1
|
Ramani T, Wange RL, Manetz TS, Kruzich PJ, Laffan SB, Compton DR. Weight of Evidence: Is an Animal Study Warranted? Assessments for Carcinogenicity, Drug Abuse Liability, and Pediatric Safety. Int J Toxicol 2024; 43:435-455. [PMID: 39031995 DOI: 10.1177/10915818241259794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Nonclinical safety studies are typically conducted to establish a toxicity profile of a new pharmaceutical in clinical development. Such a profile may encompass multiple differing types of animal studies, or not! Some types of animal studies may not be warranted for a specific program or may only require a limited evaluation if scientifically justified. The goal of this course was to provide a practical perspective on regulatory writing of a dossier(s) using the weight of evidence (WOE) approach for carcinogenicity, drug abuse liability and pediatric safety assessments. These assessments are typically done after some clinical data are available and are highly bespoke to the pharmaceutical being developed. This manuscript will discuss key data elements to consider and strategy options with some case studies and examples. Additionally, US FDA experience with dossier(s) including WOE arguments is discussed.
Collapse
Affiliation(s)
- Thulasi Ramani
- Pre-Clinical Development, PTC Therapeutics, Warren, NJ, USA
| | - Ronald L Wange
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - T Scott Manetz
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Paul J Kruzich
- Pre-Clinical Development, PTC Therapeutics, Warren, NJ, USA
| | - Susan B Laffan
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, USA
| | | |
Collapse
|
2
|
Blossom SJ, Cabanlong CV, Vyas KK. Developmental trichloroethylene exposure enhances predictive markers of autoimmunity in a sex-specific manner in disease-resistant female mice. Toxicol Appl Pharmacol 2022; 454:116233. [PMID: 36096280 DOI: 10.1016/j.taap.2022.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial chemical and common environmental pollutant. Exposure to TCE promotes CD4+ T cell-driven autoimmunity including autoimmune hepatitis (AIH) in both humans and female autoimmune-prone mice. Because the developing immune system is more sensitive during development, we predicted that non- autoimmune-prone, C57/Bl6 (B6) mice would exhibit some autoimmune-related changes using the Developmental Origins of Health and Disease (DOHaD) model of exposure. Both male and female mice were exposed to vehicle or an environmentally relevant dose of 5 μg/ml TCE (0.9 mg/kg/day) beginning at 2 weeks pre-conception and ending at weaning. CD4+ T cells were assessed for phenotypic markers by flow cytometry. An assessment of cytokines elicited ex vivo after 4d polarization from naïve to CD4+ T helper subsets (i.e., Th1, Th17, and T reg) was conducted. mRNA expression of liver genes associated with inflammation, regeneration/repair associated with AIH disease progression in autoimmune-prone mice were evaluated by qRT-PCR. The results demonstrated TCE's ability to induce autoimmune- related biomarkers in B6 mice to an even greater degree in females compared to males when exposed during development.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.
| | - Christian V Cabanlong
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, AR, USA
| |
Collapse
|
3
|
Hu J, Liang C, Zhang X, Zhang Q, Cui W, Yu Z. Developmental immunotoxicity is not associated with the consumption of transgenic Bt rice TT51 in rats. Regul Toxicol Pharmacol 2018; 94:197-202. [PMID: 29427604 DOI: 10.1016/j.yrtph.2018.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022]
Abstract
TT51 is a transgenic strain of Bt rice generated by fusing a synthetic CryAb/Ac gene into MingHui rice. In this study, rats from F0, F1, and F2 generations were fed a diet with 60% TT51 rice, MingHui rice, or nominal-origin rice. The study focused on developmental immunotoxicity in F1 and F2 offspring after long-term consumption of TT51. A wide range of immunological parameters was monitored in this two-generation study on reproductive toxicity. The experiments were performed on F1 and F2 offspring at postnatal days 21 and 42. No adverse clinical effects were observed in any of the experimental groups. In addition, histopathology observations and immunotoxicity tests, including hematological indicators, spleen lymphocyte subsets, natural killer cell activity, lymphoproliferative response, and plaque-forming cell assay, revealed no significant difference between the groups. These results indicated that developmental immunotoxicity was not associated with a diet of transgenic Bt rice TT51, compared to the parental MingHui rice.
Collapse
Affiliation(s)
- Jing Hu
- China National Center for Food Safety Risk Assessment, Beijing, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, Beijing, China
| | - Chunlai Liang
- China National Center for Food Safety Risk Assessment, Beijing, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, Beijing, China
| | - Xiaopeng Zhang
- China National Center for Food Safety Risk Assessment, Beijing, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, Beijing, China
| | - Qiannan Zhang
- China National Center for Food Safety Risk Assessment, Beijing, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, Beijing, China
| | - Wenming Cui
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhou Yu
- China National Center for Food Safety Risk Assessment, Beijing, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, Beijing, China.
| |
Collapse
|
4
|
Gotardo AT, Dipe VV, Hueza IM, Górniak SL. Maternal feed restriction during pregnancy in Wistar rats: Evaluation of offspring using classical and immunoteratology protocols. Hum Exp Toxicol 2016; 36:603-615. [DOI: 10.1177/0960327116660750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies have revealed that impairment of the pregnant body weight reduces the fetal body weight and causes minor changes in skeletal development. The aim of the present study was to assess the effects of maternal feed restriction during pregnancy in offspring immune system development. Pregnant Wistar rats were distributed into 5 groups: 1 control in which dams received food ad libitum and 4 experimental groups in which dams were fed restricted amounts of rodent ration (16, 12, 9, or 6 g/rat/day) from the 6th to 17th gestation day. Teratogenicity was assessed using classical teratological evaluation and developmental immunotoxicology protocols. Maternal body weight gain, fetus weight, and placenta weight were reduced for feed-restricted females from the groups fed 12, 9, and 6 g/rat/day ( p < 0.05). No pup mortality was observed immediately after cesarean sections among the groups, and no visceral or skeletal malformations were detected. An immunoteratological study revealed an increase in the relative weight of the thymus and an increase in the phorbol myristate-acetate solution-induced hydrogen peroxide release by inflammatory cells in 21-day-old pups. Alterations in the delayed-type hypersensitivity response and the humoral immune response against sheep red blood cells were observed in pups from feed-restricted mothers. Feed restriction in Wistar rats during organogenesis did not promote structural malformations but resulted in offspring with lower birth weights and promoted significant changes in the immune responses of the rat pups.
Collapse
Affiliation(s)
- AT Gotardo
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| | - VV Dipe
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| | - IM Hueza
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Campus Diadema, Diadema, Brazil
| | - SL Górniak
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, Research Centre for Veterinary Toxicology (CEPTOX), University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
5
|
Spichiger C, Torres-Farfan C, Galdames HA, Mendez N, Alonso-Vazquez P, Richter HG. Gestation under chronic constant light leads to extensive gene expression changes in the fetal rat liver. Physiol Genomics 2015; 47:621-33. [DOI: 10.1152/physiolgenomics.00023.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Recent reports account for altered metabolism in adult offspring from pregnancy subjected to abnormal photoperiod, suggesting fetal programming of liver physiology. To generate a pipeline of subsequent mechanistic experiments addressing strong candidate genes, here we investigated the effects of constant gestational light on the fetal liver transcriptome. At 10 days of gestation, dams were randomized in two groups ( n = 7 each): constant light (LL) and normal photoperiod (12 h light/12 h dark; LD). At 18 days of gestation, RNA was isolated from the fetal liver and subjected to DNA microarray (Affymetrix platform for 28,000 genes). Selected differential mRNAs were validated by quantitative PCR (qPCR), while integrated transcriptional changes were analyzed with Ingenuity Pathway Analysis and other bioinformatics tools. Comparison of LL relative to LD fetal liver led to the following findings. Significant differential expression was found for 3,431 transcripts (1,960 upregulated and 1,471 downregulated), with 393 of them displaying ≥ 1.5-fold change. We validated 27 selected transcripts by qPCR, which displayed fold-change values highly correlated with microarray ( r2 = 0.91). Different markers of nonalcoholic fatty liver disease were either upregulated (e.g., Ndn and Pnpla3) or downregulated (e.g., Gnmt, Bhmt1/2, Sult1a1, Mpo, and Mat1a). Diverse pathways were altered, including hematopoiesis, coagulation cascade, complement system, and carbohydrate and lipid metabolism. The microRNAs 7a-1, 431, 146a, and 153 were upregulated, while the abundant hepatic miRNA 122 was downregulated. Constant gestational light induced extensive modification of the fetal liver transcriptome. A number of differentially expressed transcripts belong to fundamental functional pathways, potentially contributing to long-term liver disease.
Collapse
Affiliation(s)
- Carlos Spichiger
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo A. Galdames
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Alonso-Vazquez
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratory of Developmental Chronobiology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Parker GA, Picut CA, Swanson C, Toot JD. Histologic Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat. Toxicol Pathol 2015; 43:794-815. [PMID: 25883109 DOI: 10.1177/0192623315578720] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system of the rat undergoes substantial functional and morphological development during the postnatal period. Some aspects of this development are genetically predetermined, while other aspects depend on environmental influences. Detailed information on postnatal development is important in the interpretation of histopathologic findings in juvenile toxicology and pubertal assay studies, as well as other studies conducted in juvenile rats. Studies were conducted to provide detailed characterization of histologic features of the major functional compartments of immune system organs in male and female Sprague-Dawley rats at weekly intervals from the day of birth through postnatal day (PND) 42. Maturation of the individual immune system organs occurred across a range of ages, with histologic maturation of T-cell-related compartments typically occurring prior to maturation of B-cell-related compartments. The sequence of histologic maturation was bone marrow and thymus on PND 14, mesenteric lymph node on PND 21, Peyer's patches and bronchus-associated lymphoid tissue on PND 28, mandibular lymph node, nasopharynx-associated lymphoid tissue, and diffuse mucosal mononuclear cell population of small intestine on PND 35, and spleen on PND 42. An estimation of functional maturation can be made based on the morphological indications of maturity of each compartment of immune system organs, but histologic indications of maturity do not confirm functional immunocompetence.
Collapse
|
7
|
The Development of Therapeutic Monoclonal Antibodies: Overview of the Nonclinical Safety Assessment. Curr Pain Headache Rep 2015; 19:2. [DOI: 10.1007/s11916-014-0472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Castro R, Abós B, Pignatelli J, von Gersdorff Jørgensen L, González Granja A, Buchmann K, Tafalla C. Early immune responses in rainbow trout liver upon viral hemorrhagic septicemia virus (VHSV) infection. PLoS One 2014; 9:e111084. [PMID: 25338079 PMCID: PMC4206492 DOI: 10.1371/journal.pone.0111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
Among the essential metabolic functions of the liver, in mammals, a role as mediator of systemic and local innate immunity has also been reported. Although the presence of an important leukocyte population in mammalian liver is well documented, the characterization of leukocyte populations in the teleost liver has been only scarcely addressed. In the current work, we have confirmed the presence of IgM+, IgD+, IgT+, CD8α+, CD3+ cells, and cells expressing major histocompatibility complex (MHC-II) in rainbow trout (Oncorhynchus mykiss) liver by flow cytometry and/or immunohistochemistry analysis. Additionally, the effect of viral hemorrhagic septicemia virus (VHSV) on the liver immune response was assessed. First, we studied the effect of viral intraperitoneal injection on the transcription of a wide selection of immune genes at days 1, 2 and 5 post-infection. These included a group of leukocyte markers genes, pattern recognition receptors (PRRs), chemokines, chemokine receptor genes, and other genes involved in the early immune response and in acute phase reaction. Our results indicate that T lymphocytes play a key role in the initial response to VHSV in the liver, since CD3, CD8, CD4, perforin, Mx and interferon (IFN) transcription levels were up-regulated in response to VHSV. Consequently, flow cytometry analysis of CD8α+ cells in liver and spleen at day 5 post-infection revealed a decrease in the number of CD8α+ cells in the spleen and an increased population in the liver. No differences were found however in the percentages of B lymphocyte (IgM+ or IgD+) populations. In addition, a strong up-regulation in the transcription levels of several PRRs and chemokines was observed from the second day of infection, indicating an important role of these factors in the response of the liver to viral infections.
Collapse
Affiliation(s)
- Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Beatriz Abós
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Jaime Pignatelli
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Louise von Gersdorff Jørgensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
- * E-mail:
| |
Collapse
|
9
|
Neal-Kluever A, Aungst J, Gu Y, Hatwell K, Muldoon-Jacobs K, Liem A, Ogungbesan A, Shackelford M. Infant toxicology: State of the science and considerations in evaluation of safety. Food Chem Toxicol 2014; 70:68-83. [DOI: 10.1016/j.fct.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 11/26/2022]
|
10
|
Affiliation(s)
| | - Raegan O’Lone
- ILSI Health and Environmental Sciences Institute (HESI), Washington, DC, USA
| |
Collapse
|
11
|
DeWitt JC, Peden-Adams MM, Keil DE, Dietert RR. Current Status of Developmental Immunotoxicity. Toxicol Pathol 2011; 40:230-6. [DOI: 10.1177/0192623311427709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Deborah E. Keil
- Medical Laboratory Sciences, Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Rodney R. Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Affiliation(s)
- George A. Parker
- WIL Research Laboratories, LLC, Hillsborough, North Carolina, USA
| | | |
Collapse
|