1
|
Karjalainen VP, Herrera Millar VR, Modina S, Peretti GM, Pallaoro M, Elkhouly K, Saarakkala S, Mobasheri A, Di Giancamillo A, Finnilä MAJ. Age and anatomical region-related differences in vascularization of the porcine meniscus using microcomputed tomography imaging. J Orthop Res 2024; 42:2095-2105. [PMID: 38685793 DOI: 10.1002/jor.25862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Meniscal lesions in vascularized regions are known to regenerate while lack of vascular supply leads to poor healing. Here, we developed and validated a novel methodology for three-dimensional structural analysis of meniscal vascular structures with high-resolution microcomputed tomography (µCT). We collected porcine medial menisci from 10 neonatal (not-developed meniscus, n-) and 10 adults (fully developed meniscus, a-). The menisci were cut into anatomical regions (anterior horn (n-AH and a-AH), central body (n-CB and a-CB), and posterior horn (n-PH and a-PH). Specimens were cut in half, fixed, and one specimen underwent critical point drying and µCT imaging, while other specimen underwent immunohistochemistry and vascularity biomarker CD31 staining for validation of µCT. Parameters describing vascular structures were calculated from µCT. The vascular network in neonatal spread throughout meniscus, while in adult was limited to a few vessels in outer region, mostly on femoral side. n-AH, n-CB, and n-PH had 20, 17, and 11 times greater vascular volume fraction than adult, respectively. Moreover, thickness of blood vessels, in three regions, was six times higher in adults than in neonatal. a-PH appeared to have higher vascular fraction, longer and thicker blood vessels than both a-AH and a-CB. Overall, neonatal regions had a higher number of blood vessels, more branching, and higher tortuosity compared to adult regions. For the first time, critical point drying-based µCT imaging allowed detailed three-dimensional visualization and quantitative analysis of vascularized meniscal structures. We showed more vascularity in neonatal menisci, while adult menisci had fewer and thicker vascularity especially limited to the femoral surface.
Collapse
Affiliation(s)
- Ville-Pauli Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Silvia Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Giuseppe M Peretti
- Tissue Engineering and Biomaterials Lab, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Khaled Elkhouly
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Yan WT, Wang JS, Guo SY, Zhu JH, Zhang ZZ. Isolation and Characterization of Meniscus Progenitor Cells From Rat, Rabbit, Goat, and Human. Cartilage 2024:19476035241266579. [PMID: 39058020 DOI: 10.1177/19476035241266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Meniscus progenitor cells (MPCs) have been identified as promising candidates for meniscus regeneration, and it is crucial for us to understand meniscus injury repair mechanism at the cellular level. In this study, we investigate the biological properties of MPCs isolated from different species using the differential adhesion to fibronectin (DAF) technique. We aim to characterize MPCs in different species and evaluate the feasibility of these models for future meniscal investigation. DESIGN MPCs were isolated from freshly digested meniscus from rat, rabbit, goat, and human cells using DAF. Biological properties, including proliferation, colony-forming, multilineage differentiation, and migration abilities, were compared in MPCs and their corresponding mixed meniscus cell (MCs) population in each species. RESULTS MPCs were successfully isolated by the DAF technique in all species. Rat MPCs appeared cobblestone-like, rabbit MPCs were more polygonal, goat MPCs had a spindle-shaped morphology, human MPCs appear more fibroblast-like. Compared with MCs, isolated MPCs showed progenitor cell characteristics, including multilineage differentiation ability and MSC (mesenchymal stem cells) markers (CD166, CD90, CD44, Stro-1) expression. They also highly expressed fibronectin receptors CD49e and CD49c. MPCs also showed greater proliferation capacity and retained colony-forming ability. Except for goat MPCs showed greater migration abilities than MCs, no significant differences were found in the migration ability between MPCs and MCs in other species. CONCLUSION Our study shows that DAF is an effective method for isolating MPCs from rat, rabbit, goat, and human. MPCs in these species demonstrated similar characteristics, including greater proliferation ability and better chondrogenic potential.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shu-Yang Guo
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jia-Hao Zhu
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
3
|
Mazy D, Wang J, Dodin P, Lu D, Moldovan F, Nault ML. Emerging biologic augmentation strategies for meniscal repair: a systematic review. BMC Musculoskelet Disord 2024; 25:541. [PMID: 39003467 PMCID: PMC11245777 DOI: 10.1186/s12891-024-07644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Meniscal repair should be the gold standard. However, the meniscus is poorly vascularized and even an excellent meniscus repair may not heal. Therefore, numerous studies and systematic reviews have been carried out on platelet-rich plasma (PRP), mesenchymal stem cells (MSCs) and fibrin clots for meniscal augmentation, but the results remain controversial. This systematic review aimed to identify other emerging strategies for meniscal repair augmentation and to assess whether there are different avenues to explore in this field. METHODS A systematic literature review was conducted in August 2022. PubMed, Ovid MEDLINE(R) all, Ovid All EBM Reviews, Ovid Embase and ISI Web of Science databases were searched. In Vivo animal and human studies concerning the biological augmentation of meniscal lesions by factors other than PRP, MSCs or fibrin clots were included. Cartilage-only studies, previous systematic reviews and expert opinions were excluded. All data were analyzed by two independent reviewers. RESULTS Of 8965 studies only nineteen studies covering 12 different factors met the inclusion criteria. Eight studies investigated the use of growth factors for meniscal biologic augmentation, such as vascular endothelial growth factor or bone morphogenic protein 7. Five studies reported on cell therapy and six studies focused on other factors such as hyaluronic acid, simvastatin or atelocollagen. Most studies (n = 18) were performed on animal models with gross observation and histological evaluation as outcomes. Polymerase chain reaction and immunohistochemistry were also common. Biomechanical testing was the object of only two studies. CONCLUSIONS Although several augmentation strategies have been attempted, none has yielded conclusive results, testifying to a lack of understanding with regard to meniscal healing. More research is needed to better understand the pathways that regulate meniscus repair and how to act positively on them. LEVEL OF EVIDENCE Systematic review of case-control and animal laboratory studies.
Collapse
Affiliation(s)
- David Mazy
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Jessica Wang
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Philippe Dodin
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Daisy Lu
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Florina Moldovan
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Marie-Lyne Nault
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada.
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
- CHU Sainte-Justine Azrieli Research Center, Montréal, 7905-3175 Côte Ste-Catherine, H3T 1J4, QC, Canada.
- Department of Orthopedic Surgery, CIUSSS Hôpital du Sacré-Cœur de Montréal (HSCM), 5400, Boul. Gouin Ouest, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
4
|
Bandyopadhyay A, Ghibhela B, Mandal BB. Current advances in engineering meniscal tissues: insights into 3D printing, injectable hydrogels and physical stimulation based strategies. Biofabrication 2024; 16:022006. [PMID: 38277686 DOI: 10.1088/1758-5090/ad22f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The knee meniscus is the cushioning fibro-cartilage tissue present in between the femoral condyles and tibial plateau of the knee joint. It is largely avascular in nature and suffers from a wide range of tears and injuries caused by accidents, trauma, active lifestyle of the populace and old age of individuals. Healing of the meniscus is especially difficult due to its avascularity and hence requires invasive arthroscopic approaches such as surgical resection, suturing or implantation. Though various tissue engineering approaches are proposed for the treatment of meniscus tears, three-dimensional (3D) printing/bioprinting, injectable hydrogels and physical stimulation involving modalities are gaining forefront in the past decade. A plethora of new printing approaches such as direct light photopolymerization and volumetric printing, injectable biomaterials loaded with growth factors and physical stimulation such as low-intensity ultrasound approaches are being added to the treatment portfolio along with the contemporary tear mitigation measures. This review discusses on the necessary design considerations, approaches for 3D modeling and design practices for meniscal tear treatments within the scope of tissue engineering and regeneration. Also, the suitable materials, cell sources, growth factors, fixation and lubrication strategies, mechanical stimulation approaches, 3D printing strategies and injectable hydrogels for meniscal tear management have been elaborated. We have also summarized potential technologies and the potential framework that could be the herald of the future of meniscus tissue engineering and repair approaches.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Gonzalez-Leon EA, Hu JC, Athanasiou KA. Yucatan Minipig Knee Meniscus Regional Biomechanics and Biochemical Structure Support its Suitability as a Large Animal Model for Translational Research. Front Bioeng Biotechnol 2022; 10:844416. [PMID: 35265605 PMCID: PMC8899164 DOI: 10.3389/fbioe.2022.844416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Knee meniscus injuries are the most frequent causes of orthopedic surgical procedures in the U.S., motivating tissue engineering attempts and the need for suitable animal models. Despite extensive use in cardiovascular research and the existence of characterization data for the menisci of farm pigs, the farm pig may not be a desirable preclinical model for the meniscus due to rapid weight gain. Minipigs are conducive to in vivo experiments due to their slower growth rate than farm pigs and similarity in weight to humans. However, characterization of minipig knee menisci is lacking. The objective of this study was to extensively characterize structural and functional properties within different regions of both medial and lateral Yucatan minipig knee menisci to inform this model’s suitability as a preclinical model for meniscal therapies. Menisci measured 23.2–24.8 mm in anteroposterior length (33–40 mm for human), 7.7–11.4 mm in width (8.3–14.8 mm for human), and 6.4–8.4 mm in peripheral height (5–7 mm for human). Per wet weight, biochemical evaluation revealed 23.9–31.3% collagen (COL; 22% for human) and 1.20–2.57% glycosaminoglycans (GAG; 0.8% for human). Also, per dry weight, pyridinoline crosslinks (PYR) were 0.12–0.16% (0.12% for human) and, when normalized to collagen content, reached as high as 1.45–1.96 ng/µg. Biomechanical testing revealed circumferential Young’s modulus of 78.4–116.2 MPa (100–300 MPa for human), circumferential ultimate tensile strength (UTS) of 18.2–25.9 MPa (12–18 MPa for human), radial Young’s modulus of 2.5–10.9 MPa (10–30 MPa for human), radial UTS of 2.5–4.2 MPa (1–4 MPa for human), aggregate modulus of 157–287 kPa (100–150 kPa for human), and shear modulus of 91–147 kPa (120 kPa for human). Anisotropy indices ranged from 11.2–49.4 and 6.3–11.2 for tensile stiffness and strength (approximately 10 for human), respectively. Regional differences in mechanical and biochemical properties within the minipig medial meniscus were observed; specifically, GAG, PYR, PYR/COL, radial stiffness, and Young’s modulus anisotropy varied by region. The posterior region of the medial meniscus exhibited the lowest radial stiffness, which is also seen in humans and corresponds to the most prevalent location for meniscal lesions. Overall, similarities between minipig and human menisci support the use of minipigs for meniscus translational research.
Collapse
|
7
|
The 50 Most Cited Articles on Meniscus Injuries and Surgery from 2000 to 2019 Focus on Arthroscopic Repair or Removal, Originate from Institutions Within the United States and Were Published Before 2010. Arthrosc Sports Med Rehabil 2021; 3:e2103-e2116. [PMID: 34977668 PMCID: PMC8689275 DOI: 10.1016/j.asmr.2021.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose To identify the 50 most cited original articles on meniscus injury and surgery from 2000 to 2019, and to perform a bibliometric analysis of the identified articles. Methods A Clarivate Web of Science search, completed in June 2020, generated a list of the most cited articles related to meniscus research. Articles were sorted by number of times cited, and review articles or those unrelated to the meniscus were removed. Articles were classified as basic science or assigned the appropriate level of evidence. Extracted data included title, authors, journal, year of publication, country/institution of origin, total number of citations, and number of citations per year. Results The final list of 50 included articles with a range of 106 to 490 citations and a mean of 162.34 total or 11.91 citations per year. The most cited articles appeared in 8 of the most influential journals in the field per the Journal Citation Index. Twenty-nine (58%) originated from institutions within the United States, and only 13 (26%) were published in 2010 or later. Overall, 25 (50%) were classified as therapeutic, only 5 (10%) were therapeutic randomized controlled studies, and 17 (34%) were basic science. “Arthroscopic meniscal repair or meniscectomy” appeared most frequently, with 16 (32%) falling into this subclassification. Conclusion This study of the most cited meniscus articles showed a strong predominance for therapeutic studies, studies generated and published within the United States, and studies focused on topics of arthroscopic repair or removal. Overwhelmingly, included articles were published before 2010, affirming the criticism that bibliometric analysis favors older articles. Clinical relevance This study provides information about which articles are driving the field relating to meniscus injuries and meniscus surgery in the last two decades.
Collapse
|
8
|
Veronesi F, Di Matteo B, Vitale N, Filardo G, Visani A, Kon E, Fini M. Biosynthetic scaffolds for partial meniscal loss: A systematic review from animal models to clinical practice. Bioact Mater 2021; 6:3782-3800. [PMID: 33898878 PMCID: PMC8044909 DOI: 10.1016/j.bioactmat.2021.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute or degenerative meniscus tears are the most common knee lesions. Meniscectomy provides symptomatic relief and functional recovery only in the short- to mid-term follow-up but significantly increases the risk of osteoarthritis. For this reason, preserving the meniscus is key, although it remains a challenge. Allograft transplants present many disadvantages, so during the last 20 years preclinical and clinical research focused on developing and investigating meniscal scaffolds. The aim of this systematic review was to collect and evaluate all the available evidence on biosynthetic scaffolds for meniscus regeneration both in vivo and in clinical studies. Three databases were searched: 46 in vivo preclinical studies and 30 clinical ones were found. Sixteen natural, 15 synthetic, and 15 hybrid scaffolds were studied in vivo. Among them, only 2 were translated into clinic: the Collagen Meniscus Implant, used in 11 studies, and the polyurethane-based scaffold Actifit®, applied in 19 studies. Although positive outcomes were described in the short- to mid-term, the number of concurrent procedures and the lack of randomized trials are the major limitations of the available clinical literature. Few in vivo studies also combined the use of cells or growth factors, but these augmentation strategies have not been applied in the clinical practice yet. Current solutions offer a significant but incomplete clinical improvement, and the regeneration potential is still unsatisfactory. Building upon the overall positive results of these "old" technologies to address partial meniscal loss, further innovation is urgently needed in this field to provide patients better joint sparing treatment options.
Collapse
Affiliation(s)
- F. Veronesi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - B. Di Matteo
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- First Moscow State Medical University - Sechenov University, Bol'shaya Pirogovskaya Ulitsa, 19c1, 119146, Moscow, Russia
| | - N.D. Vitale
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - G. Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - A. Visani
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E. Kon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - M. Fini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
9
|
Yun HW, Song BR, Shin DI, Yin XY, Truong MD, Noh S, Jin YJ, Kwon HJ, Min BH, Park DY. Fabrication of decellularized meniscus extracellular matrix according to inner cartilaginous, middle transitional, and outer fibrous zones result in zone-specific protein expression useful for precise replication of meniscus zones. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112312. [PMID: 34474863 DOI: 10.1016/j.msec.2021.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Meniscus is a fibrocartilage composite tissue with three different microstructual zones, inner fibrocartilage, middle transitional, and outer fibrous zone. We hypothesized that decellularized meniscus extracellular matrix (DMECM) would have different characteristics according to zone of origin. We aimed to compare zone-specific DMECM in terms of biochemical characteristics and cellular interactions associated with tissue engineering. Micronized DMECM was fabricated from porcine meniscus divided into three microstructural zones. Characterization of DMECM was done by biochemical and proteomic analysis. Inner DMECM showed the highest glycosaminoglycan content, while middle DMECM showed the highest collagen content among groups. Proteomic analysis showed significant differences among DMECM groups. Inner DMECM showed better adhesion and migration potential to meniscus cells compared to other groups. DMECM resulted in expression of zone-specific differentiation markers when co-cultured with synovial mesenchymal stem cells (SMSCs). SMSCs combined with inner DMECM showed the highest glycosaminoglycan in vivo. Outer DMECM constructs, on the other hand, showed more fibrous tissue features, while middle DMECM constructs showed both inner and outer zone characteristics. In conclusion, DMECM showed different characteristics according to microstructural zones, and such material may be useful for zone-specific tissue engineering of meniscus.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Bo Ram Song
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Young Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Li H, Li P, Yang Z, Gao C, Fu L, Liao Z, Zhao T, Cao F, Chen W, Peng Y, Yuan Z, Sui X, Liu S, Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Front Cell Dev Biol 2021; 9:661802. [PMID: 34327197 PMCID: PMC8313827 DOI: 10.3389/fcell.2021.661802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications in vivo and in vitro to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
Collapse
Affiliation(s)
- Hao Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pinxue Li
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Cangjian Gao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Liwei Fu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhiyao Liao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Tianyuan Zhao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Fuyang Cao
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wei Chen
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Sui
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Takata Y, Nakase J, Shimozaki K, Asai K, Tsuchiya H. Autologous Adipose-Derived Stem Cell Sheet Has Meniscus Regeneration-Promoting Effects in a Rabbit Model. Arthroscopy 2020; 36:2698-2707. [PMID: 32554078 DOI: 10.1016/j.arthro.2020.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE This study investigated meniscal regeneration-promoting effects of adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect models. METHODS ADSCs were extracted from the interscapular fat pad adipose tissue of 42 mature female Japanese white rabbits. Once cells reached confluence at the third passage, the culture medium was supplemented with ascorbic acid. Within a week, the cells in culture formed removable sheets, which were used as ADSC sheets. Cell death (CD) sheets were created by killing ADSCs by freezing to investigate the need for viable ADSCs in ADSC sheets. The anterior half of the medial meniscus from the anterior root to the posterior edge of the medial collateral ligament was removed from both limbs. An autologous ADSC or CD sheet was transplanted to one knee (ADSC sheet or CD sheet group). The contralateral limb was closed without transplantation following meniscal removal (control group). Rabbits were euthanized 4 and 12 weeks after transplantation to harvest the entire medial menisci. The meniscal tissue area, transverse diameter on the inside of the medial collateral ligament, and histologic score were compared between the 3 groups. RESULTS The area and transverse diameter of regenerated tissues were larger in the ADSC sheet group than in the control group at 4 and 12 weeks. Further, the histologic score in the ADSC sheet group (8) was significantly greater than that in the control group (4.5) at 4 weeks (P = .02) and greater than that in the CD sheet group (9) (ADSC = 12.5, P = .009) and control group (6) (ADSC = 12.5, P = .0003) at 12 weeks. CONCLUSIONS Transplantation of the ADSC sheet into the meniscal defect increased the volume and improved the histologic score of the regenerated meniscal tissue. ADSC sheets may have meniscal regeneration-promoting effects in a rabbit model with meniscal defects. CLINICAL RELEVANCE ADSC sheets do not require a scaffold for implantation in the rabbit model, and this evidence suggests that some tissue regeneration occurs at the site of a surgically created meniscal defect.
Collapse
Affiliation(s)
- Yasushi Takata
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan.
| | - Kengo Shimozaki
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Janarthanan G, Pillai MM, Kulasekaran SS, Rajendran S, Bhattacharyya A. Engineered knee meniscus construct: understanding the structure and impact of functionalization in 3D environment. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Rothrauff BB, Sasaki H, Kihara S, Overholt KJ, Gottardi R, Lin H, Fu FH, Tuan RS, Alexander PG. Point-of-Care Procedure for Enhancement of Meniscal Healing in a Goat Model Utilizing Infrapatellar Fat Pad-Derived Stromal Vascular Fraction Cells Seeded in Photocrosslinkable Hydrogel. Am J Sports Med 2019; 47:3396-3405. [PMID: 31644307 DOI: 10.1177/0363546519880468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Large radial tears of the meniscus involving the avascular region can compromise meniscal function and result in poor healing and subsequent osteochondral degeneration. Augmentation of surgical repairs with adipose-derived stromal vascular fraction (SVF), which contains mesenchymal stromal cells, may improve meniscal healing and preserve function (ie, chondroprotection). PURPOSES (1) To develop a goat model of a radial meniscal tear with resulting osteoarthritis and (2) to explore the efficacy of a 1-step procedure utilizing infrapatellar fat pad-derived SVF cells seeded in a photocrosslinkable hydrogel to enhance meniscal healing and mitigate osteochondral degeneration. STUDY DESIGN Controlled laboratory study. METHODS A full-thickness radial tear spanning 90% of the medial meniscal width was made at the junction of the anterior and middle bodies of the goat stifle joint. Tears received 1 of 3 interventions (n = 4 per group): untreated, repair, or repair augmented with photocrosslinkable methacrylated gelatin hydrogel containing 2.0 × 106 SVF cells/mL and 2.0 µg/mL of transforming growth factor β3. The contralateral (left) joint served as a healthy control. At 6 months, meniscal healing and joint health were evaluated by magnetic resonance imaging (MRI) and assessed by histological and macroscopic scoring. The Whole-Organ Magnetic Resonance Imaging Score and the presence of a residual tear, as evaluated with T2 MRI sequences, were determined by a single blinded orthopaedic surgeon. RESULTS When compared with tears left untreated or repaired with suture alone, augmented repairs demonstrated increased tissue formation in the meniscal tear site, as seen on MRI and macroscopically. Likewise, the neotissue of augmented repairs possessed a histological appearance more similar, although still inferior, to healthy meniscus. Osteochondral degeneration in the medial compartment, as evaluated by the Whole-Organ Magnetic Resonance Imaging Score and Inoue (macroscopic) scale, revealed increased degeneration in the untreated and repair groups, which was mitigated in the augmented repair group. Histological evaluation with a modified Mankin score showed a similar trend. In all measures of osteochondral degeneration, the augmented repair group did not differ significantly from the uninjured control. CONCLUSION A radial tear spanning 90% of the medial meniscal width in a goat stifle joint showed poor healing potential and resulted in osteochondral degeneration by 6 months, even if suture repair was performed. Augmentation of the repair with a photocrosslinkable hydrogel containing transforming growth factor β3 and SVF cells, isolated intraoperatively by rapid enzymatic digestion, improved meniscal healing and mitigated osteoarthritic changes. CLINICAL RELEVANCE Repair augmentation with an SVF cell-seeded hydrogel may support successful repair of meniscal tears previously considered irreparable.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Sasaki
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinsuke Kihara
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kalon J Overholt
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Freddie H Fu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Bandyopadhyay A, Mandal BB. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation. Biofabrication 2019; 12:015003. [PMID: 31480031 DOI: 10.1088/1758-5090/ab40fa] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Employing tissue engineering principles aided by three-dimensional (3D) printing strategies to fabricate meniscus tissue constructs could help patients with meniscus injury regain mobility, improve pain management and reduce the risk of development of knee osteoarthritis. Here we report a 3D printed meniscus scaffold that biomimics the internal and bulk architecture of the menisci. A shear-thinning novel silk fibroin-gelatin-based bioink with high print fidelity was optimized for the fabrication of scaffolds to serve as potential meniscus implants. Physicochemical characterization of the fabricated scaffolds shows optimum swelling, degradation and mechanical properties. Further, the scaffolds were seeded with meniscus fibrochondrocytes to validate their bioactivity. Fibrochondrocytes seeded on the scaffolds maintained their phenotype and proliferation, and enhanced glycosaminoglycan and total collagen synthesis was observed. Gene expression profile, biochemical quantification and histological studies confirmed the ability of the scaffolds to form meniscus-like tissue constructs. The scaffolds were found to possess amenable immunocompatibility in vitro as well as in vivo. Due to their excellent biological and physicochemical characteristics, these 3D printed scaffolds may be fine-tuned into viable alternatives to the present clinical treatment approaches to meniscus repair.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
15
|
Microporous acellular extracellular matrix combined with adipose-derived stem cell sheets as a promising tissue patch promoting articular cartilage regeneration and interface integration. Cytotherapy 2019; 21:856-869. [DOI: 10.1016/j.jcyt.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
|
16
|
Biosynthesis of Silver nanoparticles using Bauhinia acuminate flower extract and their effect to promote osteogenesis of MSCs and improve meniscus injury healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111536. [DOI: 10.1016/j.jphotobiol.2019.111536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
|
17
|
Pérez-Castrillo S, González-Fernández ML, López-González ME, Villar-Suárez V. Effect of ascorbic and chondrogenic derived decellularized extracellular matrix from mesenchymal stem cells on their proliferation, viability and differentiation. Ann Anat 2018; 220:60-69. [PMID: 30114449 DOI: 10.1016/j.aanat.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The development and application of biomaterials to promote stem cell proliferation and differentiation has undergone major expansion over the last few years. Decellularized stem cell matrix (DSCMs) represent bioactive and biocompatible materials which achieve similar characteristics of native extracellular matrix. DSCMs have given promising outcomes in generating novel cell culture substrates mimicking specific niche microenvironments in tissue engineering. AIMS This research aims at producing two different DSCMs obtained from adipose derived mesenchymal stem cells and bone marrow mesenchymal stem cells, characterize them and evaluate the DSCMs bioactivity on mesenchymal stem cells. METHODS DSCMs were produced using ascorbic or chondrogenic medium, which were then used as a scaffold for adipose derived mesenchymal stem cells and bone marrow mesenchymal stem cells, respectively. The biological characteristics of both types of DSCMs, including cell attachment, morphology, proliferation, viability, and chondrogenic and osteogenic differentiation were evaluated and compared. RESULTS Differences between ascorbic derived-DSCMs and chondrogenic derived DSCMs were found. Chondrogenic derived-DSCMs remained compact and stronger during extraction and this made their handling easier. Ascorbic derived-DSCMs showed a different protein composition to chondrogenic-DSCMs. Bioactive characteristics analyzed were different depending on the cellular origin of DSCM and the method used to produce them. CONCLUSIONS The DSCMs obtained in this work constitutes favorable structure- and growth factors providing a microenvironment which is very similar to that of native ECM, which results in enhanced biological potential of the MSCs and responsiveness to the induction of differentiation. We found differences between ascorbic derived-DSCMs and chondrogenic derived DSCMs. Our results suggest that the cell source used to produce DSCMs is highly related to the bioactive characteristics of DSCMs.
Collapse
Affiliation(s)
- S Pérez-Castrillo
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - M L González-Fernández
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - M E López-González
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - V Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain; Institute of Biomedicine (IBIOMED), University of León-Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
18
|
Sasaki H, Rothrauff BB, Alexander PG, Lin H, Gottardi R, Fu FH, Tuan RS. In Vitro Repair of Meniscal Radial Tear With Hydrogels Seeded With Adipose Stem Cells and TGF-β3. Am J Sports Med 2018; 46:2402-2413. [PMID: 30001494 DOI: 10.1177/0363546518782973] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Radial tears of the meniscus are a common knee injury, frequently resulting in osteoarthritis. To date, there are no established, effective treatments for radial tears. Adipose-derived stem cells (ASCs) may be an attractive cell source for meniscal regeneration because they can be quickly isolated in large number and are capable of undergoing induced fibrochondrogenic differentiation mediated by transforming growth factor β3 (TGF-β3). However, the use of ASCs for meniscal repair is largely unexplored. HYPOTHESIS ASC-seeded hydrogels with preloaded TGF-β3 will improve meniscal healing of radial tears, as modeled in an explant model. STUDY DESIGN Controlled laboratory study. METHODS With an institutional review board-exempted protocol, human ASCs were isolated from the infrapatellar fat pads of 3 donors, obtained after total knee replacement, and characterized. ASCs were encapsulated in photocrosslinkable methacrylated gelatin hydrogels to form 3-dimensional constructs, which were placed into tissue culture. The effect of TGF-β3-whether preloaded into the hydrogel or added as a soluble medium supplement-on matrix-sulfated proteoglycan deposition in the constructs was evaluated. A meniscal explant culture model was used to simulate meniscal repair. Cylindrical-shaped explants were excised from the inner avascular region of adult bovine menisci, and a radial tear was modeled by cutting perpendicular to the meniscal main fibers to the length of the radius. Six combinations of hydrogels-namely, acellular and ASC-seeded hydrogels supplemented with preloaded TGF-β3 (2 µg/mL) or soluble TGF-β3 (10 ng/mL) and without supplement-were injected into the radial tear and stabilized by photocrosslinking with visible light. At 4 and 8 weeks of culture, healing was assessed through histology, immunofluorescence staining, and mechanical testing. RESULTS ASCs isolated from the 3 donors exhibited colony-forming and multilineage differentiation potential. Hydrogels preloaded with TGF-β3 and those cultured in soluble TGF-β3 showed robust matrix-sulfated proteoglycan deposition. ASC-seeded hydrogels promoted superior healing as compared with acellular hydrogels, with preloaded or soluble TGF-β3 further improving histological scores and mechanical properties. CONCLUSION These findings demonstrated that ASC-seeded hydrogels preloaded with TGF-β3 enhanced healing of radial meniscal tears in an in vitro meniscal repair model. CLINICAL RELEVANCE Injection delivery of ASCs in a TGF-β3-preloaded photocrosslinkable hydrogel represents a novel candidate strategy to repair meniscal radial tears and minimize further osteoarthritic joint degeneration.
Collapse
Affiliation(s)
| | | | | | - Hang Lin
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Freddie H Fu
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells. Stem Cells Int 2018; 2018:5310471. [PMID: 30123286 PMCID: PMC6079391 DOI: 10.1155/2018/5310471] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
The meniscus plays a vital role in protecting the articular cartilage of the knee joint. The inner two-thirds of the meniscus are avascular, and injuries to this region often fail to heal without intervention. The use of tissue engineering and regenerative medicine techniques may offer novel and effective approaches to repairing meniscal injuries. Meniscal tissue engineering and regenerative medicine typically use one of two techniques, cell-based or cell-free. While numerous cell-based strategies have been applied to repair and regenerate meniscal defects, these techniques possess certain limitations including cellular contamination and an increased risk of disease transmission. Cell-free strategies attempt to repair and regenerate the injured tissues by recruiting endogenous stem/progenitor cells. Cell-free strategies avoid several of the disadvantages of cell-based techniques and, therefore, may have a wider clinical application. This review first compares cell-based to cell-free techniques. Next, it summarizes potential sources for endogenous stem/progenitor cells. Finally, it discusses important recruitment factors for meniscal repair and regeneration. In conclusion, cell-free techniques, which focus on the recruitment of endogenous stem and progenitor cells, are growing in efficacy and may play a critical role in the future of meniscal repair and regeneration.
Collapse
|
20
|
Grogan SP, Duffy SF, Pauli C, Lotz MK, D’Lima DD. Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 2018; 36:1947-1958. [PMID: 29411909 PMCID: PMC6326361 DOI: 10.1002/jor.23864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Avascular (Avas) meniscus regeneration remains a challenge, which is partly a consequence of our limited knowledge of the cells that maintain this tissue region. In this study, we utilized microarrays to characterize gene expression profiles of intact human Avas meniscus tissue and of cells following culture expansion. Using these data, we examined various 3D culture conditions to redifferentiate Avas cells toward the tissue phenotype. RNA was isolated from either the tissue directly or following cell isolation and 2 weeks in monolayer culture. RNA was hybridized on human genome arrays. Differentially expressed (DE) genes were identified by ranking analysis. DAVID pathway analysis was performed and visualized using STRING analysis. Quantitative PCR (qPCR) on additional donor menisci (tissues and cells) were used to validate array data. Avas cells cultured in 3D were subjected to qPCR to compare with the array-generated data. A total of 387 genes were DE based on differentiation state (>3-fold change; p < 0.01). In Avas-cultured cells, the upregulated pathways included focal adhesion, ECM-receptor interaction, regulation of actin cytoskeleton, and PDGF Signaling. In 3D-cultured Avas cells, TGFβ1 or combinations of TGFβ1 and BMP6 were most effective to promote an Avas tissue phenotype. THBS2 and THBS4 expression levels were identified as a means to denote meniscus cell phenotype status. We identified the key gene expression profiles, new markers and pathways involved in characterizing the Avas meniscus phenotype in the native state and during in vitro dedifferentiation and redifferentiation. These data served to screen 3D conditions to generate meniscus-like neotissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1947-1958, 2018.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Stuart F. Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Chantal Pauli
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Darryl D D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA,Corresponding author: Darryl D D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, Tel 858 332 0166 Fax 858 332 0669,
| |
Collapse
|
21
|
Bilgen B, Jayasuriya CT, Owens BD. Current Concepts in Meniscus Tissue Engineering and Repair. Adv Healthc Mater 2018; 7:e1701407. [PMID: 29542287 PMCID: PMC6176857 DOI: 10.1002/adhm.201701407] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The meniscus is the most commonly injured structure in the human knee. Meniscus deficiency has been shown to lead to advanced osteoarthritis (OA) due to abnormal mechanical forces, and replacement strategies for this structure have lagged behind other tissue engineering endeavors. The challenges include the complex 3D structure with individualized size parameters, the significant compressive, tensile and shear loads encountered, and the poor blood supply. In this progress report, a review of the current clinical treatments for different types of meniscal injury is provided. The state-of-the-art research in cellular therapies and novel cell sources for these therapies is discussed. The clinically available cell-free biomaterial implants and the current progress on cell-free biomaterial implants are reviewed. Cell-based tissue engineering strategies for the repair and replacement of meniscus are presented, and the current challenges are identified. Tissue-engineered meniscal biocomposite implants may provide an alternative solution for the treatment of meniscal injury to prevent OA in the long run, because of the limitations of the existing therapies.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
- Providence VA Medical Center, Providence, RI, 02908, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI, 02903, USA
| |
Collapse
|
22
|
Grazina R, Andrade R, Bastos R, Costa D, Pereira R, Marinhas J, Maestro A, Espregueira-Mendes J. Clinical Management in Early OA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:111-135. [PMID: 29736571 DOI: 10.1007/978-3-319-76735-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knee osteoarthritis affects an important percentage of the population throughout their life. Several factors seem to be related to the development of knee osteoarthritis including genetic predisposition, gender, age, meniscal deficiency, lower limb malalignments, joint instability, cartilage defects, and increasing sports participation. The latter has contributed to a higher prevalence of early onset of knee osteoarthritis at younger ages with this active population demanding more consistent and durable outcomes. The diagnosis is complex and the common signs and symptoms are often cloaked at these early stages. Classification systems have been developed and are based on the presence of knee pain and radiographic findings coupled with magnetic resonance or arthroscopic evidence of early joint degeneration. Nonsurgical treatment is often the first-line option and is mainly based on daily life adaptations, weight loss, and exercise, with pharmacological agents having only a symptomatic role. Surgical treatment shows positive results in relieving the joint symptomatology, increasing the knee function and delaying the development to further degenerative stages. Biologic therapies are an emerging field showing early promising results; however, further high-level research is required.
Collapse
Affiliation(s)
- Rita Grazina
- Orthopaedic Surgery at Centro Hospitalar de Vila Nova de Gaia/Espinho E.P.E, Vila Nova de Gaia, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal
| | - Ricardo Bastos
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Fluminense Federal University, Niteroi/Rio de Janeiro, Brazil
| | - Daniela Costa
- SMIC Dragão - Serviço Médico de Imagem Computorizada, Porto, Portugal
| | - Rogério Pereira
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Faculty of Sports, University of Porto, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - José Marinhas
- Orthopaedic Surgery at Centro Hospitalar de Vila Nova de Gaia/Espinho E.P.E, Vila Nova de Gaia, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal
| | - António Maestro
- Real Sporting de Gijón SAD, Gijón, Spain.,FREMAP Mutua de Accidentes, Gijón, Spain
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal. .,Dom Henrique Research Centre, Porto, Portugal. .,Orthopaedics Department of Minho University, Minho, Portugal. .,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
23
|
Chen Y, Chen J, Zhang Z, Lou K, Zhang Q, Wang S, Ni J, Liu W, Fan S, Lin X. Current advances in the development of natural meniscus scaffolds: innovative approaches to decellularization and recellularization. Cell Tissue Res 2017; 370:41-52. [PMID: 28364144 PMCID: PMC5610206 DOI: 10.1007/s00441-017-2605-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023]
Abstract
The increasing rate of injuries to the meniscus indicates the urgent need to develop effective repair strategies. Irreparably damaged menisci can be replaced and meniscus allografts represent the treatment of choice; however, they have several limitations, including availability and compatibility. Another approach is the use of artificial implants but their chondroprotective activities are still not proved clinically. In this situation, tissue engineering offers alternative natural decellularized extracellular matrix (ECM) scaffolds, which have shown biomechanical properties comparable to those of native menisci and are characterized by low immunogenicity and promising regenerative potential. In this article, we present an overview of meniscus decellularization methods and discuss their relative merits. In addition, we comparatively evaluate cell types used to repopulate decellularized scaffolds and analyze the biocompatibility of the existing experimental models. At present, acellular ECM hydrogels, as well as slices and powders, have been explored, which seems to be promising for partial meniscus regeneration. However, their inferior biomechanical properties (compressive and tensile stiffness) compared to natural menisci should be improved. Although an optimal decellularized meniscus scaffold still needs to be developed and thoroughly validated for its regenerative potential in vivo, we believe that decellularized ECM scaffolds are the future biomaterials for successful structural and functional replacement of menisci.
Collapse
Affiliation(s)
- Yunbin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Zeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Kangliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Qi Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jinhu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Wenyue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Baek J, Sovani S, Choi W, Jin S, Grogan SP, D'Lima DD. Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng Part A 2017; 24:81-93. [PMID: 28463545 DOI: 10.1089/ten.tea.2016.0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogel and electrospun scaffold materials support cell attachment and neotissue development and can be tuned to structurally and mechanically resemble native extracellular matrix by altering either electrospun fiber or hydrogel properties. In this study, we examined meniscus tissue generation from different human cell sources including meniscus cells derived from vascular and avascular regions, human bone marrow-derived mesenchymal stem cells, synovial cells, and cells from the infrapatellar fat pad (IPFP). All cells were seeded onto aligned electrospun collagen type I scaffolds and were optionally encapsulated in a tricomponent hydrogel. Single or multilayered constructs were generated and cultivated in defined medium with selected growth factors for 2 weeks. Cell viability, cell morphology, and gene-expression profiles were monitored using confocal microscopy, scanning electron microscopy, and quantitative polymerase chain reaction (qPCR), respectively. Multilayered constructs were examined with histology, immunohistochemistry, qPCR, and for tensile mechanical properties. For all cell types, TGFβ1 and TGFβ3 treatment increased COL1A1, COMP, Tenascin C (TNC), and Scleraxis (SCX) gene expression and deposition of collagen type I protein. IPFP cells generated meniscus-like tissues with higher meniscogenic gene expression, mechanical properties, and better cell distribution compared to other cell types studied. We show proof of concept that electrospun collagen scaffolds support neotissue formation and IPFP cells have potential for use in cell-based meniscus regeneration strategies.
Collapse
Affiliation(s)
- Jihye Baek
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California.,2 Department of Material Science and Engineering, University of California , San Diego, La Jolla, California
| | - Sujata Sovani
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Wonchul Choi
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Sungho Jin
- 2 Department of Material Science and Engineering, University of California , San Diego, La Jolla, California
| | - Shawn P Grogan
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Darryl D D'Lima
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| |
Collapse
|
26
|
Korpershoek JV, de Windt TS, Hagmeijer MH, Vonk LA, Saris DBF. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies. Orthop J Sports Med 2017; 5:2325967117690131. [PMID: 28321424 PMCID: PMC5347439 DOI: 10.1177/2325967117690131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential.
Collapse
Affiliation(s)
- Jasmijn V Korpershoek
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michella H Hagmeijer
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
27
|
Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials 2017; 126:18-30. [PMID: 28242519 DOI: 10.1016/j.biomaterials.2017.02.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
The meniscus has poor intrinsic regenerative capacity and its damage inevitably leads to articular cartilage degeneration. We focused on evaluating the effects of Polyvinyl alcohol/Chitosan (PVA/Ch) scaffold seeded by adipose-derived mesenchymal stem cell (ASC) and articular chondrocytes (AC) in meniscus regeneration. The PVA/Ch scaffolds with different molar contents of Ch (Ch1, Ch2, Ch4 and Ch8) were cross-linked by pre-polyurethane chains. By increasing amount of Ch tensile modulus was increased from 83.51 MPa for Ch1 to 110 MPa for Ch8 while toughness showed decrease from 0.33 mJ/mm3 in Ch1 to 0.11 mJ/mm3 in Ch8 constructs. Moreover, swelling ratio and degradation rate increased with an increase in Ch amount. Scanning electron microscopy imaging was performed for pore size measurement and cell attachment. At day 21, Ch4 construct seeded by AC showed the highest expression with 24.3 and 22.64 folds increase in collagen II and aggrecan (p ≤ 0.05), respectively. Since, the mechanical properties, water uptake and degradation rate of Ch4 and Ch8 compositions had no statistically significant differences, Ch4 was selected for in vivo study. New Zealand rabbits were underwent unilateral total medial meniscectomy and AC/scaffold, ASC/scaffold, AC-ASC (co-culture)/scaffold and cell-free scaffold were engrafted. At 7 months post-implantation, macroscopic, histologic, and immunofluorescent studies for regenerated meniscus revealed better results in AC/scaffold group followed by AC-ASC/scaffold and ASC/scaffold groups. In the cell-free scaffold group, there was no obvious meniscus regeneration. Articular cartilages were best preserved in AC/scaffold group. The best histological score was observed in AC/scaffold group. Our results support that Ch4 scaffold seeded by AC alone can successfully regenerate meniscus in tearing injury and ASC has no significant contribution in the healing process.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Molecular and Cell Biology Laboratory, Department of Pathology, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad M Dehghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, Colaço BJ, Olivera ER, Villar-Suárez V. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Am J Vet Res 2017; 77:779-88. [PMID: 27347833 DOI: 10.2460/ajvr.77.7.779] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans.
Collapse
|
29
|
Numpaisal PO, Rothrauff BB, Gottardi R, Chien CL, Tuan RS. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: An in vitro study. Connect Tissue Res 2016; 58:355-365. [PMID: 27726454 DOI: 10.1080/03008207.2016.1245727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Treatment of meniscus tears is a persistent challenge in orthopedics. Although cell therapies have shown promise in promoting fibrocartilage formation in in vitro and preclinical studies, clinical application has been limited by the paucity of autologous tissue and the need for ex vivo cell expansion. Rapid dissociation of the free edges of the anterior and posterior meniscus with subsequent implantation in a meniscus lesion may overcome these limitations. The purpose of this study was to explore the effect of rapidly dissociated meniscus tissue in enhancing neotissue formation in a radial meniscus tear, as simulated in an in vitro explant model. MATERIALS AND METHODS All experiments in this study, performed at minimum with biological triplicates, utilized meniscal tissues from hind limbs of young cows. The effect of varying collagenase concentration (0.1%, 0.2% and 0.5% w/v) and treatment duration (overnight and 30 minutes) on meniscus cell viability, organization of the extracellular matrix (ECM), and gene expression was assessed through a cell metabolism assay, microscopic examination, and quantitative real-time reverse transcription polymerase chain reaction analysis, respectively. Thereafter, an explant model of a radial meniscus tear was used to evaluate the effect of a fibrin gel seeded with one of the following: (1) fibrin alone, (2) isolated and passaged (P2) meniscus cells, (3) overnight digested tissue, and (4) rapidly dissociated tissue. The quality of in vitro healing was determined through histological analysis and derivation of an adhesion index. RESULTS Rapid dissociation in 0.2% collagenase yielded cells with higher levels of metabolism than either 0.1% or 0.5% collagenase. When seeded in a three-dimensional fibrin hydrogel, both overnight digested and rapidly dissociated cells expressed greater levels of collagens type I and II than P2 meniscal cells at 1 week. At 4 and 8 weeks, collagen type II expression remained elevated only in the rapid dissociation group. Histological examination revealed enhanced healing in all cell-seeded treatment groups over cell-free fibrin controls at weeks 1, 4, and 8, but there were no significant differences across the treatment groups. CONCLUSIONS Rapid dissociation of meniscus tissue may provide a single-step approach to augment regenerative healing of meniscus repairs.
Collapse
Affiliation(s)
- Piya-On Numpaisal
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan.,c Institute of Medicine, Suranaree University of Technology , Nakhon Ratchasima , Thailand
| | - Benjamin B Rothrauff
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,d McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh , PA , USA
| | - Riccardo Gottardi
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,e Ri.MED Foundation , Palermo , Italy
| | - Chung-Liang Chien
- b Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Rocky S Tuan
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,d McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
30
|
Verdonk R, Madry H, Shabshin N, Dirisamer F, Peretti GM, Pujol N, Spalding T, Verdonk P, Seil R, Condello V, Di Matteo B, Zellner J, Angele P. The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2016; 24:1763-74. [PMID: 27085362 DOI: 10.1007/s00167-016-4069-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
Abstract
It is widely accepted that partial meniscectomy leads to early onset of osteoarthritis (OA). A strong correlation exists between the amount and location of the resected meniscus and the development of degenerative changes in the knee. On the other hand, osteoarthritic changes of the joint alter the structural and functional integrity of meniscal tissue. These alterations might additionally compromise the limited healing capacity of the meniscus. In young, active patients without cartilage damage, meniscus therapy including partial meniscectomy, meniscus suture, and meniscus replacement has proven beneficial effects in long-term studies. Even in an early osteoarthritic milieu, there is a relevant regenerative potential of the meniscus and the surrounding cartilage. This potential should be taken into account, and meniscal surgery can be performed with the correct timing and the proper indication even in the presence of early OA.
Collapse
Affiliation(s)
- Rene Verdonk
- Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Henning Madry
- Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrberger Strasse 100, Building 37-38, 66421, Homburg, Saarland, Germany
| | - Nogah Shabshin
- Department of Radiology, Carmel Medical Center, Haifa, Israel.,Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Florian Dirisamer
- Orthopädie und Sportchirurgie, Schloss Puchenau, Karl-Leitl-Str. 1, 4048, Linz-Puchenau, Austria
| | - Giuseppe M Peretti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Nicolas Pujol
- Centre hospitalier de Versailles, 177, rue de Versailles, 78150, Le Chesnay, France
| | - Tim Spalding
- Department of Orthopaedics, University Hospital of Coventry and Warwickshire, Rugby, UK
| | - Peter Verdonk
- Antwerp Orthopedic Center, Monica Hospitals, Antwerp, Belgium
| | - Romain Seil
- Clinique d'Eich and Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Centre Hospitalier Luxembourg, Luxembourg Institute of Health, 78 rue d'Eich, 1460, Luxembourg, Luxembourg
| | - Vincenzo Condello
- Dipartimento di Ortopedia - Responsabile di Struttura Semplice di Traumatologia dello, Sport Knee Surgery and Sports Traumatology Ospedale Sacro Cuore - Don Calabria Via Don, Sempreboni, 5, 37024, Negrar Verona, Italy
| | - Berardo Di Matteo
- II Orthopaedic Clinic and Biomechanics Lab, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Peter Angele
- Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany. .,Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053, Regensburg, Germany.
| |
Collapse
|
31
|
Cell-Based Strategies for Meniscus Tissue Engineering. Stem Cells Int 2016; 2016:4717184. [PMID: 27274735 PMCID: PMC4871968 DOI: 10.1155/2016/4717184] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022] Open
Abstract
Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering.
Collapse
|
32
|
Baek J, Sovani S, Glembotski NE, Du J, Jin S, Grogan SP, D'Lima DD. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells. Tissue Eng Part A 2016; 22:436-48. [PMID: 26842062 PMCID: PMC4800276 DOI: 10.1089/ten.tea.2015.0284] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.
Collapse
Affiliation(s)
- Jihye Baek
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California.,2 Department of Material Science and Engineering, University of California , La Jolla, California
| | - Sujata Sovani
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Nicholas E Glembotski
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Jiang Du
- 3 Department of Radiology, School of Medicine, University of California , San Diego, San Diego, California
| | - Sungho Jin
- 2 Department of Material Science and Engineering, University of California , La Jolla, California
| | - Shawn P Grogan
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Darryl D D'Lima
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| |
Collapse
|
33
|
Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. INTERNATIONAL ORTHOPAEDICS 2016; 40:615-24. [PMID: 26762517 DOI: 10.1007/s00264-015-3099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.
Collapse
|
34
|
|
35
|
Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 2015; 16:49-59. [PMID: 25644450 DOI: 10.1016/j.actbio.2015.01.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Tissue-derived extracellular matrix (ECM) biomaterials to regenerate the meniscus have gained increasing attention in treating meniscus injuries and diseases, particularly for aged persons and athletes. However, ECM scaffold has poor cell infiltration and can only be implanted using surgical procedures. To overcome these limitations, we developed an injectable ECM hydrogel material from porcine meniscus via modified decellularization and enzymatic digestion. This meniscus-derived ECM hydrogel exhibited a fibrous morphology with tunable compression and initial modulus. It had a good injectability evidenced by syringe injection into mouse subcutaneous tissue. The hydrogel showed good cellular compatibility by promoting the growth of both bovine chondrocytes and mouse 3T3 fibroblasts encapsulated in the hydrogel for 2 weeks. It also promoted cell infiltration as shown in both in vitro cell culture and in vivo mouse subcutaneous implantation. The in vivo study revealed that the ECM hydrogel possessed good tissue compatibility after 7 days of implantation. The results support the great potential of the newly produced injectable meniscus-derived ECM hydrogel specifically for meniscus repair and regeneration.
Collapse
|
36
|
Jülke H, Mainil-Varlet P, Jakob RP, Brehm W, Schäfer B, Nesic D. The Role of Cells in Meniscal Guided Tissue Regeneration: A Proof of Concept Study in a Goat Model. Cartilage 2015; 6:20-9. [PMID: 26069707 PMCID: PMC4462246 DOI: 10.1177/1947603514548213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Successful repair of defects in the avascular zone of meniscus remains a challenge in orthopedics. This proof of concept study aimed to investigate a guided tissue regeneration approach for treatment of tears in meniscus avascular zone in a goat model. DESIGN Full-depth longitudinal tear was created in the avascular zone of the meniscus and sutured. In the two treatment groups, porcine collagen membrane was wrapped around the tear without (CM) or with injection of expanded autologous chondrocytes (CM+cells), whereas in the control group the tear remained only sutured. Gait recovery was evaluated during the entire follow-up period. On explantation at 3 and 6 months, macroscopic gross inspection assessed healing of tears, degradation of collagen membrane, potential signs of inflammation, and osteoarthritic changes. Microscopic histology scoring criteria were developed to evaluate healing of tears, the cellular response, and the inflammatory response. RESULTS Gait recovery suggested protective effect of collagen membrane and was supported by macroscopical evaluation where improved tear healing was noted in both treated groups. Histology scoring in CM compared to suture group revealed an increase in tear margins contact, newly formed connective tissue between margins, and cell formations surrounded with new matrix after 3 months yet not maintained after 6 months. In contrast, in the CM+cells group these features were observed after 3 and 6 months. CONCLUSIONS A transient, short-term guided tissue regeneration of avascular meniscal tears occurred upon application of collagen membrane, whereas addition of expanded autologous chondrocytes supported more sustainable longer term tear healing.
Collapse
Affiliation(s)
- Henriette Jülke
- Institute of Pathology, University of Bern, Bern, Switzerland,FREY-TOX GmbH, Herzberg, Germany
| | - Pierre Mainil-Varlet
- Institute of Pathology, University of Bern, Bern, Switzerland,AGINKO Research AG, Fribourg, Switzerland
| | - Roland P. Jakob
- Hopital Cantonal de Fribourg, Fribourg, Switzerland,Route du lac 161, 1787 Môtier, Switzerland
| | - Walter Brehm
- Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, Leipzig, Germany
| | | | - Dobrila Nesic
- Institute of Pathology, University of Bern, Bern, Switzerland,Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Zhang ZZ, Jiang D, Wang SJ, Qi YS, Ding JX, Yu JK, Chen XS. Scaffolds drive meniscus tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra13859k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The review focuses on the recent research trend on scaffold types and biomedical applications, and perspectives in meniscus tissue engineering.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Dong Jiang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Shao-Jie Wang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Yan-Song Qi
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Jian-Xun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jia-Kuo Yu
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
38
|
Zhang X, Aoyama T, Ito A, Tajino J, Nagai M, Yamaguchi S, Iijima H, Kuroki H. Regional comparisons of porcine menisci. J Orthop Res 2014; 32:1602-11. [PMID: 25196310 DOI: 10.1002/jor.22687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to analyze histologic, biochemical, and biomechanical differences between zonal, regional, and anatomic locations of porcine menisci. We evaluated six menisci removed from pigs. Medial and lateral menisci were divided into three regions: anterior, middle, and posterior. In each portion, the central zone (CZ) and peripheral zone (PZ) were examined histologically (hematoxylin & eosin, safranin O/Fast green, and picrosiriusred staining), using scanning electron microscopy, biochemically (hydroxyproline assay for collagen content and dimethylmethylene blue assay for glycosaminoglycan [GAG] content), and biomechanically (compression testing). Collagen content in the CZ was lower than that in the PZ. GAG content in the CZ was higher than that in the PZ. GAG content in the PZ of the posterior portion was significantly higher than that in the anterior and middle portions. Compression strength in the CZ was higher than that in the PZ. The differences in cellular phenotype, vascular penetration, and ECM not only between CZ and PZ but also among the anterior, middle, and posterior portions were clarified in the immature porcine meniscus. This result helps further our understanding of the biological characteristic of the meniscus. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1602-1611, 2014.
Collapse
Affiliation(s)
- Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Di Giancamillo A, Deponti D, Addis A, Domeneghini C, Peretti GM. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth. J Cell Mol Med 2014; 18:1964-74. [PMID: 25216283 PMCID: PMC4244012 DOI: 10.1111/jcmm.12367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022] Open
Abstract
The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner–outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P < 0.01 both); moreover, this cartilaginous matrix strongly increases in the inner avascular and intermediate zone, as a consequence of a specific differentiation of meniscal cells towards a cartilaginous phenotype (collagen 2, P < 0.01). The obtained data add new information on the changes that accompany meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint.
Collapse
|
40
|
Schwartz JA, Wang W, Goldstein T, Grande DA. Tissue Engineered Meniscus Repair: Influence of Cell Passage Number, Tissue Origin, and Biomaterial Carrier. Cartilage 2014; 5:165-71. [PMID: 26069696 PMCID: PMC4297177 DOI: 10.1177/1947603514526038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective. Studies have shown that meniscal repairs have better outcomes over both partial and total meniscectomies. Tissue engineering strategies to repair meniscus tears have been explored using cell sources that involve a donor as well as a period of in vitro cell expansion before use. This study explored cell sources that could be easily harvested and rapidly isolated by enzymatic digestion and cannulated delivery. Methods. Bovine menisci were used to create a bucket handle tear. Cell lines were established from meniscus, synovium, and adipose tissue and fluorescently labeled. At passages P2, P4, and P8, cells were added to the defect from the following experimental groups: cells alone, collagen gel, collagen scaffold, or hyaluronic acid. Menisci constructs were xenografted subcutaneously onto the dorsum of athymic rats and incubated for 3, 6, and 9 weeks, at which time they were retrieved and processed for histology. Results. Meniscal cells were able to repair defects faster and significantly better than adipose or synovium derived cells. Adipose cells were the least effective in comparison. Repair was significantly better at 9 weeks compared with 6 and 3 weeks. Macroscopic examination of menisci that received cell implants showed the thickest tissue in menisci that had collagen implants, and the thinnest fill occurred in menisci treated with cells alone. Histology confirmed no cells or integrative repair in the control specimens. Conclusions. Delivery of cells alone outperformed the additional use of biomaterials. Our results suggest a strategy that would use both meniscus and synovial cells for arthroscopic meniscal repair.
Collapse
Affiliation(s)
- John A. Schwartz
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - William Wang
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Todd Goldstein
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Daniel A. Grande
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
41
|
Shen W, Chen J, Zhu T, Chen L, Zhang W, Fang Z, Heng BC, Yin Z, Chen X, Ji J, Chen W, Ouyang HW. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing. Stem Cells Transl Med 2014; 3:387-94. [PMID: 24448516 DOI: 10.5966/sctm.2012-0170] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Benzylamines
- Cartilage, Articular/injuries
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chemokine CXCL12/genetics
- Chemokine CXCL12/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Collagen Type X/genetics
- Collagen Type X/metabolism
- Cyclams
- Gene Expression
- Heterocyclic Compounds/pharmacology
- Humans
- Injections, Intra-Articular
- Male
- Menisci, Tibial/metabolism
- Menisci, Tibial/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis/therapy
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Regeneration/physiology
- Signal Transduction
- Tibial Meniscus Injuries
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Weiliang Shen
- Center for Stem Cell and Tissue Engineering, Department of Orthopedic Surgery, Second Affiliated Hospital, and Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, Schneider RK, Zubrod CJ, Kawcak CE, Goodrich LR. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet Surg 2014; 43:255-65. [PMID: 24433318 DOI: 10.1111/j.1532-950x.2014.12100.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/01/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To report outcome of horses with femorotibial lesions (meniscal, cartilage or ligamentous) treated with surgery and intra-articular administration of autologous bone marrow derived mesenchymal stem cells (BMSCs). STUDY DESIGN Prospective case series. ANIMALS Horses (n = 33). METHODS Inclusion criteria included horses that had lameness localized to the stifle by diagnostic anesthesia, exploratory stifle arthroscopy and subsequent intra-articular administration of autologous BMSCs. Case details and follow-up were gathered from medical records, owner, trainer or veterinarian. Outcome was defined as returned to previous level of work, returned to work, or failed to return to work. RESULTS Follow-up (mean, 24 months) was obtained; 43% of horses returned to previous level of work, 33% returned to work, and 24% failed to return to work. In horses with meniscal damage (n = 24) a higher percentage in the current study (75%) returned to some level of work compared to those in previous reports (60-63%) that were treated with arthroscopy alone, which resulted in a statistically significant difference between studies (P = .038). Joint flare post injection was reported in 3 horses (9.0%); however, no long-term effects were noted. CONCLUSIONS Intra-articular administration of BMSC postoperatively for stifle lesions appeared to be safe, with morbidity being similar to that of other biologic agents. Improvement in ability to return to work may be realized with BMSC treatment compared to surgery alone in horses with stifle injury.
Collapse
Affiliation(s)
- Dora J Ferris
- Equine Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hasan J, Fisher J, Ingham E. Current strategies in meniscal regeneration. J Biomed Mater Res B Appl Biomater 2013; 102:619-34. [PMID: 24030973 DOI: 10.1002/jbm.b.33030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/13/2013] [Accepted: 08/18/2013] [Indexed: 12/26/2022]
Abstract
The meniscus plays an important role in the biomechanics and tribology of the knee joint. Damage to or disease of the meniscus is now recognized to predispose to the development of osteoarthritis. Treatment of meniscal injury through arthroscopic surgery has become one of the most common orthopedic surgical procedures, and in the United States this can represent 10 to 20% of procedures related to the knee. The meniscus has a limited healing capacity constrained to the vascularized periphery and therefore, surgical repair of the avascular regions is not always feasible. Replacement and repair of the meniscus to treat injuries is being investigated using tissue engineering strategies. Promising as these approaches may be, there are, however, major barriers to overcome before translation to the clinic.
Collapse
Affiliation(s)
- Jahid Hasan
- Institute of Medical and Biological Engineering, Schools of Biomedical Sciences and Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
44
|
Sanchez-Adams J, Wilusz RE, Guilak F. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J Orthop Res 2013; 31:1218-25. [PMID: 23568545 PMCID: PMC4037160 DOI: 10.1002/jor.22362] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023]
Abstract
Regional variations in the composition and architecture of the extracellular matrix (ECM) and pericellular matrix (PCM) of the knee meniscus play important roles in determining the local mechanical environment of meniscus cells. In this study, atomic force microscopy was used to spatially map the mechanical properties of matched ECM and perlecan-labeled PCM sites within the outer, middle, and inner porcine medial meniscus, and to evaluate the properties of the proximal surface of each region. The elastic modulus of the PCM was significantly higher in the outer region (151.4 ± 38.2 kPa) than the inner region (27.5 ± 8.8 kPa), and ECM moduli were consistently higher than region-matched PCM sites in both the outer (320.8 ± 92.5 kPa) and inner (66.1 ± 31.4 kPa) regions. These differences were associated with a higher proportion of aligned collagen fibers and lower glycosaminoglycan content in the outer region. Regional variations in the elastic moduli and some viscoelastic properties were observed on the proximal surface of the meniscus, with the inner region exhibiting the highest moduli overall. These results indicate that matrix architecture and composition play an important role in the regional micromechanical properties of the meniscus, suggesting that the local stress-strain environment of meniscal cells may vary significantly among the different regions.
Collapse
Affiliation(s)
- Johannah Sanchez-Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States
| | - Rebecca E. Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States,Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States,Department of Biomedical Engineering, Duke University, Durham, NC, United States,Corresponding Author: 375 Medical Sciences Research Bldg., Box 3093 DUMC, Durham, NC 27710 Phone: 919-684-2521 Fax: 919-681-8490
| |
Collapse
|
45
|
Chowdhury A, Bezuidenhout LW, Mulet-Sierra A, Jomha NM, Adesida AB. Effect of interleukin-1β treatment on co-cultures of human meniscus cells and bone marrow mesenchymal stromal cells. BMC Musculoskelet Disord 2013; 14:216. [PMID: 23875869 PMCID: PMC3726416 DOI: 10.1186/1471-2474-14-216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/05/2013] [Indexed: 11/20/2022] Open
Abstract
Background Interleukin-1β (IL-1β) is a major mediator of local inflammation present in injured joints. In this study, we aimed at comparing the effect of IL-1β on engineered tissues from MCs, BMSCs and co-cultured MCs and BMSCs. Methods We compared the effect of IL-1β in 3 groups: (1) MCs, (2) BMSCs and, (3) co-cultures of MCs and BMSCs. We selected 1 to 3 ratio of MCs to BMSCs for the co-cultures. Passage two (P2) human BMSCs were obtained from two donors. Human MCs were isolated from menisci of 4 donors. Mono-cultures of MCs and BMSCs, and co-cultures of MCs and BMSCs were cultured in chondrogenic medium with TGFβ3, as cell pellets for 14 days. Thereafter, pellets were cultured for 3 more days in same medium as before with or without IL-1β (500 pg/ml). Pellets were assessed histologically, biochemically and by RT-PCR for gene expression of aggrecan, sox9, MMP-1, collagens I and II. Statistics was performed using one-way ANOVA with Tukey’s post-tests. Results Co-cultured pellets were the most intensely stained with safranin O and collagen II. Co-cultured pellets had the highest expression of sox9, collagen I and II. IL-1β treatment slightly reduced the GAG/DNA of co-cultured pellets but still exceeded the sum of the GAG/DNA from the proportion of MCs and BMSCs in the co-cultured pellets. After IL-1β treatment, the expression of sox9, collagen I and II in co-cultured pellets was higher compared to their expression in pure pellets. IL-1β induced MMP-1 expression in mono-cultures of MCs but not significantly in mono-cultures of BMSCs or in co-cultured pellets. IL-1β induced MMP-13 expression in mono-cultured pellets of BMSCs and in co-cultured pellets. Conclusions Co-cultures of MCs and BMSCs resulted in a synergistic production of cartilaginous matrix compared to mono-cultures of MCs and BMSCs. IL-1β did not abrogate the accumulated GAG matrix in co-cultures but mediated a decreased mRNA expression of aggrecan, collagen II and Sox9. These results strengthen the combinatorial use of primary MCs and BMSCs as a cell source for meniscus tissue engineering by demonstrating retention of fibrochondrogenic phenotype after exposure to IL-1β.
Collapse
Affiliation(s)
- Anika Chowdhury
- Department of Surgery, Division of Orthopaedic Surgery, Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | |
Collapse
|
46
|
Grogan SP, Chung PH, Soman P, Chen P, Lotz MK, Chen S, D’Lima DD. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater 2013; 9:7218-26. [PMID: 23523536 DOI: 10.1016/j.actbio.2013.03.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 12/17/2022]
Abstract
Meniscus degeneration due to age or injury can lead to osteoarthritis. Although promising, current cell-based approaches show limited success. Here we present three-dimensional methacrylated gelatin (GelMA) scaffolds patterned via projection stereolithography to emulate the circumferential alignment of cells in native meniscus tissue. Cultured human avascular zone meniscus cells from normal meniscus were seeded on the scaffolds. Cell viability was monitored, and new tissue formation was assessed by gene expression analysis and histology after 2weeks in serum-free culture with transforming growth factor β1 (10ngml(-1)). Light, confocal and scanning electron microscopy were used to observe cell-GelMA interactions. Tensile mechanical testing was performed on unseeded, fresh scaffolds and 2-week-old cell-seeded and unseeded scaffolds. 2-week-old cell-GelMA constructs were implanted into surgically created meniscus defects in an explant organ culture model. No cytotoxic effects were observed 3weeks after implantation, and cells grew and aligned to the patterned GelMA strands. Gene expression profiles and histology indicated promotion of a fibrocartilage-like meniscus phenotype, and scaffold integration with repair tissue was observed in the explant model. We show that micropatterned GelMA scaffolds are non-toxic, produce organized cellular alignment, and promote meniscus-like tissue formation. Prefabrication of GelMA scaffolds with architectures mimicking the meniscus collagen bundle organization shows promise for meniscal repair. Furthermore, the technique presented may be scaled up to repair larger defects.
Collapse
|
47
|
Deponti D, Di Giancamillo A, Scotti C, Peretti GM, Martin I. Animal models for meniscus repair and regeneration. J Tissue Eng Regen Med 2013; 9:512-27. [PMID: 23712959 DOI: 10.1002/term.1760] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/24/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
Abstract
The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed.
Collapse
|
48
|
Esposito AR, Moda M, Cattani SMDM, de Santana GM, Barbieri JA, Munhoz MM, Cardoso TP, Barbo MLP, Russo T, D'Amora U, Gloria A, Ambrosio L, Duek EADR. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering. Biores Open Access 2013; 2:138-47. [PMID: 23593566 PMCID: PMC3620496 DOI: 10.1089/biores.2012.0293] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.
Collapse
Affiliation(s)
- Andrea Rodrigues Esposito
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas (UNICAMP) , Campinas, Brazil . ; Laboratory of Biomaterials, Faculty of Medicine and Health Sciences, Pontifical Catholic University of Sao Paulo (PUC-SP) , Sorocaba, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen W, Chen J, Zhu T, Yin Z, Chen X, Chen L, Fang Z, Heng BC, Ji J, Chen W, Ouyang HW. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells. Stem Cells Dev 2013; 22:2071-82. [PMID: 23461527 DOI: 10.1089/scd.2012.0563] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. Here, this study aimed to identify and characterize a novel population of meniscus-derived stem cells (MeSCs) and develop a new strategy of articular cartilage protection by intra-articular injection of these cells. The "stemness" and immune properties of MeSCs were investigated in vitro, while the efficacy of intra-articular injection of MeSCs for meniscus regeneration and OA prevention were investigated in vivo at 4, 8, and 12 weeks postsurgery. MeSCs displayed typical stem cell characteristics such as low immunogenicity and even possessed immunosuppressive function. In a rabbit meniscus injury model, transplantation of allogenous MeSCs did not elicit immunological rejection, but promoted neo-tissue formation with better-defined shape and more matured extracellular matrix. In a rabbit experimental OA model, transplantation of MeSCs further protected joint surface cartilage and maintained joint space at 12 weeks postsurgery, whereas extensive joint surface irregularities and joint space stenosis were observed in the control group. This study thus evoked a new strategy for articular cartilage protection and meniscus regeneration by intra-articular injection of MeSCs for patients undergoing meniscectomy.
Collapse
Affiliation(s)
- Weiliang Shen
- Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Moriguchi Y, Tateishi K, Ando W, Shimomura K, Yonetani Y, Tanaka Y, Kita K, Hart DA, Gobbi A, Shino K, Yoshikawa H, Nakamura N. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 2012; 34:2185-93. [PMID: 23261221 DOI: 10.1016/j.biomaterials.2012.11.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
The menisci of the knee are fibro-cartilaginous tissues and play important roles in the joint, and the loss of the meniscus predisposes the knee to degenerative changes. However, the menisci have limited healing potential due to the paucity of vascularity. The purpose of the present study was to test the feasibility of a scaffold-free tissue-engineered construct (TEC) derived from synovial mesenchymal stem cells (MSCs) to repair incurable meniscal lesions. Porcine synovial MSCs were cultured in monolayers at high density in the presence of ascorbic acid followed by the suspension culture to develop a three-dimensional cell/matrix construct (TEC). A 4-mm cylindrical defect was created bilaterally in the medial meniscus of skeletally mature miniature pigs. The defects were implanted with an allogenic TEC or were left empty. After 6 months, the TEC-treated defects were consistently repaired by a fibro-cartilaginous tissue with good tissue integration to the adjacent host meniscal tissue, while the untreated were either partially or not repaired. The ratio of Safranin O positive area within the central body of the meniscus adjacent to the original defect was significantly higher in the TEC-treated group than in the control group. Moreover, TEC treatment significantly reduced the size and severity of post-traumatic chondral lesions on the tibial plateau. These results suggest that the TEC could be a promising stem cell-based implant to repair meniscal lesions with preventive effects from meniscal body degeneration and the development of post-traumatic arthritis.
Collapse
Affiliation(s)
- Yu Moriguchi
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|