rhumatologie et Dermatologie pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
| | - A Klich
- Hospices Civils de Lyon, Service de Biostatistique et de Bioinformatique, Lyon, France.,Université de Lyon, Lyon, France.,CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - P Roy
- Hospices Civils de Lyon, Service de Biostatistique et de Bioinformatique, Lyon, France.,Université de Lyon, Lyon, France.,CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - B Lina
- Laboratoire de Virologie, Institut des Agents Infectieux IAI, Hospices Civils de Lyon, Hopital de la Croix Rousse, Lyon, France.,CIRI, Centre International de Recherche en Infectiologie, Virpath, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - B Kassai
- Université de Lyon, Lyon, France.,Centre d'Investigation Clinique de Lyon, 1407 Inserm-Hospices Civils de Lyon, Groupement Hospitalier Est, Hôpital Femme-Mère-Enfant, EPICIME, Bron, France
| | - J Bacchetta
- Hospices Civils de Lyon, Service de Néphrologie, Rhumatologie et Dermatologie pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France.,CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France.,Laboratoire de Virologie, Institut des Agents Infectieux IAI, Hospices Civils de Lyon, Hopital de la Croix Rousse, Lyon, France
| | - P Cochat
- Hospices Civils de Lyon, Service de Néphrologie, Rhumatologie et Dermatologie pédiatriques, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Tavakolpour S. Current and future treatment options for pemphigus: Is it time to move towards more effective treatments? Int Immunopharmacol 2017; 53:133-142. [DOI: 10.1016/j.intimp.2017.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
|
24
|
Single-Nucleotide Polymorphism of CYP3A5 Impacts the Exposure to Tacrolimus in Pediatric Renal Transplant Recipients: A Pharmacogenetic Substudy of the TWIST Trial. Ther Drug Monit 2017; 39:21-28. [PMID: 28030534 DOI: 10.1097/ftd.0000000000000361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The pharmacokinetics of tacrolimus (TAC) and mycophenolic acid (MPA) are highly variable. An impact of single-nucleotide polymorphisms (SNPs) of the genes coding for enzymes and transporters involved in the pharmacokinetics of TAC and/or MPA is intuitively conceivable. Accordingly, we sought to analyze the influence of different SNPs on TAC and MPA exposure in pediatric renal transplant recipients. METHODS A subpopulation of 37 patients (median age: 12.8 years, range 2.2-18.3 years) participating in the TWIST study was included in the analysis of SNPs of CYP3A5, ABCB1 (MDR1), ABCG2, SLCO1B3 (coding for OATP2), ABCC2 (coding for cMOAT), and UGT1/2. TAC trough concentrations and abbreviated area under the concentration-time curves (AUC) of MPA were measured on days 7, 28, 91, and 183 after transplant. Both of these were adjusted to the respective dose the patient received. RESULTS The allele frequencies of analyzed SNP's were comparable to those reported previously for white populations. Dose-adjusted trough concentrations of TAC were approximately 60% lower in patients with the CYP3A5*1/*3 allele as compared with the CYP3A5*3/*3 allele (P = 0.004). Steroid-free patients in CYP3A5*3/*3 and CYP3A5*1/*3 carrier subgroups had comparable dose-adjusted TAC concentrations to the subgroup on steroids (P = 0.13). Patients younger than 10 years had a significantly lower median dose-adjusted TAC C0 concentration than patients older than 10 years; this age effect was comparable in heterozygous and homozygous CYP3A5 carriers as well as in patients on and off steroid medication. As for MPA, the genetic variability of transporters or enzymes had no impact on dose-adjusted MPA-AUC due to the low allele frequencies. Patients off steroids had a higher dose-adjusted MPA-AUC (0.18 mg·h/L per mg/m, 0.012-0.27) compared with patients on steroids (0.12 mg·h·L·mg, 0.09-0.19; P = 0.04). CONCLUSIONS Genetic variability of CYP3A5 has an impact on TAC metabolism in pediatric renal transplant recipients, contributing partly to the variability of TAC exposure. Therefore, adjusting initial TAC dosing to the genotype of CYP3A5 might be of clinical benefit.
Collapse
|
25
|
Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. Eur J Clin Pharmacol 2017. [PMID: 28624888 DOI: 10.1007/s00228-017-2285-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The study aims to evaluate the impact of recipients' and donors' polymorphisms in multidrug resistance-associated protein 2 (MRP2) gene ABCC2 -24C>T and 1249G>A on disposition of mycophenolic acid (MPA) and their interaction with cyclosporine (CsA) (compared to tacrolimus, TAC) in stable de novo adult renal transplant patients of Croatian origin. METHODS A total of 68 recipient-donor pairs were genotyped. Steady-state pharmacokinetics of MPA was assessed by the model-independent method. RESULTS Adjusted for MPA formulation, renal function, type of calcineurin inhibitor and recipients' and donors' genotypes at the two loci, donors' A-allele at 1249G>A was associated with a reduced peak (29%) and early (AUC0-2, 33%) exposure and increased MPA clearance (26%). Donors' A-allele combined with CsA was associated with 78% higher MPA clearance, 49% lower early and 48% lower total exposure as compared to wild type homozygosity + TAC. Recipients' SNPs per se did not reflect on MPA disposition. However, A-allele at 1249G>A + CsA (compared to wild type + TAC) was associated with a numerically greater increase in MPA clearance (59 vs. 41%), reduction in total exposure (36 vs. 27%) and increase in absorption rate (C max/AUC) (56 vs. 37%) than observed for the main effect of CsA. Less pronounced effects were observed for the combination of variant allele at -24C>T and CsA. CONCLUSION Considering MPA disposition, data indicate: donors' ABCC2 1249G>A polymorphism increases clearance and reduces exposure; CsA increases clearance and reduces exposure by inhibiting MRP2 in the gut, the liver, and the kidney; donors' ABCC2 1249G>A polymorphism enhances the renal CsA effect, while recipients' polymorphism seems to enhance the liver and the gut CsA effects.
Collapse
|
26
|
Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype. THE PHARMACOGENOMICS JOURNAL 2016; 17:556-562. [PMID: 27378609 DOI: 10.1038/tpj.2016.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
The relevance of most genetic polymorphisms beyond CYP3A5*1 on tacrolimus disposition remains unclear. We constructed a predictive mixed model for tacrolimus dose-corrected trough concentration (C0/dose) at months 3, 12 and 24 after transplantation in a retrospective cohort of 766 predominantly Causasian adult renal recipients (n=2042 trough concentrations). All patients were genotyped for 32 single-nucleotide polymorphisms with a proven or possible relevance to tacrolimus disposition based on the previous studies. Of these, ABCB1, ABCC2, OATP1B1, COMT, FMO, PPARA and APOA5 were analyzed as (functional) diplotype groups. Predictors of C0/dose were CYP3A5*1, hematocrit, age, CYP3A4*22, use of concomitant CYP3A4 inhibitor or inducer, ALT, estimated glomerular filtration rate, tacrolimus formulation (once vs twice daily), ABCB1 diplotype and time after transplantation. The effect of ABCB1 diplotype was small but strongly accentuated in CYP3A4*22 carriers and non-existent in CYP3A5 expressors. ABCC2 diplotype had a limited effect on C0/dose that was only statistically significant in CYP3A5 non-expressors.
Collapse
|
27
|
Yoo EC, Alvarez-Elías AC, Todorova EK, Filler G. Developmental changes of MPA exposure in children. Pediatr Nephrol 2016; 31:975-82. [PMID: 26743220 DOI: 10.1007/s00467-015-3303-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental changes (ontogeny) of drug disposition of Mycophenolate mofetil (MMF) have been understudied. METHODS The charts of 37 pediatric renal transplant recipients (median age 7.3 years, median follow-up 7.8 (IQR 6.6, 14.3 years) who had regular mycophenolic acid (MPA) trough level monitoring in combination with tacrolimus (n = 31) or sirolimus (n = 6) therapy were analyzed retrospectively for their dose-normalized MPA exposure, steroid dose, albumin, hematocrit, and cystatin C estimated glomerular filtration rate (eGFR). Using appropriate univariate and multivariate methods, we determined whether MPA exposure was age dependent when controlling for the confounders. RESULTS Dose-normalized MPA trough levels could be calculated in 2,128 (median 45/patient) instances. Spearman rank correlation analysis revealed that age correlated with dose-normalized MPA trough level for both body weight and body surface area, as well as serum albumin, hematocrit, steroid dose, and eGFR. In the multivariate analysis, serum albumin and steroid dose were not significant, and hematocrit only being significant when the youngest group of patients < 6 years of age was compared. eGFR was the most important confounder, but age dependency remained significant when controlling for all confounders. CONCLUSIONS Small children are at a significantly greater risk for low MPA trough levels than adolescents, highlighting the need for pharmacokinetic monitoring of MPA.
Collapse
Affiliation(s)
- Elisa C Yoo
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada, N6A 5W9
| | - Ana Catalina Alvarez-Elías
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada, N6A 5W9.,Universidad Nacional Autónoma de México, Mexico City, Mexico, 04510
| | | | - Guido Filler
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada, N6A 5W9. .,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada, N5A 5A5. .,Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, 5A 5A5. .,Department of Pediatrics, Children's Hospital, London Health Sciences Centre, University of Western Ontario, 800 Commissioners Road East, London, ON, Canada, N6A 5W9.
| |
Collapse
|
28
|
Martial LC, Jacobs BAW, Cornelissen EAM, de Haan AFJ, Koch BCP, Burger DM, Aarnoutse RE, Schreuder MF, Brüggemann RJM. Pharmacokinetics and target attainment of mycophenolate in pediatric renal transplant patients. Pediatr Transplant 2016; 20:492-9. [PMID: 26923724 DOI: 10.1111/petr.12695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 01/23/2023]
Abstract
MPA is an immunosuppressive agent used to prevent graft rejection after renal transplantation. MPA shows considerable inter- and intraindividual variability in exposure in children and has a defined therapeutic window, and TDM is applied to individualize therapy. We aimed to study the exposure to MPA measured as the AUC in pediatric renal transplant patients, to identify factors influencing exposure and to assess target attainment. Children transplanted between 1998 and 2014 in a single center were included. Two groups were identified: Group 1 (AUC <3 wk post-transplantation) and Group 2 (AUC >18 months post-transplantation). Therapeutic targets were set at: AUC0-12h of 30-60 mg h/L. A total of 39 children were included in Group 1 (median age 13.3 yr) vs. 14 in Group 2 (median age 13.4 yr). AUC0-12h was 29.7 mg h/L in Group 1 and 56.6 mg h/L in Group 2, despite a lower dosage in Group 2 (584 and 426 mg/m(2) , respectively). About 46% of patients reached the target AUC0-12h in Group 1. Time since transplantation and serum creatinine were significantly associated with MPA exposure (p < 0.001), explaining 36% of the variability. Individualization of the mycophenolate dose by more intense and more early TDM could improve target attainment.
Collapse
Affiliation(s)
- Lisa C Martial
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Radboud University, Nijmegen, The Netherlands
| | - Bart A W Jacobs
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Anton F J de Haan
- Radboud Institute for Health Sciences, Radboud University, Nijmegen, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Radboud University, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Todorova EK, Huang SHS, Kobrzynski MC, Filler G. What is the intrapatient variability of mycophenolic acid trough levels? Pediatr Transplant 2015. [PMID: 26201386 DOI: 10.1111/petr.12559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TDM of MPA, the active compound of MMF, is rarely used despite its substantial intra- and interpatient variability. Little is known about the utility of long-term MPA TDM. Data are expressed as mean (one standard deviation). All available data from 27 renal transplant recipients (mean age at transplantation: 7.7 [5.0] yr) with an average follow-up of 9.3 (4.6) yr were analyzed. MPA levels were measured using the EMIT. GFR was measured using cystatin C and eGFR was calculated using the Filler formula. Intrapatient CV of the trough level was calculated as the ratio of the mean divided by one standard deviation. Mean cystatin C eGFR was 56.9 (24.4) mL/min/1.73 m(2) . There was a weak but significant correlation between the MPA trough level and the AUC (Spearman r = 0.6592, p < 0.0001). A total of 1964 MPA trough levels (73 [45]/patient) were measured, as compared to 3462 Tac trough levels (144 [71]/patient). The average MPA trough level was 3.01 (1.26) mg/L and the average trough Tac level was 7.3 (1.8) ng/mL. Intrapatient CV was statistically higher (p = 0.00093) for MPA at 0.68 (0.29) when compared to Tac with a CV of 0.46 (0.12). CV did not correlate with eGFR. Intrapatient MPA trough level CV is significantly higher than for Tac, while CV for both MPA and Tac was high. MPA trough level monitoring may be a feasible monitoring option to improve patient exposure and possibly outcomes.
Collapse
Affiliation(s)
- Ekaterina K Todorova
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada
| | - Shih-Han S Huang
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Marta C Kobrzynski
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada
| | - Guido Filler
- Department of Pediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
30
|
Dong M, Fukuda T, Cox S, de Vries MT, Hooper DK, Goebel J, Vinks AA. Population pharmacokinetic-pharmacodynamic modelling of mycophenolic acid in paediatric renal transplant recipients in the early post-transplant period. Br J Clin Pharmacol 2015; 78:1102-12. [PMID: 24837828 DOI: 10.1111/bcp.12426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 05/12/2014] [Indexed: 11/30/2022] Open
Abstract
AIM The purpose of this study was to develop a population pharmacokinetic and pharmacodynamic (PK-PD) model for mycophenolic acid (MPA) in paediatric renal transplant recipients in the early post-transplant period. METHODS A total of 214 MPA plasma concentrations-time data points from 24 patients were available for PK model development. In 17 out of a total of 24 patients, inosine monophosphate dehydrogenase (IMPDH) enzyme activity measurements (n = 97) in peripheral blood mononuclear cells were available for PK-PD modelling. The PK-PD model was developed using non-linear mixed effects modelling sequentially by 1) developing a population PK model and 2) incorporating IMPDH activity into a PK-PD model using post hoc Bayesian PK parameter estimates. Covariate analysis included patient demographics, co-medication and clinical laboratory data. Non-parametric bootstrapping and prediction-corrected visual predictive checks were performed to evaluate the final models. RESULTS A two compartment model with a transit compartment absorption best described MPA PK. A non-linear relationship between dose and MPA exposure was observed and was described by a power function in the model. The final population PK parameter estimates (and their 95% confidence intervals) were CL/F, 22 (14.8, 25.2) l h(-1) 70 kg(-1) ; Vc /F, 45.4 (29.6, 55.6) l; Vp /F, 411 (152.6, 1472.6)l; Q/F, 22.4 (16.0, 32.5) l h(-1) ; Ka , 2.5 (1.45, 4.93) h(-1) . Covariate analysis in the PK study identified body weight to be significantly correlated with CL/F. A simplified inhibitory Emax model adequately described the relationship between MPA concentration and IMPDH activity. The final population PK-PD parameter estimates (and their 95% confidence intervals) were: E0 , 3.45 (2.61, 4.56) nmol h(-1) mg(-1) protein and EC50 , 1.73 (1.16, 3.01) mg l(-1) . Emax was fixed to 0. There were two African-American patients in our study cohorts and both had low IMPDH baseline activities (E0 ) compared with Caucasian patients (mean value 2.13 mg l(-1) vs. 3.86 mg l(-1) ). CONCLUSION An integrated population PK-PD model of MPA has been developed in paediatric renal transplant recipients. The current model provides information that will facilitate future studies and may be implemented in a Bayesian algorithm to allow a PK-PD guided therapeutic drug monitoring strategy.
Collapse
Affiliation(s)
- Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Andrews LM, Riva N, de Winter BC, Hesselink DA, de Wildt SN, Cransberg K, van Gelder T. Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opin Drug Metab Toxicol 2015; 11:921-36. [DOI: 10.1517/17425255.2015.1033397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Affiliation(s)
- Sara L Van Driest
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Steven A Webber
- From Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
33
|
Veličković-Radovanović RM, Janković SM, Milovanović JR, Catić-Đorđević AK, Spasić AA, Stefanović NZ, Džodić PL, Šmelcerović AA, Cvetković TP. Variability of mycophenolic acid elimination in the renal transplant recipients – population pharmacokinetic approach. Ren Fail 2015; 37:652-8. [DOI: 10.3109/0886022x.2015.1010442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Abd Rahman AN, Tett SE, Staatz CE. How accurate and precise are limited sampling strategies in estimating exposure to mycophenolic acid in people with autoimmune disease? Clin Pharmacokinet 2014; 53:227-245. [PMID: 24327238 DOI: 10.1007/s40262-013-0124-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. Dosing to achieve a specific target MPA area under the concentration-time curve from 0 to 12 h post-dose (AUC12) is likely to lead to better treatment outcomes in patients with autoimmune disease than a standard fixed-dose strategy. This review summarizes the available published data around concentration monitoring strategies for MPA in patients with autoimmune disease and examines the accuracy and precision of methods reported to date using limited concentration-time points to estimate MPA AUC12. A total of 13 studies were identified that assessed the correlation between single time points and MPA AUC12 and/or examined the predictive performance of limited sampling strategies in estimating MPA AUC12. The majority of studies investigated mycophenolate mofetil (MMF) rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation of MPA. Correlations between MPA trough concentrations and MPA AUC12 estimated by full concentration-time profiling ranged from 0.13 to 0.94 across ten studies, with the highest associations (r (2) = 0.90-0.94) observed in lupus nephritis patients. Correlations were generally higher in autoimmune disease patients compared with renal allograft recipients and higher after MMF compared with EC-MPS intake. Four studies investigated use of a limited sampling strategy to predict MPA AUC12 determined by full concentration-time profiling. Three studies used a limited sampling strategy consisting of a maximum combination of three sampling time points with the latest sample drawn 3-6 h after MMF intake, whereas the remaining study tested all combinations of sampling times. MPA AUC12 was best predicted when three samples were taken at pre-dose and at 1 and 3 h post-dose with a mean bias and imprecision of 0.8 and 22.6 % for multiple linear regression analysis and of -5.5 and 23.0 % for maximum a posteriori (MAP) Bayesian analysis. Although mean bias was less when data were analysed using multiple linear regression, MAP Bayesian analysis is preferable because of its flexibility with respect to sample timing. Estimation of MPA AUC12 following EC-MPS administration using a limited sampling strategy with samples drawn within 3 h post-dose resulted in biased and imprecise results, likely due to a longer time to reach a peak MPA concentration (t max) with this formulation and more variable pharmacokinetic profiles. Inclusion of later sampling time points that capture enterohepatic recirculation and t max improved the predictive performance of strategies to predict EC-MPS exposure. Given the considerable pharmacokinetic variability associated with mycophenolate therapy, limited sampling strategies may potentially help in individualizing patient dosing. However, a compromise needs to be made between the predictive performance of the strategy and its clinical feasibility. An opportunity exists to combine research efforts globally to create an open-source database for MPA (AUC, concentrations and outcomes) that can be used and prospectively evaluated for AUC target-controlled dosing of MPA in autoimmune diseases.
Collapse
Affiliation(s)
- Azrin N Abd Rahman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia.,School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Susan E Tett
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Christine E Staatz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
35
|
Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014; 88:1351-89. [PMID: 24792322 DOI: 10.1007/s00204-014-1247-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
This review aims to provide an update of the literature on the pharmacology and toxicology of mycophenolate in solid organ transplant recipients. Mycophenolate is now the antimetabolite of choice in immunosuppressant regimens in transplant recipients. The active drug moiety mycophenolic acid (MPA) is available as an ester pro-drug and an enteric-coated sodium salt. MPA is a competitive, selective and reversible inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH), an important rate-limiting enzyme in purine synthesis. MPA suppresses T and B lymphocyte proliferation; it also decreases expression of glycoproteins and adhesion molecules responsible for recruiting monocytes and lymphocytes to sites of inflammation and graft rejection; and may destroy activated lymphocytes by induction of a necrotic signal. Improved long-term allograft survival has been demonstrated for MPA and may be due to inhibition of monocyte chemoattractant protein 1 or fibroblast proliferation. Recent research also suggested a differential effect of mycophenolate on the regulatory T cell/helper T cell balance which could potentially encourage immune tolerance. Lower exposure to calcineurin inhibitors (renal sparing) appears to be possible with concomitant use of MPA in renal transplant recipients without undue risk of rejection. MPA displays large between- and within-subject pharmacokinetic variability. At least three studies have now reported that MPA exhibits nonlinear pharmacokinetics, with bioavailability decreasing significantly with increasing doses, perhaps due to saturable absorption processes or saturable enterohepatic recirculation. The role of therapeutic drug monitoring (TDM) is still controversial and the ability of routine MPA TDM to improve long-term graft survival and patient outcomes is largely unknown. MPA monitoring may be more important in high-immunological recipients, those on calcineurin-inhibitor-sparing regimens and in whom unexpected rejection or infections have occurred. The majority of pharmacodynamic data on MPA has been obtained in patients receiving MMF therapy in the first year after kidney transplantation. Low MPA area under the concentration time from 0 to 12 h post-dose (AUC0-12) is associated with increased incidence of biopsy-proven acute rejection although AUC0-12 optimal cut-off values vary across study populations. IMPDH monitoring to identify individuals at increased risk of rejection shows some promise but is still in the experimental stage. A relationship between MPA exposure and adverse events was identified in some but not all studies. Genetic variants within genes involved in MPA metabolism (UGT1A9, UGT1A8, UGT2B7), cellular transportation (SLCOB1, SLCO1B3, ABCC2) and targets (IMPDH) have been reported to effect MPA pharmacokinetics and/or response in some studies; however, larger studies across different ethnic groups that take into account genetic linkage and drug interactions that can alter a patient's phenotype are needed before any clinical recommendations based on patient genotype can be formulated. There is little data on the pharmacology and toxicology of MPA in older and paediatric transplant recipients.
Collapse
|
36
|
Dong M, Fukuda T, Vinks AA. Optimization of Mycophenolic Acid Therapy Using Clinical Pharmacometrics. Drug Metab Pharmacokinet 2014; 29:4-11. [DOI: 10.2133/dmpk.dmpk-13-rv-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Developmental Changes in the Processes Governing Oral Drug Absorption. PEDIATRIC FORMULATIONS 2014. [DOI: 10.1007/978-1-4899-8011-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther 2013; 141:92-116. [PMID: 24076267 DOI: 10.1016/j.pharmthera.2013.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/01/2023]
Abstract
UDP-glucuronosyltransferases (UGT) catalyze the biotransformation of many endobiotics and xenobiotics, and are coded by polymorphic genes. However, knowledge about the effects of these polymorphisms is rarely used for the individualization of drug therapy. Here, we present a quantitative systematic review of clinical studies on the impact of UGT variants on drug metabolism to clarify the potential for genotype-adjusted therapy recommendations. Data on UGT polymorphisms and dose-related pharmacokinetic parameters in man were retrieved by a systematic search in public databases. Mean estimates of pharmacokinetic parameters were extracted for each group of carriers of UGT variants to assess their effect size. Pooled estimates and relative confidence bounds were computed with a random-effects meta-analytic approach whenever multiple studies on the same variant, ethnic group, and substrate were available. Information was retrieved on 30 polymorphic metabolic pathways involving 10 UGT enzymes. For irinotecan and mycophenolic acid a wealth of data was available for assessing the impact of genetic polymorphisms on pharmacokinetics under different dosages, between ethnicities, under comedication, and under toxicity. Evidence for effects of potential clinical relevance exists for 19 drugs, but the data are not sufficient to assess effect size with the precision required to issue dose recommendations. In conclusion, compared to other drug metabolizing enzymes much less systematic research has been conducted on the polymorphisms of UGT enzymes. However, there is evidence of the existence of large monogenetic functional polymorphisms affecting pharmacokinetics and suggesting a potential use of UGT polymorphisms for the individualization of drug therapy.
Collapse
Affiliation(s)
- J C Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany; Translational Pharmacology, University of Bonn Medical Faculty, Germany.
| | - H Bartels
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Germany
| | - R Viviani
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany
| | - M L Lehmann
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - J Brockmöller
- Institute of Clinical Pharmacology, University of Göttingen, Germany
| |
Collapse
|
39
|
D'Alessandro LC, Mital S. Pediatric transplantation: opportunities for pharmacogenomics and genomics. Per Med 2013; 10:397-404. [PMID: 29783417 DOI: 10.2217/pme.13.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heterogeneity is the rule among pediatric heart transplant recipients. Patients vary in age, size, organ maturity, immune system maturity and underlying disease etiology, which can all influence post-transplant outcomes. Overall, the survival of pediatric transplant recipients continues to improve and the goal remains long-term survival of the primary graft and mitigation of long-term complications and adverse events. The evolving fields of pharmacogenomics and genomics have the potential to revolutionize and personalize the care of pediatric transplant recipients, and although clinical validation in a pediatric cohort is lacking, many of these technologies are becoming more readily available. We discuss genotype-guided dosing of immunosuppressant medications and other commonly used medications after transplantation, the influence of donor and recipient genotype on risk of post-transplant complications, genotype-guided selection of therapies to treat complications, and the use of next-generation sequencing for noninvasive detection of graft rejection.
Collapse
Affiliation(s)
- Lisa Ca D'Alessandro
- Division of Cardiology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
40
|
Abstract
A 17-year-old adolescent with acute nephrotoxicity had CYP3A4-5, CYP2C19, and ABCB1 genotyping performed to understand a suspected drug interaction between tacrolimus and omeprazole. The determinant role of individual pharmacogenetic profile in the occurrence of tacrolimus nephrotoxicity is presented and discussed.
Collapse
|
41
|
UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit 2013; 34:671-9. [PMID: 23131697 DOI: 10.1097/ftd.0b013e3182708f84] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mycophenolic acid (MPA) exposure in pediatric patients with kidney transplant receiving body surface area (BSA)-based dosing exhibits large variability. Several genetic variants in glucuronosyltransferases (UGTs) and of multidrug resistance-associated protein 2 (MRP2) have independently been suggested to predict MPA exposure in adult patients with varying results. Here, the combined contribution of these genetic variants to MPA pharmacokinetic variability was investigated in pediatric renal transplant recipients who were on mycophenolic mofetil maintenance therapy. METHODS MPA and MPA-glucuronide concentrations from 32 patients were quantified by high-performance liquid chromatography. MPA exposure (AUC) was estimated using a 4-point abbreviated sampling strategy (predose/trough and 20 minutes, 1 hour, and 3 hours after dose) using a validated pediatric Bayesian estimator. Genotyping was performed for all of the following single nucleotide polymorphisms (SNPs): UGT1A8 830G>A(*3), UGT1A9 98T>C(*3), UGT1A9-440C>T, UGT1A9-2152C>T, UGT1A9-275T>A, UGT2B7-900A>G, and MRP2-24T>C. RESULTS Recipients heterozygous for MRP2-24T>C who also had UGT1A9-440C>T or UGT2B7-900A>G (n = 4), and MRP2-24T>C-negative recipients having both UGT1A9-440C>T and UGT2B7-900A>G (n = 5) showed a 2.2 and 1.7 times higher dose-dependent and BSA-normalized MPA-AUC compared with carriers of no or only 1 UGT-SNP (P < 0.001 and P = 0.01, respectively) (n = 7). Dose-dependent and BSA-normalized predose MPA concentrations were 3.0 and 2.4 times higher, respectively (P < 0.001). Interindividual variability in peak concentrations could be explained by the presence of the UGT1A9-440C>T genotype (P < 0.05). CONCLUSION Our preliminary study demonstrates that combined UGT1A9-440C>T, UGT2B7-900A>G, and MRP2-24T>C polymorphisms can be important predictors of interindividual variability in MPA exposure in the pediatric population.
Collapse
|
42
|
Lima BR, Nussenblatt RB, Sen HN. Pharmacogenetics of drugs used in the treatment of ocular inflammatory diseases. Expert Opin Drug Metab Toxicol 2013; 9:875-82. [PMID: 23521173 DOI: 10.1517/17425255.2013.783818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ocular inflammatory diseases comprise uveitis, scleritis, and inflammation of adjacent structures of the eye. Therapy may be challenging and often involves corticosteroids and immunomodulatory agents. AREAS COVERED This review describes the genes involved in noninfectious ocular inflammatory diseases and focuses on pharmacogenetic studies regarding different classes of anti-inflammatory drugs used in the management of uveitis, including corticosteroids, antimetabolites, calcineurin inhibitors, alkylating agents, and biological agents. EXPERT OPINION Pharmacogenetics holds the promise of a personalized medicine with potential to customize treatment that can achieve the best clinical response and avoid toxicity. Several polymorphisms in various genes involved in the metabolism of drugs commonly utilized in the treatment of ocular inflammatory diseases have been described. Most promising is the polymorphism in thiopurinemethyltransferase gene for which a genotype analysis can reveal slow metabolizers of azathioprine and help avoid serious drug toxicity. Although pharmacogenetic studies with specific focus on ocular inflammatory diseases are lacking, knowledge from studies in rheumatologic diseases and transplant medicine can provide a platform for future research. Prospective clinical studies are needed to determine the clinical significance of such polymorphisms and their true effect on drug metabolism and side effects.
Collapse
Affiliation(s)
- Breno R Lima
- National Eye Institute, National Institutes of Health, Laboratory of Immunology, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Abd Rahman AN, Tett SE, Staatz CE. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Patients with Autoimmune Disease. Clin Pharmacokinet 2013; 52:303-31. [DOI: 10.1007/s40262-013-0039-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Abstract
PURPOSE OF REVIEW Despite major advancements in therapeutics, variability in drug response remains a challenge in both adults and children diagnosed with rheumatic disease. The genetic contribution to interindividual variability has emerged as a promising avenue of exploration; however, challenges remain in making this knowledge relevant in the clinical realm. RECENT FINDINGS New genetic associations in patients with rheumatic disease have been reported for disease modifying antirheumatic drugs, antimetabolites and biologic drugs. However, many of these findings are in need of replication, and few have taken into account the concept of ontogeny, specific to pediatrics. SUMMARY In the current era in which we practice, genetic variation will undoubtedly contribute to variability in therapeutic response and may be a factor that will ultimately impact individualized care. However, preliminary studies have shown that there are many hurdles that need to be overcome as we explore pharmacogenomic associations specifically in the field of pediatric rheumatology.
Collapse
|
45
|
Downing HJ, Pirmohamed M, Beresford MW, Smyth RL. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol 2013; 75:45-59. [PMID: 22519685 PMCID: PMC3555046 DOI: 10.1111/j.1365-2125.2012.04305.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 01/14/2023] Open
Abstract
A number of medications do not have a licence, or label, for use in the paediatric age group nor for the specific indication for which they are being used in children. Over recent years, mycophenolate mofetil has increasingly been used off-label (i.e. off-licence) in adults for a number of indications, including autoimmune conditions; progressively, this wider use has been extended to children. This review summarizes current use of mycophenolate mofetil (MMF) in children, looking at how MMF works, the pharmacokinetics, the clinical conditions for which it is used, the advantages it has when compared with other immunosuppressants and the unresolved issues remaining with use in children. The review aims to focus on off-label use in children so as to identify areas that require further research and investigation. The overall commercial value of MMF is limited because it has now come off patent in adults. Given the increasing knowledge of the pharmacodynamics, pharmacokinetics and pharmacogenomics demonstrating the clinical benefits of MMF, new, formal, investigator-led studies, including trials focusing on the use of MMF in children, would be of immense value.
Collapse
Affiliation(s)
- Heather J Downing
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, The University of LiverpoolAshton Street, Liverpool L69 3GE, UK
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| | - Rosalind L Smyth
- Department of Women's and Children's Health, Institute of Translational Medicine, The University of Liverpool, Alder Hey Children's NHS Foundation TrustEaton Road, Liverpool L12 2AP, UK
| |
Collapse
|
46
|
Moes DJA, Press RR, den Hartigh J, van der Straaten T, de Fijter JW, Guchelaar HJ. Population Pharmacokinetics and Pharmacogenetics of Everolimus in Renal Transplant Patients. Clin Pharmacokinet 2012; 51:467-80. [DOI: 10.2165/11599710-000000000-00000] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Zhao W, Fakhoury M, Baudouin V, Storme T, Maisin A, Deschênes G, Jacqz-Aigrain E. Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol 2012; 69:189-95. [PMID: 22706623 DOI: 10.1007/s00228-012-1330-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Tacrolimus(PR) is a new prolonged-release once-daily formulation of the calcineurin inhibitor tacrolimus, currently used in adult transplant patients. As there are no pharmacokinetic data available in pediatric kidney transplant recipients, the aims of this study were to develop a population pharmacokinetic model of tacrolimus(PR) in pediatric and adolescent kidney transplant recipients and to identify covariates that have a significant impacts on tacrolimus(PR) pharmacokinetics, including CYP3A5 polymorphism. METHODS Pharmacokinetic samples were collected from 22 pediatric kidney transplant patients. Population pharmacokinetic analysis was performed using NONMEM. Pharmacogenetic analysis was performed on the CYP3A5 gene. RESULTS The pharmacokinetic data were best described by a one-compartment model with first order absorption and lag-time. The weight normalized oral clearance CL/F [CL/F/ (weight/70)(0.75)] was lower in patients with CYP3A5 3/3 as compared to patients with the CYP3A5 1/3 (32.2 ± 10.1 vs. 53.5 ± 20.2 L/h, p = 0.01). CONCLUSIONS The population pharmacokinetic model of tacrolimus(PR) was developed and validated in pediatric and adolescent kidney transplant patients. Body weight and CYP3A5 polymorphism were identified as significant factors influencing pharmacokinetics. The developed model could be useful to optimize individual pediatric tacrolimus (PR) dosing regimen in routine clinical practice.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, Université Paris Diderot, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Mooij MG, de Koning BAE, Huijsman ML, de Wildt SN. Ontogeny of oral drug absorption processes in children. Expert Opin Drug Metab Toxicol 2012; 8:1293-303. [PMID: 22686526 DOI: 10.1517/17425255.2012.698261] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION A large proportion of prescribed drugs to children are administered orally. Age-related change in factors affecting oral absorption can have consequences for drug dosing. AREAS COVERED For each process affecting oral drug absorption, a systematic search has been performed using Medline to identify relevant articles (from inception till February 2012) in humans. This review presents the findings on age-related changes of the following processes affecting oral drug absorption: gastric pH, gastrointestinal motility, bile salts, pancreatic function, intestinal pH, intestinal drug-metabolizing enzymes and transporter proteins. EXPERT OPINION Clinicians should bear in mind the ontogeny of oral drug absorption processes when prescribing oral drugs to children. The authors' review shows large information gaps on almost all drug absorption processes. It is important that more knowledge is acquired on intestinal transit time, intestinal pH and the ontogeny of intestinal drug-metabolizing enzymes and drug transporter proteins. Furthermore, the ultimate goal in this field should be to predict more precisely the oral disposition of drugs in children across the entire pediatric age range.
Collapse
Affiliation(s)
- Miriam G Mooij
- Erasmus MC-Sophia Children's Hospital, Department of Pediatric Surgery and Intensive Care, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
|
50
|
Baudouin V, Alberti C, Lapeyraque AL, Bensman A, André JL, Broux F, Cailliez M, Decramer S, Niaudet P, Deschênes G, Jacqz-Aigrain E, Loirat C. Mycophenolate mofetil for steroid-dependent nephrotic syndrome: a phase II Bayesian trial. Pediatr Nephrol 2012; 27:389-96. [PMID: 21947272 DOI: 10.1007/s00467-011-2006-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Mycophenolate mofetil (MMF) has emerged as a new therapeutic option in steroid-dependent nephrotic syndrome (SDNS). We conducted a phase II Bayesian trial of MMF in children with SDNS. Phase II trials, usually single-arm studies, investigate the effect of new treatments. Standard Fleming's procedure relies on observed results (relapse rate during the trial), whereas Bayesian approach combines observed results with prior information (expected relapse rate according to prior studies and clinical experience). All patients were required to have received prior alkylating-agent treatment. Sixty-seven percent of them had also received levamisole. Patients received MMF (1,200 mg/m(2)/day) and prednisone according to a defined schedule [reduction of alternate-day (e.o.d) dose to 50% of pre-MMF dose at 3 months, 25% at 6 months]. Twenty-four children (median age 6.0 years, 2.8-14.4) entered the study and 23 completed it. Bayesian analysis showed that adding four patients would not change significance of results, allowing stopping inclusions. Four patients relapsed during the first 6 months (estimated probability 17.6%, 95% credibility interval: 5.4-35.0%) and two at months 8 and 11.5. In the 19 patients free of relapse during the first 6 months, median (Q1-Q3) prednisone maintenance dose decreased from 25 (10-44) to 9 (7.5-11.2) mg/m(2) e.o.d (p < 0.001) and cumulative dose from 459 (382-689) to 264 (196-306) mg/m(2)/month (p < 0.001) before and on MMF respectively. Pre-MMF patient characteristics and MMF pharmacokinetics did not differ between patients with or without relapse. MMF reduces relapse rate and steroid dose in children with SDNS and should be proposed before cyclosporine and cyclophosphamide.
Collapse
Affiliation(s)
- Véronique Baudouin
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Pediatric Nephrology Department, Université Paris 7, 48 Boulevard Sérurier, 75019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|