1
|
Willis KA, Gomes CK, Rao P, Micic D, Moran ER, Stephenson E, Puchowicz M, Al Abdallah Q, Mims TS, Gosain A, Yin D, Talati AJ, Chang EB, Han JC, Pierre JF. TGR5 signaling mitigates parenteral nutrition-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G322-G335. [PMID: 31905022 DOI: 10.1152/ajpgi.00216.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.
Collapse
Affiliation(s)
- Kent A Willis
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee
| | - Prahlad Rao
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dejan Micic
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| | - E Richard Moran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Erin Stephenson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michelle Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ankush Gosain
- Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dengping Yin
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Ajay J Talati
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| | - Joan C Han
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
2
|
Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids. Nutrients 2019; 11:nu11010120. [PMID: 30626159 PMCID: PMC6357093 DOI: 10.3390/nu11010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/01/2022] Open
Abstract
Background: Non-cholesterol sterols are validated markers for fractional intestinal cholesterol absorption (cholestanol) and endogenous cholesterol synthesis (lathosterol). This study’s objective was to evaluate markers for cholesterol synthesis and absorption in children exposed to two different intravenous lipid emulsions that rapidly change serum plant sterol concentrations as part of their parenteral nutrition (PN). Methods: Serum samples from two different studies were used: (1) nine PN-dependent children with intestinal failure associated liver disease (IFALD) whose soy-based, plant sterol-rich lipid (SO) was replaced with a fish-based, plant sterol-poor (FO) lipid; and (2) five neonates prescribed SO after birth. In the first study, samples were collected at baseline (prior to FO initiation) and after 3 and 6 months of FO. In study 2, samples were collected at 1 and 3 weeks of age. Results: In study 1, a 7-fold reduction in campesterol, a 12-fold reduction in sitosterol, and a 15-fold reduction in stigmasterol was observed 6 months after switching to FO. Serum cholesterol concentrations did not change, but cholesterol-standardized lathosterol increased (3-fold) and cholesterol-standardized cholestanol decreased (2-fold). In study 2, after 3 weeks of SO, sitosterol and campesterol concentrations increased 4-5 fold. At the same time, cholesterol-standardized lathosterol increased 69% and cholesterol-standardized cholestanol decreased by 29%. Conclusion: Based on these finding we conclude that changes in serum plant sterol concentrations might have direct effects on endogenous cholesterol synthesis, although this needs to be confirmed in future studies. Moreover, we speculate that this changed synthesis subsequently affects intestinal cholesterol absorption.
Collapse
|
3
|
Koelfat KVK, Schaap FG, Hodin CMJM, Visschers RGJ, Svavarsson BI, Lenicek M, Shiri-Sverdlov R, Lenaerts K, Olde Damink SWM. Parenteral nutrition dysregulates bile salt homeostasis in a rat model of parenteral nutrition-associated liver disease. Clin Nutr 2016; 36:1403-1410. [PMID: 28029505 DOI: 10.1016/j.clnu.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/23/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Parenteral nutrition (PN), a lifesaving therapy in patients with intestinal failure, has been associated with hepatobiliary complications including steatosis, cholestasis and fibrosis, collectively known as parenteral nutrition-associated liver disease (PNALD). To date, the pathogenesis of PNALD is poorly understood and therapeutic options are limited. Impaired bile salt homeostasis has been proposed to contribute PNALD. The objective of this study was to establish a PNALD model in rats and to evaluate the effects of continuous parenteral nutrition (PN) on bile salt homeostasis. METHODS Rats received either PN via the jugular vein or received normal diet for 3, 7 or 14 days. Serum biochemistry, hepatic triglycerides, circulating bile salts and C4, IL-6 and TNF-alpha, and lipogenic and bile salt homeostatic gene expression in liver and ileum were assessed. RESULTS PN increased hepatic triglycerides already after 3 days of administration, and resulted in conjugated bilirubin elevation after 7 or more days. This indicates PN-induced steatosis and impaired canalicular secretion of bilirubin, the latter which is in line with reduced hepatic expression of Mrp2 mRNA. There was no histological evidence for liver inflammation after PN administration, and circulating levels of pro-inflammatory cytokines IL-6 and TNF-α, were comparable in all groups. Hepatic expression of Fxr mRNA was decreased after 7 days of PN, without apparent effect on expression of Fxr targets Bsep and Shp. Nonetheless, Cyp7a1 expression was reduced after 7 days of PN, indicative for lowered bile salt synthesis. Circulating levels of C4 (marker of bile salt synthesis) were also decreased after 3, 7 and 14 days of PN. Levels of circulating bile salts were not affected by PN. CONCLUSIONS This study showed that PN in rats caused early mild steatosis and cholestasis, while hepatic and systemic inflammation were not present. The onset of these abnormalities was associated with alterations in bile salt synthesis and transport. This animal model serves as an experimental model to further investigate the pathogenesis of PNALD inflicted by steatosis and cholestasis.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Caroline M J M Hodin
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ruben G J Visschers
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Björn I Svavarsson
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|