1
|
Park HJ, Hong KT, Han N, Kim IW, Oh JM, Kang HJ. Body Surface Area-Based Dosing of Mycophenolate Mofetil in Pediatric Hematopoietic Stem Cell Transplant Recipients: A Prospective Population Pharmacokinetic Study. Pharmaceutics 2023; 15:2741. [PMID: 38140082 PMCID: PMC10748085 DOI: 10.3390/pharmaceutics15122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mycophenolate mofetil (MMF) is commonly used for acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). However, limited population pharmacokinetic (PPK) data are available for pediatric HSCT patients. This study aimed to develop a PPK model and recommend optimal oral MMF dosage in pediatric HSCT patients. This prospective study involved pediatric HSCT patients at a tertiary academic institution. Patients received oral MMF 15-20 mg/kg twice daily for aGVHD prophylaxis and treatment. The PPK analysis was conducted using a nonlinear mixed-effects modeling method. Simulation was performed considering different body surface areas (BSAs) (0.5 m2, 1.0 m2, 1.5 m2) and dosing (400 mg/m2, 600 mg/m2, 900 mg/m2 twice daily). Based on the simulation, an optimal dosage of oral MMF was suggested. A total of 20 patients and 80 samples were included in the PPK model development. A one-compartment model with first-order absorption adequately described the pharmacokinetics of mycophenolic acid (MPA). BSA was a statistically significant covariate on Vd/F. Simulation suggested the optimal dosage of oral MMF as 900 mg/m2 twice daily, respectively. A reliable PPK model was developed with good predictive performance. This model-informed optimal MMF dosage in pediatric HSCT patients can provide valuable dosing guidance in real-world clinical practice.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul 03080, Republic of Korea;
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.J.P.); (N.H.); (I.-W.K.)
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul 03080, Republic of Korea;
- Wide River Institute of Immunology, Hongcheon 25159, Republic of Korea
| |
Collapse
|
2
|
Piscitelli J, Nikanjam M, Capparelli EV, Blaquera CL, Penzak SR, Nolin TD, Paine MF, Ma JD. Fexofenadine Plasma Concentrations to Estimate Systemic Exposure in Healthy Adults Using a Limited Sampling Strategy with a Population Pharmacokinetic Approach. Ther Drug Monit 2023; 45:539-545. [PMID: 36645711 PMCID: PMC10123170 DOI: 10.1097/ftd.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/27/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Fexofenadine is a recommended in vivo probe drug for phenotyping P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 transporter activities. This study evaluated a limited sampling strategy using a population pharmacokinetic approach to estimate plasma fexofenadine exposure as an index of P-gp and OATP activities. METHODS In a previous study, a single oral dose of fexofenadine (120 mg) was administered alone or in combination with grapefruit juice, Panax ginseng , or Echinacea purpurea to healthy adult participants. Serial plasma samples were collected up to 72 hours after administration and fexofenadine concentrations were measured. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling. Limited sampling models (LSMs) using single and 2-timepoint fexofenadine concentrations were compared with full profiles from intense sampling using empirical Bayesian post hoc estimations of systemic exposure derived from the population pharmacokinetic model. Predefined criteria for LSM selection and validation included a coefficient of determination (R 2 ) ≥ 0.90, relative percent mean prediction error ≥ -5 to ≤5%, relative percent mean absolute error ≤ 10%, and relative percent root mean square error ≤ 15%. RESULTS Fexofenadine concentrations (n = 1520) were well described using a 2-compartment model. Grapefruit juice decreased the relative oral bioavailability of fexofenadine by 25%, whereas P. ginseng and E. purpurea had no effect. All the evaluated single timepoint fexofenadine LSMs showed unacceptable percent mean prediction error, percent mean absolute error, and/or percent root mean square error. Although adding a second time point improved precision, the predefined criteria were not met. CONCLUSIONS Identifying novel fexofenadine LSMs to estimate P-gp and OATP1B1/3 activities in healthy adults for future transporter-mediated drug-drug interaction studies remains elusive.
Collapse
Affiliation(s)
- Joseph Piscitelli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, San Diego, CA, USA
| | - Edmund V. Capparelli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Host-Microbe Systems, University of California San Diego, San Diego, CA, USA
| | - Chelsea L. Blaquera
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Scott R. Penzak
- Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Thomas D. Nolin
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Mary F. Paine
- College of Pharmacy & Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph D. Ma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
4
|
Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol 2022; 17:1369-1406. [PMID: 35000505 DOI: 10.1080/17425255.2021.2027906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mycophenolic acid (MPA) is a widely used immunosuppressant in transplantation and autoimmune disease. Highly variable pharmacokinetics have been observed with MPA, but the exact mechanisms remain largely unknown. AREAS COVERED The current review provided a critical, comprehensive update of recently published population pharmacokinetic/dynamic models of MPA (n=16 papers identified from PubMed and Embase, inclusive from January 2017 to August 2021), with specific emphases on the intrinsic and extrinsic factors influencing the pharmacology of MPA. The significance of the identified covariates, potential mechanisms, and comparisons to historical literature have been provided. EXPERT OPINION While select covariates affecting the population pharmacokinetics of MPA are consistently observed and mechanistically supported, some variables have not been regularly reported and/or lacked mechanistic explanation. Very few pharmacodynamic models were available, pointing to the need to extrapolate pharmacokinetic findings. Ideal models of MPA should consist of: i) utilizing optimal sampling points to allow the characterizations of absorption, re-absorption, and elimination phases; ii) characterizing unbound/total MPA, MPA metabolites, plasma/urinary concentrations, and genetic polymorphisms to facilitate mechanistic interpretations; and iii) incorporating actual outcomes and pharmacodynamic data to establish clinical relevance. We anticipate the field will continue to expand in the next 5 to 10 years.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Vrunda Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Population Pharmacokinetic Model of Plasma and Cellular Mycophenolic Acid in Kidney Transplant Patients from the CIMTRE Study. Drugs R D 2021; 20:331-342. [PMID: 33025511 PMCID: PMC7691413 DOI: 10.1007/s40268-020-00319-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background and Objective Mycophenolate mofetil is widely used in kidney transplant recipients. Mycophenolate mofetil is hydrolysed by blood esterases to mycophenolic acid (MPA), the active drug. Although MPA therapeutic drug monitoring has been recommended to optimise the treatment efficacy by the area under the plasma concentration vs time curve, little is known regarding MPA concentrations in peripheral blood mononuclear cells, where MPA inhibits inosine monophosphate dehydrogenase. This study aimed to build a pharmacokinetic model using a population approach to describe MPA total and unbound concentrations in plasma and into peripheral blood mononuclear cells in 78 adult kidney transplant recipients receiving mycophenolate mofetil therapy combined with tacrolimus and prednisone. Methods Total and unbound plasma concentrations and peripheral blood mononuclear cell concentrations were assayed. A three-compartment model, two for plasma MPA and one for peripheral blood mononuclear cell MPA, with a zero-order absorption and a first-order elimination was used to describe the data. Results Mycophenolic acid average concentrations in peripheral blood mononuclear cells were well above half-maximal effective concentration for inosine monophosphate dehydrogenase and no relationship was found with the occurrence of graft rejection. Three covariates affected unbound and intracellular MPA pharmacokinetics: creatinine clearance, which has an effect on unbound MPA clearance, human serum albumin, which influences fraction unbound MPA and the ABCB1 3435 C>T (rs1045642) genetic polymorphism, which has an effect on MPA efflux transport from peripheral blood mononuclear cells. Conclusion This population pharmacokinetic model demonstrated the intracellular accumulation of MPA, the efflux of MPA out of the cells being dependent on P-glycoprotein transporters. Nevertheless, further studies are warranted to investigate the relevance of MPA concentrations in peripheral blood mononuclear cells to dosing regimen optimisation. Electronic supplementary material The online version of this article (10.1007/s40268-020-00319-y) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol 2021; 87:1730-1757. [PMID: 33118201 DOI: 10.1111/bcp.14590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mycophenolic acid (MPA) is widely used in paediatric kidney transplant patients and sometimes prescribed for additional indications. Population pharmacokinetic or pharmacodynamic modelling has been frequently used to characterize the fixed, random and covariate effects of MPA in adult patients. However, MPA population pharmacokinetic data in the paediatric population have not been systematically summarized. The objective of this narrative review was to provide an up-to-date critique of currently available paediatric MPA population pharmacokinetic models, with emphases on modelling techniques, pharmacological findings and clinical relevance. PubMed and EMBASE were searched from inception of database to May 2020, where a total of 11 studies have been identified representing kidney transplant (n = 4), liver transplant (n = 1), haematopoietic stem cell transplant (n = 1), idiopathic nephrotic syndrome (n = 2), systemic lupus erythematosus (n = 2), and a combined population consisted of kidney, liver and haematopoietic stem cell transplant patients (n = 1). Critical analyses were provided in the context of MPA absorption, distribution, metabolism, excretion and bioavailability in this paediatric database. Comparisons to adult patients were also provided. With respect to clinical utility, Bayesian estimation models (n = 6) with acceptable accuracy and precision for MPA exposure determination have also been identified and systematically evaluated. Overall, our analyses have identified unique features of MPA clinical pharmacology in the paediatric population, while recognizing several gaps that still warrant further investigations. This review can be used by pharmacologists and clinicians for improving MPA pharmacokinetic-pharmacodynamic modelling and patient care.
Collapse
Affiliation(s)
- Yan Rong
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Heajin Jun
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Muranushi H, Kanda J, Arai Y, Shindo T, Hishizawa M, Yamamoto T, Kondo T, Yamashita K, Matsubara K, Takaori‐Kondo A. Drug monitoring for mycophenolic acid in graft-vs-host disease prophylaxis in cord blood transplantation. Br J Clin Pharmacol 2020; 86:2464-2472. [PMID: 32386102 PMCID: PMC7688537 DOI: 10.1111/bcp.14354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS We performed the retrospective analysis to clarify the significance of drug monitoring for mycophenolic acid (MPA), the active form of mycophenolate mofetil (MMF), in prophylaxis for graft-vs-host disease (GVHD) in cord blood transplantation. METHODS We retrospectively analysed the data of 46 patients who underwent first cord blood transplantation and received GVHD prophylaxis with tacrolimus plus MMF. MPA levels were measured on days 7 and 21, and 24-hour areas under the curve (AUC0-24 ) were estimated. RESULTS The engraftment and 3-year overall survival rates of all patients were 94% and 78%, respectively. The cumulative incidence of sepsis before engraftment was higher in patients with AUC0-24 on day 7 of >60 μg h/mL than in other patients (33 vs 6%, P = .02). The cumulative incidence of grade II-IV acute GVHD was higher in patients with AUC0-24 on day 21 of ≤30 μg h/mL than in other patients (80 vs 50%, P = .04). The cumulative incidence of human herpesvirus 6 reactivation was higher in patients with AUC0-24 on day 21 of ≤48 μg h/mL (median) than in other patients (50 vs 19%, P = .03). CONCLUSION Blood level of MPA was associated with risk of acute GVHD and infection. A prospective trial evaluating the benefit of personalized MMF dosing using MPA levels is needed.
Collapse
Affiliation(s)
- Hiroyuki Muranushi
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Transfusion Medicine and Cell TherapyKyoto University HospitalKyotoJapan
| | - Takero Shindo
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takashi Yamamoto
- Department of Clinical Pharmacology and TherapeuticsKyoto University HospitalKyotoJapan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kohei Yamashita
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and TherapeuticsKyoto University HospitalKyotoJapan
| | - Akifumi Takaori‐Kondo
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Labriffe M, Vaidie J, Monchaud C, Debord J, Turlure P, Girault S, Marquet P, Woillard JB. Population pharmacokinetics and Bayesian estimators for intravenous mycophenolate mofetil in haematopoietic stem cell transplant patients. Br J Clin Pharmacol 2020; 86:1550-1559. [PMID: 32073158 DOI: 10.1111/bcp.14261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/12/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
AIMS Intravenous mycophenolate mofetil (IV MMF), a prodrug of mycophenolic acid (MPA), is used during nonmyeloablative and reduced-intensity conditioning haematopoetic stem cell transplantation (HCT) to improve engraftment and reduce graft-versus-host disease. The aims of this study were to develop population pharmacokinetic models and Bayesian estimators based on limited sampling strategies to allow for individual dose adjustment of intravenous mycophenolate mofetil administered by infusion in haematopoietic stem cell transplant patients. METHODS Sixty-three MPA concentration-time profiles (median [min-max] = 6 [4-7] samples) were collected from 34 HCT recipients transplanted for 14 (1-45) days and administered IV MMF every 8 hours, concomitantly with cyclosporine. The database was split into development (75%) and validation (25%) datasets. Pharmacokinetic models characterized by a single compartment with first-order elimination, combined with two gamma distributions to describe the transformation of MMF into mycophenolic acid, were developed using in parallel nonparametric (Pmetrics) and parametric (ITSIM) approaches. The performances of the models and the derived Bayesian estimators were evaluated in the validation set. RESULTS The best limited sampling strategy led to a bias (min, max), root mean square error between observed and modeled interdose areas under the curve in the validation dataset of -11.72% (-31.08%, 5.00%), 14.9% for ITSIM and -2.21% (-23.40%, 30.01%), 12.4% for Pmetrics with three samples collected at 0.33, 2 and 3 hours post dosing. CONCLUSION Population pharmacokinetic models and Bayesian estimators for IV MMF in HCT have been developed and are now available online (https://pharmaco.chu-limoges.fr) for individual dose adjustment based on the interdose area under the curve.
Collapse
Affiliation(s)
- Marc Labriffe
- Department of Pharmacology and Toxicology, CHU Dupuytren, Limoges, France
| | - Julien Vaidie
- Department of Clinical Haematology and Cell Therapy, CHU Dupuytren, Limoges, France
| | - Caroline Monchaud
- Department of Pharmacology and Toxicology, CHU Dupuytren, Limoges, France.,INSERM UMR-S1248, University of Limoges, Limoges, France.,IPPRITT, University of Limoges, Limoges, France
| | - Jean Debord
- Department of Pharmacology and Toxicology, CHU Dupuytren, Limoges, France.,INSERM UMR-S1248, University of Limoges, Limoges, France.,IPPRITT, University of Limoges, Limoges, France
| | - Pascal Turlure
- Department of Clinical Haematology and Cell Therapy, CHU Dupuytren, Limoges, France
| | - Stephane Girault
- Department of Clinical Haematology and Cell Therapy, CHU Dupuytren, Limoges, France
| | - Pierre Marquet
- Department of Pharmacology and Toxicology, CHU Dupuytren, Limoges, France.,INSERM UMR-S1248, University of Limoges, Limoges, France.,IPPRITT, University of Limoges, Limoges, France
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, CHU Dupuytren, Limoges, France.,INSERM UMR-S1248, University of Limoges, Limoges, France.,IPPRITT, University of Limoges, Limoges, France
| |
Collapse
|
10
|
Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics of Immunosuppressants in Allogeneic Hematopoietic Cell Transplantation: Part II. Clin Pharmacokinet 2016; 55:551-93. [PMID: 26620047 DOI: 10.1007/s40262-015-0340-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Part I of this article included a pertinent review of allogeneic hematopoietic cell transplantation (alloHCT), the role of postgraft immunosuppression in alloHCT, and the pharmacokinetics, pharmacodynamics, and pharmacogenomics of the calcineurin inhibitors and methotrexate. In this article (Part II), we review the pharmacokinetics, pharmacodynamics, and pharmacogenomics of mycophenolic acid (MPA), sirolimus, and the antithymocyte globulins (ATG). We then discuss target concentration intervention (TCI) of these postgraft immunosuppressants in alloHCT patients, with a focus on current evidence for TCI and on how TCI may improve clinical management in these patients. Currently, TCI using trough concentrations is conducted for sirolimus in alloHCT patients. Several studies demonstrate that MPA plasma exposure is associated with clinical outcomes, with an increasing number of alloHCT patients needing TCI of MPA. Compared with MPA, there are fewer pharmacokinetic/dynamic studies of rabbit ATG and horse ATG in alloHCT patients. Future pharmacokinetic/dynamic research of postgraft immunosuppressants should include '-omics'-based tools: pharmacogenomics may be used to gain an improved understanding of the covariates influencing pharmacokinetics as well as proteomics and metabolomics as novel methods to elucidate pharmacodynamic responses.
Collapse
|
11
|
Bemer MJ, Risler LJ, Phillips BR, Wang J, Storer BE, Sandmaier BM, Duan H, Raccor BS, Boeckh MJ, McCune JS. Recipient pretransplant inosine monophosphate dehydrogenase activity in nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20:1544-52. [PMID: 24923537 PMCID: PMC4163086 DOI: 10.1016/j.bbmt.2014.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5'-monophosphate to xanthosine 5'-monophosphate (XMP). We developed a highly sensitive liquid chromatography-mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNCs) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation but not with chronic GVHD, relapse, nonrelapse mortality, or overall mortality. We conclude that quantitation of the recipient's pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient's sensitivity to MMF. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients.
Collapse
Affiliation(s)
- Meagan J Bemer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Linda J Risler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Brian R Phillips
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington
| | - Joanne Wang
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Haichuan Duan
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Brianne S Raccor
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael J Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Medicine, University of Washington, Seattle, Washington
| | - Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington.
| |
Collapse
|
12
|
Li H, Mager DE, Sandmaier BM, Storer BE, Boeckh MJ, Bemer MJ, Phillips BR, Risler LJ, McCune JS. Pharmacokinetic and pharmacodynamic analysis of inosine monophosphate dehydrogenase activity in hematopoietic cell transplantation recipients treated with mycophenolate mofetil. Biol Blood Marrow Transplant 2014; 20:1121-9. [PMID: 24727337 DOI: 10.1016/j.bbmt.2014.03.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
A novel approach to personalizing postgrafting immunosuppression in hematopoietic cell transplantation (HCT) recipients is evaluating inosine monophosphate dehydrogenase (IMPDH) activity as a drug-specific biomarker of mycophenolic acid (MPA)-induced immunosuppression. This prospective study evaluated total MPA, unbound MPA, and total MPA glucuronide plasma concentrations and IMPDH activity in peripheral blood mononuclear cells (PMNCs) at 5 time points after the morning dose of oral mycophenolate mofetil (MMF) on day +21 in 56 nonmyeloablative HCT recipients. Substantial interpatient variability in pharmacokinetics and pharmacodynamics was observed and accurately characterized by the population pharmacokinetic-dynamic model. IMPDH activity decreased with increasing MPA plasma concentration, with maximum inhibition coinciding with maximum MPA concentration in most patients. The overall relationship between MPA concentration and IMPDH activity was described by a direct inhibitory maximum effect model with an IC50 of 3.23 mg/L total MPA and 57.3 ng/mL unbound MPA. The day +21 IMPDH area under the effect curve (AUEC) was associated with cytomegalovirus reactivation, nonrelapse mortality, and overall mortality. In conclusion, a pharmacokinetic-dynamic model was developed that relates plasma MPA concentrations with PMNC IMPDH activity after an MMF dose in HCT recipients. Future studies should validate this model and confirm that day +21 IMPDH AUEC is a predictive biomarker.
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Brenda M Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Schools of Medicine, University of Washington, Seattle, Washington
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael J Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Schools of Medicine, University of Washington, Seattle, Washington
| | - Meagan J Bemer
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Brian R Phillips
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Linda J Risler
- School of Pharmacy, University of Washington, Seattle, Washington
| | - Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Pharmacy, University of Washington, Seattle, Washington.
| |
Collapse
|
13
|
Dong M, Fukuda T, Vinks AA. Optimization of Mycophenolic Acid Therapy Using Clinical Pharmacometrics. Drug Metab Pharmacokinet 2014; 29:4-11. [DOI: 10.2133/dmpk.dmpk-13-rv-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther 2013; 51:711-7. [PMID: 23782584 PMCID: PMC3758456 DOI: 10.5414/cp201884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/25/2022] Open
Abstract
Objective: Mycophenolic acid (MPA) exposure is associated with clinical outcomes in hematopoietic cell transplant (HCT) recipients. Various drug interaction studies, predominantly in healthy volunteers or solid organ transplant recipients, have identified medications which impact MPA pharmacokinetics. Recipients of nonmyeloablative HCT, however, have an increased burden of comorbidities, potentially increasing the number of concomitant medications and potential drug interactions (PDI) affecting MPA exposure. Thus, we sought to be the first to characterize these PDI in nonmyeloablative HCT recipients. Materials and methods: We compiled PDI affecting MPA pharmacokinetics and characterized the prevalence of PDI in nonmyeloablative HCT recipients. A comprehensive literature evaluation of four databases and PubMed was conducted to identify medications with PDI affecting MPA pharmacokinetics. Subsequently, a retrospective medication review was conducted to characterize the cumulative PDI burden, defined as the number of PDI for an individual patient over the first 21 days after allogeneic graft infusion, in 84 nonmyeloablative HCT recipients. Results: Of the 187 concomitant medications, 11 (5.9%) had a PDI affecting MPA pharmacokinetics. 87% of 84 patients had one PDI, with a median cumulative PDI burden of 2 (range 0 – 4). The most common PDI, in descending order, were cyclosporine, omeprazole and pantoprazole. Conclusion: Only a minority of medications (5.9%) have a PDI affecting MPA pharmacokinetics. However, the majority of nonmyeloablative HCT recipients had a PDI, with cyclosporine and the proton pump inhibitors being the most common. A better understanding of PDI and their management should lead to safer medication regimens for nonmyeloablative HCT recipients.
Collapse
|
15
|
Bemer MJ, Sorror M, Sandmaier BM, O’Donnell PV, McCune JS. A pilot pharmacologic biomarker study in HLA-haploidentical hematopoietic cell transplant recipients. Cancer Chemother Pharmacol 2013; 72:607-18. [PMID: 23907443 PMCID: PMC3786586 DOI: 10.1007/s00280-013-2232-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Eleven patients diagnosed with various hematologic malignancies receiving an HLA-haploidentical hematopoietic cell transplant (HCT) participated in an ancillary biomarker trial. The goal of the trial was to evaluate potential pharmacologic biomarkers pertinent to the conditioning regimen [fludarabine monophosphate (fludarabine) and cyclophosphamide (CY)] or postgrafting immunosuppression [CY and mycophenolate mofetil (MMF)] in these patients. METHODS We characterized the interpatient variability of nine pharmacologic biomarkers. The biomarkers evaluated were relevant to fludarabine (i.e., area under the curve (AUC) of 2-fluoro-ara-A or F-ara-A), CY (i.e., AUCs of CY and four of its metabolites), and MMF (i.e., total mycophenolic acid (MPA) AUC, unbound MPA AUC, and inosine monophosphate dehydrogenase (IMPDH) activity). RESULTS Interpatient variability in the pharmacologic biomarkers was high. Among those related to HCT conditioning, the interpatient variability ranged from 1.5-fold (CY AUC) to 4.0-fold (AUC of carboxyethylphosphoramide mustard, a metabolite of CY). Among biomarkers evaluated as part of postgrafting immunosuppression, the interpatient variability ranged from 1.7-fold (CY AUC) to 4.9-fold (IMPDH area under the effect curve). There was a moderate correlation (R (2) = 0.441) of within-patient 4-hydroxycyclophosphamide formation clearance. CONCLUSIONS Considerable interpatient variability exists in the pharmacokinetic and drug-specific biomarkers potentially relevant to clinical outcomes in HLA-haploidentical HCT recipients. Pharmacodynamic studies are warranted to optimize the conditioning regimen and postgrafting immunosuppression administered to HLA-haploidentical HCT recipients.
Collapse
Affiliation(s)
| | - Mohamed Sorror
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Brenda M. Sandmaier
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Paul V. O’Donnell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Jeannine S. McCune
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Pharmacy, Seattle, WA
| |
Collapse
|
16
|
McDermott CL, Sandmaier BM, Storer B, Li H, Mager DE, Boeckh MJ, Bemer MJ, Knutson J, McCune JS. Nonrelapse mortality and mycophenolic acid exposure in nonmyeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant 2013; 19:1159-66. [PMID: 23660171 PMCID: PMC3720781 DOI: 10.1016/j.bbmt.2013.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/30/2013] [Indexed: 01/25/2023]
Abstract
We evaluated the pharmacodynamic relationships between mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), and outcomes in 308 patients after nonmyeloablative hematopoietic cell transplantation. Patients were conditioned with total body irradiation ± fludarabine, received grafts from HLA-matched related (n = 132) or unrelated (n = 176) donors, and received postgrafting immunosuppression with MMF and a calcineurin inhibitor. Total and unbound MPA pharmacokinetics were determined to day 25; maximum a posteriori Bayesian estimators were used to estimate total MPA concentration at steady state (Css). Rejection occurred in 9 patients, 8 of whom had a total MPA Css less than 3 μg/mL. In patients receiving a related donor graft, MPA Css was not associated with clinical outcomes. In patients receiving an unrelated donor graft, low total MPA Css was associated with increased grades III to IV acute graft-versus-host disease and increased nonrelapse mortality but not with day 28 T cell chimerism, disease relapse, cytomegalovirus reactivation, or overall survival. We conclude that higher initial oral MMF doses and subsequent targeting of total MPA Css to greater than 2.96 μg/mL could lower grades III to IV acute graft-versus-host disease and nonrelapse mortality in patients receiving an unrelated donor graft.
Collapse
Affiliation(s)
| | - Brenda M. Sandmaier
- School of Medicine, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barry Storer
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hong Li
- University of Buffalo, Buffalo, NY, USA
| | | | - Michael J. Boeckh
- School of Medicine, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Jeannine S. McCune
- School of Pharmacy, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
17
|
Li H, Mager DE, Sandmaier BM, Maloney DG, Bemer MJ, McCune JS. Population pharmacokinetics and dose optimization of mycophenolic acid in HCT recipients receiving oral mycophenolate mofetil. J Clin Pharmacol 2013; 53:393-402. [PMID: 23382105 DOI: 10.1002/jcph.14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/30/2012] [Indexed: 11/12/2022]
Abstract
We sought to create a population pharmacokinetic model for total mycophenolic acid (MPA), to study the effects of different covariates on MPA pharmacokinetics, to create a limited sampling schedule (LSS) to characterize MPA exposure (i.e., area under the curve or AUC) with maximum a posteriori Bayesian estimation, and to simulate an optimized dosing scheme for allogeneic hematopoietic cell transplantation (HCT) recipients. Four thousand four hundred ninety-six MPA concentration-time points from 408 HCT recipients were analyzed retrospectively using a nonlinear mixed effects modeling approach. MPA pharmacokinetics was characterized with a two-compartment model with first-order elimination and a time-lagged first-order absorption process. Concomitant cyclosporine and serum albumin were significant covariates. The median MPA clearance (CL) and volume of the central compartment were 24.2 L/hour and 36.4 L, respectively, for a 70 kg patient receiving tacrolimus with a serum albumin of 3.4 g/dL. Dosing simulations indicated that higher oral MMF doses are needed with concomitant cyclosporine, which increases MPA CL by 33.8%. The optimal LSS was immediately before and at 0.25 hours, 1.25 hours, 2 hours, and 4 hours after oral mycophenolate mofetil administration. MPA AUC in an individual HCT recipient can be accurately estimated using a five-sample LSS and maximum a posteriori Bayesian estimation.
Collapse
Affiliation(s)
- H Li
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|