1
|
Yan-Rui W, Xue-Er Y, Mao-Yu D, Ya-Ting L, Bo-Heng L, Miao-Jie Z, Li Z. Research on the signaling pathway and the related mechanism of traditional Chinese medicine intervention in chronic gastritis of the "inflammation-cancer transformation". Front Pharmacol 2024; 15:1338471. [PMID: 38698812 PMCID: PMC11063381 DOI: 10.3389/fphar.2024.1338471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Objective: The aim of this study is to uncover the traditional Chinese medicine (TCM) treatments for chronic gastritis and their potential targets and pathways involved in the "inflammation-cancer" conversion in four stages. These findings can provide further support for future research into TCM and its active components. Materials and methods: The literature search encompassed PubMed, Web of Science, Google Scholar, CNKI, WanFang, and VIP, employing keywords such as "chronic gastritis", "gastric cancer", "traditional Chinese medicine", "medicinal herb", "Chinese herb", and "natural plant". Results: Herbal remedies may regulate the signaling pathways linked to the advancement of chronic gastritis. Under the multi-target and multi-pathway independent or combined reaction, the inflammatory microenvironment may be enhanced, leading to repair of damaged gastric mucosal cells, buffering the progress of mucosal atrophic degeneration via the decrease of inflammatory factor expression, inhibition of oxidative stress-induced damage, facilitation of microvascular neovascularization in the gastric mucosa and regulation of the processes of gastric mucosal cell differentiation and proliferation. Simultaneously, the decreased expression of inflammatory factors may impact the expression of associated oncogenes and regulate the malignant proliferation of cells, thereby achieving the treatment and prevention objectives of gastric cancer through the reduction of cell metastasis and apoptosis. Conclusion: Chinese medicine formulations and individual drugs can be utilised at various stages of the "inflammation-cancer" progression of chronic gastritis to prevent and treat gastric cancer in a multi-level, multi-targeted, and multi-directional fashion. This can provide guidance for the accurate application of medicines during different stages of "inflammation-cancer" transformation. New insights into the mechanism of inflammation-cancer transformation and the development of novel drugs for chronic gastritis can be gained through an extensive investigation of TCM treatment in this condition.
Collapse
Affiliation(s)
- Wang Yan-Rui
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yan Xue-Er
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Ding Mao-Yu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Ya-Ting
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lu Bo-Heng
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhai Miao-Jie
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Li
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
3
|
Radovanović K, Gavarić N, Aćimović M. Anti-Inflammatory Properties of Plants from Serbian Traditional Medicine. Life (Basel) 2023; 13:life13040874. [PMID: 37109403 PMCID: PMC10146037 DOI: 10.3390/life13040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation is a natural protective response of the human body to a variety of hostile agents and noxious stimuli. Standard anti-inflammatory therapy includes drugs whose usage is associated with a number of side effects. Since ancient times, natural compounds have been used for the treatment of inflammation. Traditionally, the use of medicinal plants is considered safe, inexpensive, and widely acceptable. In Serbia, traditional medicine, based on the strong belief in the power of medicinal herbs, is the widespread form of treatment. This is supported by the fact that Serbia is classified as one of 158 world centers of biodiversity, which confirms that this country is a treasure of medicinal herbs. Some of the most used herbs for the treatment of inflammations of various causes in Serbian tradition are yarrow, common agrimony, couch grass, onion, garlic, marshmallow, common birch, calendula, liquorice, walnut, St. John’s wort, chamomile, peppermint, white willow, sage, and many others. The biological activity and anti-inflammatory effect of selected plants are attributed to different groups of secondary biomolecules such as flavonoids, phenolic acids, sterols, terpenoids, sesquiterpenes, and tannins. This paper provides an overview of plants with traditional anti-inflammatory use in Serbia with reference to available studies that examined this effect. Plants used in traditional medicine could be a powerful source for the development of new remedies. Therefore intensive research on the bioactive potential of medicinal plants in each region should be the focus of scientists around the world.
Collapse
|
4
|
Abdollahi E, Johnston TP, Ghaneifar Z, Vahedi P, Goleij P, Azhdari S, Moghaddam AS. Immunomodulatory Therapeutic Effects of Curcumin on M1/M2 Macrophage Polarization in Inflammatory Diseases. Curr Mol Pharmacol 2023; 16:2-14. [PMID: 35331128 DOI: 10.2174/1874467215666220324114624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to their plasticity, macrophages exert critical effects on both promoting and suppressing inflammatory processes. Pathologic inflammatory conditions are frequently correlated with dynamic alterations in macrophage activation, with classically activated M1 cells associated with the promotion and maintenance of inflammation and M2 cells being linked to the resolution or smouldering of chronic inflammation. Inflammation deputes a common feature of various chronic diseases and the direct involvement in the insurgence and development of these conditions. Macrophages participate in an autoregulatory loop characterizing the inflammatory process, as they produce a wide range of biologically active mediators that exert either deleterious or beneficial effects during the inflammation. Therefore, balancing the favorable ratios of M1/M2 macrophages can help ameliorate the inflammatory landscape of pathologic conditions. Curcumin is a component of turmeric with many pharmacological properties. OBJECTIVE Recent results from both in-vivo and in-vitro studies have indicated that curcumin can affect polarization and/or functions of macrophage subsets in the context of inflammation-related diseases. There is no comprehensive review of the impact of curcumin on cytokines involved in macrophage polarization in the context of inflammatory diseases. The present review will cover some efforts to explore the underlying molecular mechanisms by which curcumin modulates the macrophage polarization in distant pathological inflammatory conditions, such as cancer, autoimmunity, renal inflammation, stroke, atherosclerosis, and macrophage-driven pathogenesis. RESULTS The accumulation of the findings from in vitro and in vivo experimental studies suggests that curcumin beneficially influences M1 and M2 macrophages in a variety of inflammatory diseases with unfavorable macrophage activation. CONCLUSION Curcumin not only enhances anti-tumor immunity (via shifting M polarization towards M1 phenotype and/or up-regulation of M1 markers expression) but ameliorates inflammatory diseases, including autoimmune diseases (experimental autoimmune myocarditis and Behcet's disease), nephropathy, chronic serum sickness, stroke, and atherosclerosis.
Collapse
Affiliation(s)
- Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Missouri, USA
| | - Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Abbas Shapouri Moghaddam
- Department of Immunology, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
6
|
Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation 2021; 18:276. [PMID: 34838047 PMCID: PMC8627624 DOI: 10.1186/s12974-021-02325-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Erskine Chu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6, 89 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Prahran, VIC, 3181, Australia.
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
7
|
Stanojević S, Blagojević V, Ćuruvija I, Vujić V. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 2021; 44:2429-2447. [PMID: 34505975 DOI: 10.1007/s10753-021-01513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163- and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia. .,Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia.
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Ahmad G, Hassan R, Dhiman N, Ali A. Assessment of Anti-inflammatory Activity of 3-Acetylmyricadiol in LPS Stimulated Raw 264.7 Macrophages. Comb Chem High Throughput Screen 2021; 25:204-210. [PMID: 33745430 DOI: 10.2174/1386207324666210319122650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activity including anti-inflammatory action. OBJECTIVE In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark-extract of Myrica esculenta and evaluated it for anti-inflammatory potential. METHODS The ethyl acetate bark-extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like Nitric oxide, IL-6, TNF-α was observed after administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated Raw 246.7 macrophages by the reported methods. RESULTS MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of Nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, 55.37 % inhibition of Nitric oxide, IL-6, TNF-α respectively. CONCLUSION Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh- 201301. India
| | - Reyaz Hassan
- Department of Pharmaceutical Sciences, University of Kashmir-190006. India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh- 201301. India
| | - Asif Ali
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India,CSIR-Traditional Knowledge Digital Library (TKDL), 14-Satsang Vihar, Vigyan Suchna Bhawan, New Delhi-110067, India
| |
Collapse
|
9
|
Apriasari ML, Pramitha SR, Puspitasari D, Ernawati DS. Anti-Inflammatory Effect of Musa acuminata Stem. Eur J Dent 2020; 14:294-298. [PMID: 32396971 PMCID: PMC7296443 DOI: 10.1055/s-0040-1709944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE This study was designed to assess the anti-inflammatory effect of Musa acuminata through the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa β (NF-κB) after 3 days of application of Musa acuminata stem extract (MASE) gel on oral mucosal wound. MATERIALS AND METHODS An experimental study with post-test only control group design was conducted. Twenty male Rattus norvegicus (Wistar) were injured on their left buccal mucosa and treated three times a day with MASE gel of varying concentrations: 0% (as control), MASE 25%, MASE 37.5%, and MASE 50%. On day 3, a biopsy was performed on each mucosal wound for later immunohistochemical analysis for the expressions of TNF-α and NF-κB. RESULTS The highest expression of TNF-α was observed in the control group (13.20 ± 1.79), while the lowest was in the treatment group using 50% MASE (6.40 ± 1.14). Meanwhile the comparison between treatment groups did not highlight any significant difference (p > 0.05). The highest expression of NF-κB was observed in the control group (13.20 ± 1.30), whereas the lowest was in the treatment group using MASE 50% (6.40 ± 1.14). NF-κB was significantly lower in the treatment group using MASE 50% when compared with other treatment groups (p < 0.05). CONCLUSION Application of MASE on mucosal wound reduces the expression of TNF-α and NF-κB at all concentrations. The anti-inflammatory effect of MASE 50% was the strongest one.
Collapse
Affiliation(s)
- Maharani Laillyza Apriasari
- Department of Oral Medicine, Faculty of Dentistry, Lambung Mangkurat University, Kalimantan Selatan, Indonesia
| | - Selviana Rizky Pramitha
- Department of Oral Medicine, Faculty of Dentistry, Lambung Mangkurat University, Kalimantan Selatan, Indonesia
| | - Dewi Puspitasari
- Department of Dental Material, Faculty of Dentistry, Lambung Mangkurat University, Kalimantan Selatan, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Jurczyk MU, Żurawski J, Wirstlein PK, Kowalski K, Jurczyk M. Response of inflammatory cells to biodegradable ultra-fine grained Mg-based composites. Micron 2019; 129:102796. [PMID: 31821933 DOI: 10.1016/j.micron.2019.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/29/2022]
Abstract
Ultra-fine grained biodegradable Mg-based Mg1Zn1Mn0.3 Zr - HA and Mg4Y5.5Dy0.5 Zr - 45S5 Bioglass composites have shown great medical potential. Two types of these Mg-based biomaterials subjected to different treatments were tested and as shown earlier they are biocompatible. The aim of the study is to determine how much culture media incubated with these ultra-fine trained Mg-based composites can cause inflammatory reactions and /or periodontal cell death. The incubation of composites in the medium releases metal ions into the solution. It can be assumed that this process is permanent and also occurs in the human body. The results have shown that the effect of proinflammatory IL-6 and TNF- cytokines results in the strongest production of the acute phase proteins in the first day on the Mg1Zn1Mn0.3 Zr-5 wt.% HA-1 wt. % Ag HF-treated biocomposite after immersion for 2 h in 40 % HF and then the fastest decrease in these processes on the third day. In turn, the inflammatory process induced on the Mg1Zn1Mn0.3 Zr-5 wt.% HA-1 wt. % Ag biomaterial, in BAX / BCL ratio assessment, is the strongest on the third day and maintains a significantly high level on the following day, which, at the same time, confirms its persistence and development. In addition, these results confirm the successively generated necrotic processes. Ions can induce inflammatory reactions, which in the case of the implant may take a long time, which results in the loss of the implant. Even if the material is biocompatible in rapid in-vitro tests, it can induce inflammation in the body after some time due to the release of ions. Not every treatment improves the material's properties in terms of subsequent safety.
Collapse
Affiliation(s)
- Mieczyslawa U Jurczyk
- Division of Mother's and Child's Health, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland.
| | - Jakub Żurawski
- Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Przemyslaw K Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535, Poznan, Poland.
| | - Kamil Kowalski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61138, Poznan, Poland.
| | - Mieczyslaw Jurczyk
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61138, Poznan, Poland.
| |
Collapse
|
11
|
Costantino E, Actis AB. Dietary Fatty Acids and Other Nutrients in Relation to Inflammation and Particularly to Oral Mucosa Inflammation. A Literature Review. Nutr Cancer 2018; 71:718-730. [PMID: 30450980 DOI: 10.1080/01635581.2018.1521439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is site of inflammatory process development. When they are chronic, they provide a microenvironment based on cytokines and inflammatory mediators that contribute to cancer initiation, progression, invasion, and metastasis. Certain dietary fatty acids (FAs) have immunomodulatory, inflammatory, and antiinflammatory effects. This review examined the literature on inflammation, mainly referred to the oral mucosa, and its association with dietary FAs and other nutrients. A Pubmed search of studies published in English until June 2018 was carried out. N-3 FAs have shown immunomodulatory and antiinflammatory activity in certain human diseases. These FAs and their mediators may inhibit inflammation, angiogenesis, and cancer via multiple mechanisms. Studies on cellular models of murine and human intestinal mucosa indicate association between dietary n-3 FA intake and the inflammatory state of mucosa membranes. Nevertheless scarce information on the association between dietary FAs and oral inflammation could be found. Based on the evidence, we hypothesize that n-3 FAs reduce the oral mucosa inflammation thus decreasing the risk of developing precancerous lesions and cancer. Molecular and clinical studies referred to this topic should be carried out as a contribution to the oral cancer prevention.
Collapse
Affiliation(s)
- Evangelina Costantino
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Adriana Beatriz Actis
- a Cátedra B de Anatomía, Facultad de Odontología , Universidad Nacional de Córdoba , Córdoba , Argentina.,b Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET y Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
12
|
Braconi D, Giustarini D, Marzocchi B, Peruzzi L, Margollicci M, Rossi R, Bernardini G, Millucci L, Gallagher JA, Le Quan Sang KH, Imrich R, Rovensky J, Al-Sbou M, Ranganath LR, Santucci A. Inflammatory and oxidative stress biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthritis Cartilage 2018; 26:1078-1086. [PMID: 29852277 DOI: 10.1016/j.joca.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work was to assess baseline serum levels of established biomarkers related to inflammation and oxidative stress in samples from alkaptonuric subjects enrolled in SONIA1 (n = 40) and SONIA2 (n = 138) clinical trials (DevelopAKUre project). METHODS Baseline serum levels of Serum Amyloid A (SAA), IL-6, IL-1β, TNFα, CRP, cathepsin D (CATD), IL-1ra, and MMP-3 were determined through commercial ELISA assays. Chitotriosidase activity was assessed through a fluorimetric method. Advanced Oxidation Protein Products (AOPP) were determined by spectrophotometry. Thiols, S-thiolated proteins and Protein Thiolation Index (PTI) were determined by spectrophotometry and HPLC. Patients' quality of life was assessed through validated questionnaires. RESULTS We found that SAA serum levels were significantly increased compared to reference threshold in 57.5% and 86% of SONIA1 and SONIA2 samples, respectively. Similarly, chitotriosidase activity was above the reference threshold in half of SONIA2 samples, whereas CRP levels were increased only in a minority of samples. CATD, IL-1β, IL-6, TNFα, MMP-3, AOPP, thiols, S-thiolated protein and PTI showed no statistically significant differences from control population. We provided evidence that alkaptonuric patients presenting with significantly higher SAA, chitotriosidase activity and PTI reported more often a decreased quality of life. This suggests that worsening of symptoms in alkaptonuria (AKU) is paralleled by increased inflammation and oxidative stress, which might play a role in disease progression. CONCLUSIONS Monitoring of SAA may be suggested in AKU to evaluate inflammation. Though further evidence is needed, SAA, chitotriosidase activity and PTI might be proposed as disease activity markers in AKU.
Collapse
Affiliation(s)
- D Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - D Giustarini
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy.
| | - B Marzocchi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy.
| | - L Peruzzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - M Margollicci
- UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - R Rossi
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Siena, Italy.
| | - G Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - L Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - J A Gallagher
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.
| | | | - R Imrich
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - J Rovensky
- National Institute of Rheumatic Diseases, Piešťany, Slovakia.
| | - M Al-Sbou
- Department of Pharmacology, Alkaptonuria Research Office, Faculty of Medicine, Mutah University, Mutah, Karak, Jordan.
| | - L R Ranganath
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK; Department of Clinical Biochemistry and Metabolism, Royal Liverpool University Hospital, Liverpool, UK.
| | - A Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|
13
|
Gomes BS, Neto BPS, Lopes EM, Cunha FVM, Araújo AR, Wanderley CWS, Wong DVT, Júnior RCPL, Ribeiro RA, Sousa DP, Venes R Medeiros J, Oliveira RCM, Oliveira FA. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem Biol Interact 2017; 273:73-81. [PMID: 28559105 DOI: 10.1016/j.cbi.2017.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Myrtenol is a bicyclic monoterpene with anti-inflammatory properties. However, the mechanisms involved are partially unknown. Here, we investigated the effect of myrtenol during experimental chronic arthritis and the possible modulating activity of oxidative stress and neutrophil migration. Complete Freund's Adjuvant (CFA)-sensitized rats were treated with vehicle (1 mL/kg, po), myrtenol (12.5, 25 or 50 mg/kg, po), indomethacin (10 mg/kg, po) or dexamethasone (0.4 mg/kg) followed by intra-articular injection of CFA (0.5 mg/mL, 50 μL per joint). Then, paw edema and articular incapacitation (paw elevation time) were evaluated for 14 days. On the last day, a blood concentration superoxide dismutase (SOD) and nitrite was determined. In another experimental setting, human neutrophils were incubated with vehicle (sterile saline, 1 mL) or myrtenol (10-100 ng/mL) and the in vitro chemotaxis to N-formylmethionine-leucyl-phenylalanine (fMLP) (10-7 M/well) was evaluated. In addition, antiinflammatory effect of myrtenol was investigated in carrageenan-induced peritonitis. We found that CFA induced a prominent paw swelling and incapacitation of the joint, which were significantly prevented by myrtenol (P < 0.05). In addition, blood accumulation nitrite was attenuated by myrtenol when compared with vehicle-treated CFA group (P < 0.05). Furthermore, plasma levels of SOD were significantly increased by myrtenol versus vehicle-treated CFA group (P < 0.05). Moreover, fMLP-triggered neutrophil chemotaxis and carrageenan-induced peritonitis were markedly prevented by myrtenol (P < 0.05). Therefore, myrtenol showed anti-inflammatory and antinociceptive effects on experimental chronic arthritis, which seems to be related to the direct modulation of neutrophil migration and antioxidant activity.
Collapse
Affiliation(s)
- Bruno S Gomes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Benedito P S Neto
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Everton M Lopes
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco V M Cunha
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Alyne R Araújo
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Carlos W S Wanderley
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Deysi V T Wong
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberto César P L Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronaldo A Ribeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Damião P Sousa
- Department of Pharmaceutical Sciences, Federal University of Parnaíba, João Pessoa, Paraíba, Brazil
| | - Jand Venes R Medeiros
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Rita C M Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco A Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
14
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
15
|
The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol Cell Biol 2016; 36:2583-95. [PMID: 27503855 DOI: 10.1128/mcb.00161-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca(2+), and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.
Collapse
|
16
|
Chae HS, Yoo H, Kim YM, Choi YH, Lee CH, Chin YW. Anti-Inflammatory Effects of 6,8-Diprenyl-7,4'-dihydroxyflavanone from Sophora tonkinensis on Lipopolysaccharide-Stimulated RAW 264.7 Cells. Molecules 2016; 21:molecules21081049. [PMID: 27529198 PMCID: PMC6274169 DOI: 10.3390/molecules21081049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022] Open
Abstract
The anti-inflammatory effects and molecular mechanism of 6,8-diprenyl-7,4′-dihydroxyflavanone (DDF), one of the flavanones found in Sophora tonkinensis, were assessed in vitro through macrophage-mediated inflammation in the present study. The anti-inflammatory effects of DDF were not previously reported. DDF inhibited the production of nitric oxide and the expression of tumor necrosis factor α, interleukin-1β, and interleukin-6. Furthermore, the activation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinases (ERKs) in lipopolysaccharide-stimulated macrophages was suppressed by treatment with DDF. Therefore, DDF demonstrated potentially anti-inflammatory effects via the blockade of NF-κB and ERK activation in macrophages.
Collapse
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Hunseung Yoo
- New Drug Preclinical & Analytical Team, Life Science R & D Center, SK Chemicals, 310 Pangyo-ro 463-400, Korea.
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Chang Hoon Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-820, Korea.
| |
Collapse
|
17
|
Chae HS, Yoo H, Choi YH, Choi WJ, Chin YW. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways. Biol Pharm Bull 2016; 39:259-66. [DOI: 10.1248/bpb.b15-00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hee-Sung Chae
- College of Pharmacy and BK21plus R-Find Team, Dongguk University-Seoul
| | - Hunseung Yoo
- New Drug Preclinical & Analytical Team, Life Science R&D Center, SK Chemicals
| | - Young Hee Choi
- College of Pharmacy and BK21plus R-Find Team, Dongguk University-Seoul
| | - Won Jun Choi
- College of Pharmacy and BK21plus R-Find Team, Dongguk University-Seoul
| | - Young-Won Chin
- College of Pharmacy and BK21plus R-Find Team, Dongguk University-Seoul
| |
Collapse
|
18
|
Qin W, Wang L, Zhai R, Ma Q, Liu J, Bao C, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 2015; 109:51-70. [PMID: 26494209 DOI: 10.1007/s10482-015-0609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.
Collapse
Affiliation(s)
- Wanhai Qin
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.,College of Animal Science, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Ruidong Zhai
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Qiuyue Ma
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianfang Liu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hu Zhang
- School of Public Health, Jilin University, Changchun, People's Republic of China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chongtao Du
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - P R Langford
- Section of Paediatrics, Imperial College London, London, UK
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
19
|
Reddy NM, Potteti HR, Vegiraju S, Chen HJ, Tamatam CM, Reddy SP. PI3K-AKT Signaling via Nrf2 Protects against Hyperoxia-Induced Acute Lung Injury, but Promotes Inflammation Post-Injury Independent of Nrf2 in Mice. PLoS One 2015; 10:e0129676. [PMID: 26075390 PMCID: PMC4467869 DOI: 10.1371/journal.pone.0129676] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
Lung epithelial and endothelial cell death accompanied by inflammation contributes to hyperoxia-induced acute lung injury (ALI). Impaired resolution of ALI can promote and/or perpetuate lung pathogenesis, including fibrosis. Previously, we have shown that the transcription factor Nrf2 induces cytoprotective gene expression and confers protection against hyperoxic lung injury, and that Nrf2-mediated signaling is also crucial for the restoration of lung homeostasis post-injury. Although we have reported that PI3K/AKT signaling is required for Nrf2 activation in lung epithelial cells, significance of the PI3K/AKT-Nrf2 crosstalk during hyperoxic lung injury and repair remains unclear. Thus, we evaluated this aspect using Nrf2 knockout (Nrf2–/–) and wild-type (Nrf2+/+) mouse models. Here, we show that pharmacologic inhibition of PI3K/AKT signaling increased lung inflammation and alveolar permeability in Nrf2+/+ mice, accompanied by decreased expression of Nrf2-target genes such as Nqo1 and Hmox1. PI3K/AKT inhibition dampened hyperoxia-stimulated Nqo1 and Hmox1 expression in lung epithelial cells and alveolar macrophages. Contrasting with its protective effects, PI3K/AKT inhibition suppressed lung inflammation in Nrf2+/+ mice during post-injury. In Nrf2–/– mice exposed to room-air, PI3K/AKT inhibition caused lung injury and inflammation, but it did not exaggerate hyperoxia-induced ALI. During post-injury, PI3K/AKT inhibition did not augment, but rather attenuated, lung inflammation in Nrf2–/– mice. These results suggest that PI3K/AKT-Nrf2 signaling is required to dampen hyperoxia-induced lung injury and inflammation. Paradoxically, the PI3K/AKT pathway promotes lung inflammation, independent of Nrf2, during post-injury.
Collapse
Affiliation(s)
- Narsa M. Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Haranatha R. Potteti
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Suryanarayana Vegiraju
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hsin-Jou Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chandra Mohan Tamatam
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 2015; 125:2748-58. [PMID: 26075824 DOI: 10.1172/jci80300] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane-initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell-initiated pathway functioned independently of the liver X receptor (LXR) sterol-sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo.
Collapse
|
21
|
Yang X, Wei H, Qin L, Zhang S, Wang X, Zhang A, Du L, Zhou H. Reciprocal interaction between fish TGF-β1 and IL-1β is responsible for restraining IL-1β signaling activity in grass carp head kidney leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:197-204. [PMID: 25092146 DOI: 10.1016/j.dci.2014.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
In the present study, we found that recombinant grass carp IL-1β (rgcIL-1β) simultaneously up-regulated grass carp IL-1β (gcIL-1β) and TGF-β1 (gcTGF-β1) expression via NF-κB and MAPK signaling in grass carp head kidney leukocytes (HKLs), promoting us to clarify whether TGF-β1 is an effective antagonist in IL-1β expression and activity. Our results showed that a stimulation of gcIL-1β on its own expression was noted within 6 h, but gcTGF-β1 neutralizing antibody prolonged gcIL-1β autostimulation up to 12 h, indicating a possible inhibitory role of gcTGF-β1 in regulating gcIL-1β effect. This notion was reinforced by the fact that recombinant grass carp TGF-β1 (rgcTGF-β1) could impede rgcIL-1β-induced gcIL-1β gene expression and secretion in a reciprocal manner. Further studies revealed that rgcTGF-β1 was able to attenuate rgcIL-1β-induced mRNA expression of its own receptor signaling molecules and the activation of NF-κB. By contrast, rgcIL-1β significantly amplified rgcTGF-β1-mediated gcTGF-β1 type I receptor (ALK5) expression and Smad2 phosphorylation in the same cell model. Taken together, these data shed light on an intrinsic mechanism for controlling inflammatory response by the reciprocal interaction between TGF-β1 and IL-1β in teleost.
Collapse
Affiliation(s)
- Xiao Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengnan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
22
|
Gotts JE, Matthay MA. Endogenous and exogenous cell-based pathways for recovery from acute respiratory distress syndrome. Clin Chest Med 2014; 35:797-809. [PMID: 25453426 PMCID: PMC4254691 DOI: 10.1016/j.ccm.2014.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regenerative medicine has entered a rapid phase of discovery, and much has been learned in recent years about the lung's response to injury. This article first summarizes the cellular and molecular mechanisms that damage the alveolar-capillary barrier, producing acute respiratory distress syndrome (ARDS). The latest understanding of endogenous repair processes is discussed, highlighting the diversity of lung epithelial progenitor cell populations and their regulation in health and disease. Finally, the past, present, and future of exogenous cell-based therapies for ARDS is reviewed.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
23
|
Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microb Pathog 2014; 78:74-86. [PMID: 25435362 DOI: 10.1016/j.micpath.2014.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/26/2014] [Indexed: 11/21/2022]
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are involved in amino acid, cofactor, and vitamin metabolism, and also include ABC transporters. These data demonstrate that A. pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the development of vaccines and medicines for both preventive and clinical use.
Collapse
|
24
|
Lv Y, Liu Q, Zhao M, Jin Y, Lu J. Role of biphasic changes in splenic dendritic cell activity in a mouse model of multiple organ dysfunction syndrome. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4720-4733. [PMID: 25197343 PMCID: PMC4152033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
To analyze the changes in splenic dendritic cell (DC) activity and serum cytokine levels during the progression of multiple organ dysfunction syndrome (MODS). A C57BL/6 mouse model of MODS was established by intraperitoneal injection of zymosan. Immunohistochemistry and flow cytometry were used to detect expression of I-A(b) (MHC-II molecules of mice) as well as co-stimulatory and co-inhibitory molecules in spleen and DC surface. The levels of various cytokines in serum and spleen tissue were analyzed 6 h, 12 h, 24 h, 48 h, 5 d and 12 d after injury. Death occurred at 24-48 h and 10-12 d after injury. The expression of I-A(b) and CD86 in spleen tissue and on DCs increased 6-12 h after injury, followed by gradual reduction and at 12 d. The inhibitory molecule, PD-L1, was expressed on normal DCs, but expression of PD-1 was undetectable. PD-L1 and PD-1 expression increased and remained high at 5 d and 12 d after injury. In addition, TNF and IL-1 levels increased 6-12 h after injury; HMGB1 and IL-10 levels increased 24 h and 5 d after injury, respectively. In contrast, IL-2 and IL-12 decreased with disease progression. At 12 d after injury, proinflammatory and anti-inflammatory cytokine levels remained high, while IL-2 and IL-12 were significantly reduced. IL-10 and IL-12 changes in spleen were consistent with those in serum. MODS progression was characterized by changes in splenic DC activity as well as altered serum pro-inflammatory and anti-inflammatory cytokine levels, suggesting early immune activation and predominant immune tolerance at the late stage.
Collapse
Affiliation(s)
- Yi Lv
- Department of Pathology, The First Affiliated Hospital of General Hospital of PLA Beijing 100048, China
| | - Qian Liu
- Department of Pathology, The First Affiliated Hospital of General Hospital of PLA Beijing 100048, China
| | - Min Zhao
- Department of Pathology, The First Affiliated Hospital of General Hospital of PLA Beijing 100048, China
| | - Yiduo Jin
- Department of Pathology, The First Affiliated Hospital of General Hospital of PLA Beijing 100048, China
| | - Jiangyang Lu
- Department of Pathology, The First Affiliated Hospital of General Hospital of PLA Beijing 100048, China
| |
Collapse
|
25
|
Önnheim K, Christenson K, Gabl M, Burbiel JC, Müller CE, Oprea TI, Bylund J, Dahlgren C, Forsman H. A novel receptor cross-talk between the ATP receptor P2Y2 and formyl peptide receptors reactivates desensitized neutrophils to produce superoxide. Exp Cell Res 2014; 323:209-217. [PMID: 24491917 DOI: 10.1016/j.yexcr.2014.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 11/24/2022]
Abstract
Neutrophils express several G-protein coupled receptors (GPCRs) and they cross regulate each other. We described a novel cross-talk mechanism in neutrophils, by which signals generated by the receptor for ATP (P2Y2) reactivate desensitized formyl peptide receptors (FPRs) so that these ligand-bound inactive FPRs resume signaling. At the signaling level, the cross-talk was unidirectional, i.e., P2Y2 ligation reactivated FPR, but not vice versa and was sensitive to the phosphatase inhibitor calyculinA. Further, we show that the cross talk between P2Y2 and FPR bypassed cytosolic Ca(2+) transients and did not rely on the actin cytoskeleton. In summary, our data demonstrate a novel cross-talk mechanism that results in reactivation of desensitized FPRs and, an amplification of the neutrophil response to ATP.
Collapse
Affiliation(s)
- Karin Önnheim
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden
| | - Karin Christenson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden
| | - Joachim C Burbiel
- PharmaCenter Bonn, Pharmaceutical Chemistry I at the Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Chemistry I at the Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Tudor I Oprea
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden; Division of Biocomputing, Department of Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg 413 46, Sweden.
| |
Collapse
|
26
|
Propofol reduces lipopolysaccharide-induced, NADPH oxidase (NOX 2) mediated TNF- α and IL-6 production in macrophages. Clin Dev Immunol 2013; 2013:325481. [PMID: 24371447 PMCID: PMC3859231 DOI: 10.1155/2013/325481] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
During an infection, lipopolysaccharide (LPS) stimulates the production of reactive oxygen species (ROS), which is mediated, in large part, by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs); NOX2 is the major NOX isoform found in the macrophage cell membrane. While the immunomodulatory activity of propofol is highly documented, its effect on the LPS-induced NOX2/ROS/NF-κB signaling pathway in macrophages has not been addressed. In present study, we used murine macrophage cell line RAW264.7 pretreated with propofol and stimulated with LPS. IL-6 and TNF-α expression, ROS production, and NOX activity were determined. Results showed that propofol attenuated LPS-induced TNF-α and IL-6 expression. Moreover, LPS-stimulated phosphorylation of NF-κB and generation of ROS were weakened in response to propofol. Propofol also reduced LPS-induced NOX activity and expression of gp91phox and p47phox. We conclude that propofol modulates LPS signaling in macrophages by reducing NOX-mediated production of TNF-α and IL-6.
Collapse
|
27
|
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, Weigert A. Redox control of inflammation in macrophages. Antioxid Redox Signal 2013; 19:595-637. [PMID: 23311665 PMCID: PMC3718318 DOI: 10.1089/ars.2012.4785] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/14/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
Macrophages are present throughout the human body, constitute important immune effector cells, and have variable roles in a great number of pathological, but also physiological, settings. It is apparent that macrophages need to adjust their activation profile toward a steadily changing environment that requires altering their phenotype, a process known as macrophage polarization. Formation of reactive oxygen species (ROS), derived from NADPH-oxidases, mitochondria, or NO-producing enzymes, are not necessarily toxic, but rather compose a network signaling system, known as redox regulation. Formation of redox signals in classically versus alternatively activated macrophages, their action and interaction at the level of key targets, and the resulting physiology still are insufficiently understood. We review the identity, source, and biological activities of ROS produced during macrophage activation, and discuss how they shape the key transcriptional responses evoked by hypoxia-inducible transcription factors, nuclear-erythroid 2-p45-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor-γ. We summarize the mechanisms how redox signals add to the process of macrophage polarization and reprogramming, how this is controlled by the interaction of macrophages with their environment, and addresses the outcome of the polarization process in health and disease. Future studies need to tackle the option whether we can use the knowledge of redox biology in macrophages to shape their mediator profile in pathophysiology, to accelerate healing in injured tissue, to fight the invading pathogens, or to eliminate settings of altered self in tumors.
Collapse
Affiliation(s)
- Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I-Pathobiochemistry, Goethe-University Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jacob A, Chaves L, Eadon MT, Chang A, Quigg RJ, Alexander JJ. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology 2013; 139:328-37. [PMID: 23347386 DOI: 10.1111/imm.12079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/31/2022] Open
Abstract
Complement factor H (Cfh) is a key regulator of the complement cascade and protects C57BL/6 mice from immune complex-mediated complement-dependent glomerulonephritis. In chronic serum sickness (CSS) there are increased deposits of immune complexes in the glomeruli with inflammation and a scarring phenotype. As cucurmin is an effective anti-inflammatory agent and reduces complement activation, we hypothesized that it should alleviate renal disease in this setting. To determine the effectiveness of curcumin, an apoferritin-induced CSS model in Cfh-deficient (Cfh(-/-)) mice was used. Curcumin treatment (30 mg/kg) given every day in parallel with apoferritin reduced glomerulonephritis and enhanced kidney function (blood urea nitrogen, 45·4 ± 7·5 versus 35·6 ± 5·1; albuminuria, 50·1 ± 7·1 versus 15·7 ± 7·1; glomerulonephritis, 2·62 + 0·25 versus 2 + 0·3, P < 0·05). In line with reduced IgG deposits in mice with CSS given curcumin, C9 deposits were reduced indicating reduced complement activation. Mice treated with curcumin had a significant reduction in the number of splenic CD19(+) B cells and the ratio of CD19 : CD3 cells (P < 0·05) with no change in the T-cell population. Myeloperoxidase assay showed reduced macrophages in the kidney. However, a significant reduction in the M2 subset of splenic macrophages by apoferritin was prevented by curcumin, suggesting a protective function. Curcumin treatment reduced mRNA expression of inflammatory proteins monocyte chemoattractant protein-1 and transforming growth factor-β and matrix proteins, fibronectin, laminin and collagen. Our results clearly illustrate that curcumin reduces glomerulosclerosis, improves kidney function and could serve as a therapeutic agent during serum sickness.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
29
|
Peters KN, Dhariwala MO, Hughes Hanks JM, Brown CR, Anderson DM. Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague. PLoS Pathog 2013; 9:e1003324. [PMID: 23633954 PMCID: PMC3636031 DOI: 10.1371/journal.ppat.1003324] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/08/2013] [Indexed: 12/24/2022] Open
Abstract
Yersinia pestis causes pneumonic plague, a disease characterized by inflammation, necrosis and rapid bacterial growth which together cause acute lung congestion and lethality. The bacterial type III secretion system (T3SS) injects 7 effector proteins into host cells and their combined activities are necessary to establish infection. Y. pestis infection of the lungs proceeds as a biphasic inflammatory response believed to be regulated through the control of apoptosis and pyroptosis by a single, well-conserved T3SS effector protein YopJ. Recently, YopJ-mediated pyroptosis, which proceeds via the NLRP3-inflammasome, was shown to be regulated by a second T3SS effector protein YopK in the related strain Y. pseudotuberculosis. In this work, we show that for Y. pestis, YopK appears to regulate YopJ-mediated apoptosis, rather than pyroptosis, of macrophages. Inhibition of caspase-8 blocked YopK-dependent apoptosis, suggesting the involvement of the extrinsic pathway, and appeared cell-type specific. However, in contrast to yopJ, deletion of yopK caused a large decrease in virulence in a mouse pneumonic plague model. YopK-dependent modulation of macrophage apoptosis was observed at 6 and 24 hours post-infection (HPI). When YopK was absent, decreased populations of macrophages and dendritic cells were seen in the lungs at 24 HPI and correlated with resolution rather than progression of inflammation. Together the data suggest that Y. pestis YopK may coordinate the inflammatory response during pneumonic plague through the regulation of apoptosis of immune cells. In this work, we studied the mechanism whereby bacteria manipulate innate immune responses by controlling host cell death. Yersinia pestis, the causative agent of plague, requires effector Yops of the Type III Secretion System (T3SS) to evade the innate immune system during infection. We show that Yersinia induces apoptosis of macrophages through two distinct mechanisms, each through the activity of the well-characterized T3SS effector YopJ, yet regulated in an opposing manner through the activity of a second effector protein YopK. In a murine pneumonic plague model, we found evidence that YopK regulates apoptosis of macrophages during the early stage of infection, leading to uncontrolled inflammation and disease. In contrast, the absence of YopK-regulated apoptosis allowed recruitment of lymphocytes and CCR2+ immune cells which led to bacterial clearance and resolution of inflammation. Together the data suggest that Yersinia YopK modulates apoptosis of immune cells to control the inflammatory response during plague.
Collapse
Affiliation(s)
- Kristen N. Peters
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Miqdad O. Dhariwala
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Jennifer M. Hughes Hanks
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Charles R. Brown
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Impact of microbes on autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2013; 61:175-86. [PMID: 23417246 DOI: 10.1007/s00005-013-0216-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Autoimmune and autoinflammatory diseases arise as a consequence of complex interactions of environmental factors with genetic traits. Although specific allelic variations cluster in predisposed individuals and promote the generation and/or expansion of autoreactive T and B lymphocytes, autoimmunity appears in various disease phenotypes and localizes to diverging tissues. Furthermore, the discovery that allelic variations within genes encoding components of the innate immune system drive self-reactive immune responses as well, led to the distinction of immune responses against host tissues into autoimmune and autoinflammatory diseases. In both categories of disorders, different pathogenic mechanisms and/or subsequent orders of tissue assaults may underlie the target cell specificity of the respective autoimmune attack. Furthermore, the transition from the initial tissue assault to the development of full-blown disease is likely driven by several factors. Thus, the development of specific forms of autoimmunity and autoinflammation reflects a multi-factorial process. The delineation of the specific factors involved in the pathogenic process is hampered by the fact that certain symptoms are assembled under the umbrella of a specific disease, although they might originate from diverging pathogenic pathways. These multi-factorial triggers and pathogenic pathways may also explain the inter-individual divergent courses and outcomes of diseases among humans. Here, we will discuss the impact of different environmental factors in general and microbial pathogens in particular on the regulation/expression of genes encoded within susceptibility alleles, and its consequences on subsequent autoimmune and/or autoinflammatory tissue damage utilizing primarily the chronic cholestatic liver disease primary biliary cirrhosis as model.
Collapse
|
31
|
Karimian P, Kavoosi G, Amirghofran Z. Anti-inflammatory effect ofMentha longifoliain lipopolysaccharide-stimulated macrophages: Reduction of nitric oxide production through inhibition of inducible nitric oxide synthase. J Immunotoxicol 2013; 10:393-400. [DOI: 10.3109/1547691x.2012.758679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|