1
|
Chen C, Cui S, Li W, Jin H, Fan J, Sun Y, Cui Z. Ingenuity pathway analysis of human facet joint tissues: Insight into facet joint osteoarthritis. Exp Ther Med 2020; 19:2997-3008. [PMID: 32256786 PMCID: PMC7086291 DOI: 10.3892/etm.2020.8555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Facet joint osteoarthritis (FJOA) is a common degenerative joint disorder with high prevalence in the elderly. FJOA causes lower back pain and lower extremity pain, and thus severely impacts the quality of life of affected patients. Emerging studies have focused on the histomorphological and histomorphometric changes in FJOA. However, the dynamic genetic changes in FJOA have remained to be clearly determined. In the present study, previously obtained RNA deep sequencing data were subjected to an ingenuity pathway analysis (IPA) and canonical signaling pathways of differentially expressed genes (DEGs) in FJOA were studied. The top 25 enriched canonical signaling pathways were identified and canonical signaling pathways with high absolute values of z-scores, specifically leukocyte extravasation signaling, Tec kinase signaling and osteoarthritis pathway, were investigated in detail. DEGs were further categorized by disease, biological function and toxicity (tox) function. The genetic networks between DEGs as well as hub genes in these functional networks were also investigated. It was demonstrated that C-X-C motif chemokine ligand 8, elastase, neutrophil expressed, growth factor independent 1 transcriptional repressor, Spi-1 proto-oncogene, CCAAT enhancer binding protein epsilon, GATA binding protein 1, TAL bHLH transcription factor 1, erythroid differentiation factor, minichromosome maintenance complex component 4, BTG anti-proliferation factor 2, BRCA1 DNA repair-associated, cyclin D1, chromatin assembly factor 1 subunit A, triggering receptor expressed on myeloid cells 1 and tumor protein p63 were hub genes in the top 5 IPA networks (with a score >30). The present study provides insight into the pathological processes of FJOA from a genetic perspective and may thus benefit the clinical treatment of FJOA.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shengyu Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weidong Li
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huricha Jin
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianbo Fan
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
2
|
Damanaki A, Memmert S, Nokhbehsaim M, Sanyal A, Gnad T, Pfeifer A, Deschner J. Impact of obesity and aging on crestal alveolar bone height in mice. Ann Anat 2018; 218:227-235. [PMID: 29730468 DOI: 10.1016/j.aanat.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
Obesity and aging are associated with periodontitis, which represents a chronic inflammatory disease of the tooth-supporting tissues, i.e. the periodontium. However, if both risk factors also have a negative impact on crestal alveolar bone in a clinically healthy periodontium, has yet to be elucidated and was analyzed in this in-vivo study. Eight C57BL/6 mice were fed a normal diet during the entire study. Half of these mice were sacrificed at week 19 (group 1: younger lean mice), whereas the other half of the animals were sacrificed at week 25 (group 2: older lean mice). In addition, four mice were fed a high-fat diet until their sacrifice at week 19 (group 3: younger obese mice). Mandibles and maxillae were scanned by micro-computed tomography and, subsequently, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) at all molars was determined. Levels of interleukin-6, cyclooxygenase-2, visfatin and adiponectin in gingival samples were quantified by real-time PCR. For statistical analyses, the Mann-Whitney-U test was applied (p<0.05). As compared to lean mice, obese animals presented a significantly increased CEJ-ABC distance, i.e. reduced alveolar bone crest height, at week 19. The alveolar bone loss was mainly found at the first molars of the mandibles. In animals fed a normal diet, the alveolar bone crest height in the mandibles and maxillae was significantly lower in the older mice as compared to the younger animals. Furthermore, gingival cyclooxygenase-2 and visfatin expressions were higher in the obese versus lean mice and in the older versus younger mice. This in-vivo investigation shows that obesity and older age can result in reduced alveolar bone crest height and suggests that they represent risk factors even in a clinically healthy periodontium.
Collapse
Affiliation(s)
- Anna Damanaki
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Svenja Memmert
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany; Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Abhishek Sanyal
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Thorsten Gnad
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany.
| |
Collapse
|
3
|
Bhagat U, Das UN. Potential role of dietary lipids in the prophylaxis of some clinical conditions. Arch Med Sci 2015; 11:807-18. [PMID: 26322094 PMCID: PMC4548034 DOI: 10.5114/aoms.2015.53302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/12/2014] [Accepted: 04/20/2014] [Indexed: 01/01/2023] Open
Abstract
An imbalance of dietary lipids may potentially have a significant role in the pathobiology of some chronic diseases. Public health dietary fat recommendations have emphasized that low saturated fat, high monounsaturated fat, and high polyunsaturated fat with a lower ω-6 to ω-3 fatty acid ratio intake are necessary for normal health. However, such universal recommendations are likely to be hazardous, since the outcome of recommended lipid intake may depend on the consumption of other important dietary constituents that have an important role in the metabolism of lipids. In addition, consumption of fatty acids as per the individually tailored specific requirements in the context of other nutritional factors may have the potential to stabilize hormones, mood and sleep, and minimize adverse events. In support of this proposal, we review various factors that influence fatty acid metabolism, which need to be taken into consideration for appropriate utilization and consequently prevention of various diseases.
Collapse
|
4
|
Fan YY, Monk JM, Hou TY, Callway E, Vincent L, Weeks B, Yang P, Chapkin RS. Characterization of an arachidonic acid-deficient (Fads1 knockout) mouse model. J Lipid Res 2012; 53:1287-95. [PMID: 22534642 DOI: 10.1194/jlr.m024216] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arachidonic acid (20:4(Δ5,8,11,14), AA)-derived eicosanoids regulate inflammation and promote cancer development. Previous studies have targeted prostaglandin enzymes in an attempt to modulate AA metabolism. However, due to safety concerns surrounding the use of pharmaceutical agents designed to target Ptgs2 (cyclooxygenase 2) and its downstream targets, it is important to identify new targets upstream of Ptgs2. Therefore, we determined the utility of antagonizing tissue AA levels as a novel approach to suppressing AA-derived eicosanoids. Systemic disruption of the Fads1 (Δ5 desaturase) gene reciprocally altered the levels of dihomo-γ-linolenic acid (20:3(Δ8,11,14), DGLA) and AA in mouse tissues, resulting in a profound increase in 1-series-derived and a concurrent decrease in 2-series-derived prostaglandins. The lack of AA-derived eicosanoids, e.g., PGE₂ was associated with perturbed intestinal crypt proliferation, immune cell homeostasis, and a heightened sensitivity to acute inflammatory challenge. In addition, null mice failed to thrive, dying off by 12 weeks of age. Dietary supplementation with AA extended the longevity of null mice to levels comparable to wild-type mice. We propose that this new mouse model will expand our understanding of how AA and its metabolites mediate inflammation and promote malignant transformation, with the eventual goal of identifying new drug targets upstream of Ptgs2.
Collapse
Affiliation(s)
- Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zaharoni H, Rimon E, Vardi H, Friger M, Bolotin A, Shahar DR. Probiotics improve bowel movements in hospitalized elderly patients--the PROAGE study. J Nutr Health Aging 2011; 15:215-20. [PMID: 21369670 DOI: 10.1007/s12603-010-0323-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine the impact of probiotics on the prevention of problems with bowel movements malnutrition and infection. DESIGN A randomized, double-blind, placebo-controlled trial. SETTING Peripheral Geriatric Hospital. PARTICIPANTS 243 elderly patients age ≥ 65 y who were hospitalized in a Geriatric Orthopedic Rehabilitation Department. INTERVENTION Participants were randomized into treatment or control groups (daily probiotics or placebo for 45 consecutive days, respectively). MEASUREMENTS The main outcomes were: number of days of constipation or diarrhea and the number of days of laxative use. Secondary measures were nutritional status and blood measurements. RESULTS Of 599 patients admitted to the Geriatric Rehabilitation ward, 345 were eligible and agreed to participate. During a 7-day pre-trial period, 102 patients dropped out (45 and 57 in the probiotic and placebo groups respectively). Out of the 243 patients who entered the study, 28 dropped out during the study (11.5%), leaving 215 patients. Throughout the 45 days of follow-up, the incidence of diarrhea was significantly lower among the study group (HR=0.42, p=0.04) with a more pronounced difference among participants aged ≥ 80 y (HR=0.32, p=0.026). Laxative use (as an indicator of constipation severity) was significantly lower in the study group compared with the control group (HR=0.74, p=0.032). Serum albumin, prealbumin and protein increased significantly more in the treatment group compared with the control group among participants age ≥ 80 y (P=0.047, p=0.07, p=0.03 respectively) but not in the younger age group. CONCLUSION We showed that probiotic supplements may have a positive effect on bowel movements among orthopedic rehabilitation elderly patients.
Collapse
Affiliation(s)
- H Zaharoni
- Harzfeld Geriatric Medical Center, Gedera, 70750 Israel.
| | | | | | | | | | | |
Collapse
|
6
|
Mazzei JC, Zhou H, Brayfield BP, Hontecillas R, Bassaganya-Riera J, Schmelz EM. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor γ expression. J Nutr Biochem 2011; 22:1160-71. [PMID: 21295961 DOI: 10.1016/j.jnutbio.2010.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/17/2010] [Accepted: 09/27/2010] [Indexed: 12/23/2022]
Abstract
Inflammation of the gastrointestinal tract increases the risk of developing colon cancer especially in younger adults. Dietary compounds are not only associated with the etiology of inflammation and colon cancer but also in their prevention. Sphingolipid metabolites have been shown to play a role in the initiation and perpetuation of inflammatory responses. In the present study, we investigated the suppression of dextran sodium sulfate-induced colitis and azoxymethane-induced colon cancer by dietary sphingomyelin (SM) in mice that lack functional peroxisome proliferator-activated receptor γ (PPAR-γ) in intestinal epithelial and immune cells. Dietary SM decreased disease activity and colonic inflammatory lesions in mice of both genotypes but more efficiently in mice expressing PPAR-γ. The increased survival and suppression of tumor formation in the SM-fed mice appeared to be independent of PPAR-γ expression in immune and epithelial cells. Using a real-time polymerase chain reaction array, we detected an up-regulation in genes involved in Th1 (interferon γ) and Th17 (interleukin [IL]-17 and IL-23) responses despite the reduced inflammation scores. However, the genes involved in Th2 (IL-4, IL-13 and IL-13ra2) and Treg (IL-10rb) anti-inflammatory responses were up-regulated in a PPAR-γ-dependent manner. In line with the PPAR-γ dependency of our in vivo findings, treatment of RAW macrophages with sphingosine increased the PPAR-γ reporter activity. In conclusion, dietary SM modulated inflammatory responses at the early stages of the disease by activating PPAR-γ, but its anticarcinogenic effects followed a PPAR-γ-independent pattern.
Collapse
Affiliation(s)
- Joseph C Mazzei
- Department of Human Nutrition, Foods and Exercise, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
7
|
Tiihonen K, Ouwehand AC, Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Res Rev 2010; 9:107-16. [PMID: 19874918 DOI: 10.1016/j.arr.2009.10.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/27/2009] [Accepted: 10/16/2009] [Indexed: 01/21/2023]
Abstract
Earlier studies have indicated a decrease in anaerobes and bifidobacteria and a concomitant increase in enterobacteria in the intestinal microbiota with ageing. However, new data obtained with molecular techniques suggests decreased stability and increased diversity of the gut microbiota with advancing age. Further, no simple marker change in microbiota composition can be identified. Except for the reduced immune function, ageing itself may have relatively little effect on overall gastrointestinal function. Concomitant changes in nutrition, increased incidence of disease and corresponding use of medication with advancing age modify the composition of the microbial community of the gastrointestinal tract. This mini-review will focus on the recent findings on the gut microbiota of the elderly and on the potential benefits of probiotics, prebiotics and synbiotics.
Collapse
|
8
|
Casado B, Affolter M, Kussmann M. OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J Proteomics 2009; 73:196-208. [PMID: 19793547 DOI: 10.1016/j.jprot.2009.09.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/10/2009] [Accepted: 09/21/2009] [Indexed: 12/22/2022]
Abstract
Milk has co-evolved with mammals and mankind to nourish their offspring and is a biological fluid of unique complexity and richness. It contains all necessary nutrients for the growth and development of the newborn. Structure and function of biomolecules in milk such as the macronutrients (glyco-) proteins, lipids, and oligosaccharides are central topics in nutritional research. Omics disciplines such as proteomics, glycomics, glycoproteomics, and lipidomics enable comprehensive analysis of these biomolecule components in food science and industry. Mass spectrometry has largely expanded our knowledge on these milk bioactives as it enables identification, quantification and characterization of milk proteins, carbohydrates, and lipids. In this article, we describe the biological importance of milk macronutrients and review the application of proteomics, glycomics, glycoproteomics, and lipidomics to the analysis of milk. Proteomics is a central platform among the Omics tools that have more recently been adapted and applied to nutrition and health research in order to deliver biomarkers for health and comfort as well as to discover beneficial food bioactives.
Collapse
Affiliation(s)
- Begoña Casado
- Department of Bioanalytical Science, Nestlé Research Centre, Lausanne, Switzerland.
| | | | | |
Collapse
|
9
|
Schiffrin EJ, Morley JE, Donnet-Hughes A, Guigoz Y. The inflammatory status of the elderly: the intestinal contribution. Mutat Res 2009; 690:50-6. [PMID: 19666034 DOI: 10.1016/j.mrfmmm.2009.07.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 12/23/2022]
Abstract
A common finding in the elderly population is a chronic subclinical inflammatory status that coexists with immune dysfunction. These interconnected processes are of sufficient magnitude to impact health and survival time. In this review we discuss the different signals that may stimulate the inflammatory process in the aging population as well as the molecular and cellular components that can participate in the initiation, the modulation or termination of the said process. A special interest has been devoted to the intestine as a source of signals that can amplify local and systemic inflammation. Sentinel cells in the splanchnic area are normally exposed to more than one stimulus at a given time. In the intestine of the elderly, endogenous molecules produced by the cellular aging process and stress as well as exogenous evolutionarily conserved molecules from bacteria, are integrated into a network of receptors and molecular signalling pathways that result in chronic inflammatory activation. It is thus possible that nutritional interventions which modify the intestinal ecology can diminish the pro-inflammatory effects of the microbiota and thereby reinforce the mucosal barrier or modulate the cellular activation pathways.
Collapse
Affiliation(s)
- Eduardo J Schiffrin
- Nestlé Nutrition, HealthCare Nutrition, Route des Avouillons 30, CH-1196 Gland, Nestec Ltd., Vevey, Switzerland
| | | | | | | |
Collapse
|
10
|
Immunomodulation by food: promising concept for mitigating allergic disease? Anal Bioanal Chem 2009; 395:37-45. [PMID: 19455311 PMCID: PMC2724636 DOI: 10.1007/s00216-009-2838-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 12/15/2022]
Abstract
The importance of a properly functioning and well-balanced immune system for maintaining health has become strikingly evident over the past decades. Roughly since World War II, there has been an apparent decrease in the prevalence of "traditional" infectious diseases, with a concomitant increase in immune-related disorders, such as allergies. Causally, a relationship with changes in life-style-related factors such as the increasing use of hygienic practices seems likely. Diet and nutrition can affect the functioning of various immune parameters. This concept can be utilised in attempts to prevent or mitigate allergic reactions via the development of targeted food products or ingredients. This review describes recent findings with respect to food products and ingredients that show potential in this respect, with special emphasis on pro- and prebiotics, beta-glucans and fungal immunomodulatory proteins. What all of these approaches have in common is that they appear to strengthen Th1-mediated immunity, thus possibly restoring defective immune maturation due to overly hygienic living conditions: a little bit of dirt does not seem bad!
Collapse
|