1
|
Kim TW, Papagiannis CN, Zwick LS, Snyder P, Engelhardt JA, Yu RZ, Hoffmaster CM, Rastogi A, Henry SP. Carcinogenicity assessment of inotersen in Tg.rasH2 mice and Sprague-Dawley rats: Implications for 2'-MOE antisense oligonucleotides. Regul Toxicol Pharmacol 2025; 155:105743. [PMID: 39580013 DOI: 10.1016/j.yrtph.2024.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Inotersen, a 2'-O-(2-methoxyethyl) modified antisense oligonucleotide (2'-MOE ASO), is approved for the treatment of hereditary transthyretin-mediated amyloidosis (hATTR). It underwent a comprehensive nonclinical safety evaluation, including safety pharmacology, repeat-dose toxicity, genotoxicity, reproductive and development toxicity, and carcinogenicity studies. Tumorigenic potential was assessed through dedicated carcinogenicity studies in transgenic rasH2 (Tg.rasH2) mice and Sprague Dawley (SD) rats. In the 26-week Tg.rasH2 mouse study, inotersen and a mouse-active surrogate (ISIS 401724) were administered as weekly subcutaneous (SC) doses up to 80 mg/kg and 30 mg/kg, respectively. Proinflammatory effects and ASO accumulation in the liver and kidney, both well-documented class effects, were observed; however, no treatment-related neoplasms were noted. Similarly, the mouse surrogate did not induce any treatment-related neoplasms. In the 2-year SD rat carcinogenicity study, inotersen was administered as weekly SC doses up to 6 mg/kg. The primary dose-limiting effect at doses ≥2 mg/kg/week was an increased incidence of chronic progressive nephropathy (CPN), which contributed to decreased survival at the 6 mg/kg/week dose level. Notably, no renal neoplasia was associated with the increased CPN. Increasing mononuclear cell infiltrates at the injection site were linked to an increased incidence of subcutaneous fibrosarcoma at doses ≥2 mg/kg/week. This inflammation-associated injection site tumor in rats administered inotersen has limited relevance for humans. Additionally, the long-term assessment of ASO effects in rats is somewhat limited due to the ASO exacerbation of CPN and its impact on survival. There was no evidence of genotoxicity in vitro or in vivo at limit doses. Collectively, these data support a conclusion that a single carcinogenicity assessment in the Tg.rasH2 mouse, along with data from chronic toxicology studies in the rodent and nonrodent, is sufficient to assess carcinogenic potential for this drug class.
Collapse
Affiliation(s)
- Tae-Won Kim
- Ionis Pharmaceuticals, inc, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | | | - Laura S Zwick
- Zoetis, 333 Portage Street, Kalamazoo, MI, 49007, USA
| | - Paul Snyder
- EPL Midwest, 1305 Cumberland Ave. Ste. 200, West Lafayette, IN, 47906, USA
| | | | - Rosie Z Yu
- Ionis Pharmaceuticals, inc, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | - Archit Rastogi
- Ionis Pharmaceuticals, inc, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Scott P Henry
- Ionis Pharmaceuticals, inc, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| |
Collapse
|
2
|
Kim NW, Seo SM, Yoo ES, Kang AR, Lee JH, Lee JH, Kang BC, Lee HW, Choi YK. Short-term carcinogenicity study of N-methyl-N-nitrosourea in FVB-Trp53 heterozygous mice. PLoS One 2023; 18:e0280214. [PMID: 36608059 PMCID: PMC9821506 DOI: 10.1371/journal.pone.0280214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Carcinogenicity tests predict the tumorigenic potential of various substances in the human body by studying tumor induction in experimental animals. There is a need for studies that explore the use of FVB/N-Trp53em2Hwl/Korl (FVB-Trp53+/-) mice, created by TALEN-mediated gene targeting in Korea, in carcinogenicity tests. This study was performed to determine whether FVB-Trp53+/- mice are a suitable model for short-term carcinogenicity studies. To compare the carcinogenicity at different concentrations, 25, 50, and 75 mg/kg of N-methyl-N-nitrosourea (MNU), a known carcinogen, were administered intraperitoneally to FVB-Trp53+/- and wild-type male mice. After 26 weeks, the survival rate was significantly reduced in FVB-Trp53+/- mice compared to the wild-type mice in the 50 and 75 mg/kg groups. The incidence of thymic malignant lymphoma (TML) in the 50 and 75 mg/kg groups was 54.2 and 59.1% in FVB-Trp53+/- male mice, respectively. TML metastasized to the lungs, spleen, lymph nodes, liver, kidney, and heart in FVB-Trp53+/- male mice. Furthermore, the incidence of primary lung tumors, such as adenomas and adenocarcinomas, was 65.4, 62.5, and 45.4% in the FVB-Trp53+/- mice of the 25, 50, and 75 mg/kg groups, respectively. The main tumor types in FVB-Trp53+/- mice were TML and primary lung tumors, regardless of the dose of MNU administered. These results suggest that systemic tumors may result from malfunctions in the p53 gene and pathway, which is an important factor in the pathogenesis of human cancers. Therefore, FVB-Trp53 heterozygous mice are suitable for short-term carcinogenicity tests using positive carcinogens, and that the best result using MNU, a positive carcinogen, might have a single dose of 50 mg/kg.
Collapse
Affiliation(s)
- Na-Won Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ah-Reum Kang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hun Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Hoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hisada S, Tsubota K, Inoue K, Yamada H, Ikeda T, Sistare FD. Survey of tumorigenic sensitivity in 6-month rasH2-Tg mice studies compared with 2-year rodent assays. J Toxicol Pathol 2022; 35:53-73. [PMID: 35221496 PMCID: PMC8828610 DOI: 10.1293/tox.2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
The pharmacokinetic endpoint of a 25-fold increase in human exposure is one of the specified criteria for high-dose selection for 2-year carcinogenicity studies in rodents according to ICH S1C(R2). However, this criterion is not universally accepted for 6-month carcinogenicity tests in rasH2-Tg mice. To evaluate an appropriate multiple for rasH2-Tg mice, we evaluated data for 53 compounds across five categories of rasH2-Tg mouse-positive [(1) genotoxic and (2) non-genotoxic] carcinogens and rasH2-Tg mouse-negative [(3) non-genotoxic carcinogens with clear or uncertain human relevance; (4) non-genotoxic rodent-specific carcinogens; and (5) non-carcinogens], and surveyed their tumorigenic activities and high doses in rasH2-Tg mice and 2-year rodent models. Our survey indicated that area under the curve (AUC) margins (AMs) or body surface area-adjusted dose ratios (DRs) of tumorigenesis in rasH2-Tg mice to the maximum recommended human dose (MRHD) were 0.05- to 5.2-fold in 6 category (1) compounds with small differences between models and 0.2- to 47-fold in 7 category (2) including three 2-year rat study-negative compounds. Among all 53 compounds, including 40 compounds of the rasH2-Tg mouse-negative category (3), (4), and (5), no histopathologic risk factors for rodent neoplasia were induced only at doses above 50-fold AM or DR in rasH2-Tg mice except for two compounds, which induced hyperplasia and had no relationship with the tumors observed in the rasH2-Tg mouse or 2-year rodent studies. From the results of these surveys, we confirmed that exceeding a high dose level of 50-fold AM in rasH2-Tg mouse carcinogenicity studies does not appear to be of value.
Collapse
Affiliation(s)
- Shigeru Hisada
- Non-Clinical Evaluation Expert Committee, Drug Evaluation
Committee, The Japan Pharmaceutical Manufacturers Association, 2-3-11 Nihonbashi-Honcho,
Chuo-ku, Tokyo 103-0023, Japan
- ASKA Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi
2-chome, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Kenjiro Tsubota
- Non-Clinical Evaluation Expert Committee, Drug Evaluation
Committee, The Japan Pharmaceutical Manufacturers Association, 2-3-11 Nihonbashi-Honcho,
Chuo-ku, Tokyo 103-0023, Japan
- Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba-shi, Ibaraki
305-8585, Japan
| | - Kenji Inoue
- Non-Clinical Evaluation Expert Committee, Drug Evaluation
Committee, The Japan Pharmaceutical Manufacturers Association, 2-3-11 Nihonbashi-Honcho,
Chuo-ku, Tokyo 103-0023, Japan
- Maruho Co., Ltd., 93 Chudoji Awatacho, Shimogyo-ku, Kyoto
600-8815, Japan
| | - Hisaharu Yamada
- Non-Clinical Evaluation Expert Committee, Drug Evaluation
Committee, The Japan Pharmaceutical Manufacturers Association, 2-3-11 Nihonbashi-Honcho,
Chuo-ku, Tokyo 103-0023, Japan
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku,
Saitama 331-9530, Japan
| | - Takanori Ikeda
- Non-Clinical Evaluation Expert Committee, Drug Evaluation
Committee, The Japan Pharmaceutical Manufacturers Association, 2-3-11 Nihonbashi-Honcho,
Chuo-ku, Tokyo 103-0023, Japan
- MSD K.K., 1-13-12 Kudan-kita, Chiyoda-ku, Tokyo 102-8667,
Japan
| | - Frank D. Sistare
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA
19486-0004, USA
- Current Address: 315 Meadowmont Lane, Chapel Hill, NC 27517,
USA
| |
Collapse
|
4
|
Chevalier G, Aubert N, Thirion-Delalande C, Palate B, Singh P. Carcinogenicity Evaluation of Baclofen in TgrasH2 Mice. Toxicol Pathol 2021; 50:153-157. [PMID: 34814786 DOI: 10.1177/01926233211054767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Baclofen is a γ-aminobutyric acid-B receptor agonist used for control of spastic muscle activity and as a treatment for alcohol abuse. The review of the nonclinical database suggested a data gap for potential carcinogenicity following long-term use. Regulatory requirements for pharmaceutical safety testing of cancer-causing potential have historically included 2-year rodent studies in rats and mice. The availability of transgenic models with greater specificity and sensitivity to carcinogens provides safety testing alternatives that align with the 3Rs. The carcinogenicity of baclofen was evaluated in CB6F1-TgrasH2 transgenic mice following daily oral administration at 45, 90, and 180 mg/kg/d for 26 weeks, preceded by a 2-week drug-conditioning period. There were no treatment-related palpable masses or neoplastic findings, and survival rates were not affected by the baclofen treatment. In conclusion, baclofen was considered as noncarcinogenic in CB6F1-TgrasH2 mice, which is consistent with results previously obtained in a 2-year rat study.
Collapse
|
5
|
Sobajima A, Haniu H, Nomura H, Tanaka M, Takizawa T, Kamanaka T, Aoki K, Okamoto M, Yoshida K, Sasaki J, Ajima K, Kuroda C, Ishida H, Okano S, Ueda K, Kato H, Saito N. Organ accumulation and carcinogenicity of highly dispersed multi-walled carbon nanotubes administered intravenously in transgenic rasH2 mice. Int J Nanomedicine 2019; 14:6465-6480. [PMID: 31616140 PMCID: PMC6698589 DOI: 10.2147/ijn.s208129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Multiwalled carbon nanotubes (MWCNTs) have been known to enter the circulatory system via the lungs from inhalation exposure; however, its carcinogenicity and subsequent accumulation in other organs have not been adequately reported in the literature. Moreover, the safety of MWCNTs as a biomaterial has remained a matter of debate, particularly when the material enters the circulatory system. To address these problems, we used carcinogenic rasH2 transgenic mice to intravenously administer highly dispersed MWCNTs and to evaluate their carcinogenicity and accumulation in the organs. METHODS Two types of MWCNTs (thin- and thick-MWCNTs) were intravenously administered at a high dose (approximately 0.7 mg per kg body weight) and low dose (approximately 0.07 mg per kg body weight). RESULTS MWCNTs showed pancreatic accumulation in 3.2% of mice administered with MWCNTs, but there was no accumulation in other organs. In addition, there was no significant difference in the incidence of tumor among the four MWCNTs-administered groups compared to the vehicle group without MWCNTs administration. Blood tests revealed elevated levels in mean red blood cell volume and mean red blood cell hemoglobin level for the MWCNTs-administered group, in addition to an increase in eotaxin. CONCLUSION The present study demonstrated that the use of current technology to sufficiently disperse MWCNTs resulted in minimal organ accumulation with no evidence of carcinogenicity.
Collapse
Affiliation(s)
- Atsushi Sobajima
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hisao Haniu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hiroki Nomura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Manabu Tanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takashi Takizawa
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takayuki Kamanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kaoru Aoki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kazushige Yoshida
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Jun Sasaki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kumiko Ajima
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Chika Kuroda
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Satomi Okano
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Naoto Saito
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
6
|
Kim TW, Papagiannis CN, Zwick LS, Engelhardt JA, Hoffmaster CM, Post NM, Matson JE, Hsiao JA, Burel SA, Henry SP. Comparison of the Class Effects of Antisense Oligonucleotides in CByB6F1-Tg(HRAS)2Jic and CD-1 Mice. Toxicol Pathol 2018; 47:82-92. [PMID: 30585133 DOI: 10.1177/0192623318813143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 6-month Tg.rasH2 mouse carcinogenicity model provides an acceptable alternative to the 2-year carcinogenicity study in CD-1 mice. However, key questions related to the use of this model for testing antisense oligonucleotides (ASOs) include the similarity in the biologic response between mouse strains and the feasibility of using data from the CD-1 mouse to set doses and dose schedules for a Tg.rasH2 carcinogenicity study. To evaluate the potential strain differences, four distinct 2'- O-(2-methoxyethyl) ASOs were administered to CByB6F1 (wild type), Tg.rasH2 (hemizygous), and CD-1 mice. There were no meaningful differences in clinical signs, body weight, food consumption, or serum chemistry and hematology parameters. Histopathology evaluation indicated little to no difference in the spectrum or magnitude of changes present. The cytokine/chemokine response was also not appreciably different between the strains. This was consistent with the similarity in ASO concentration in the liver between the mouse strains tested. As the class effects of the ASOs were not meaningfully different between CD-1, CByB6F1, or Tg.rasH2 mice, data from nonclinical studies in CD-1 mice can be used for dose selection and expectation of effect in the Tg.rasH2 mouse.
Collapse
Affiliation(s)
- Tae-Won Kim
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | | | | | | | - Noah M Post
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | - Jill A Hsiao
- 1 Ionis Pharmaceutical, Carlsbad, California, USA
| | | | | |
Collapse
|
7
|
Modern conception of carcinogenesis creates opportunities to advance cancer risk assessment. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Twenty-six-week oral carcinogenicity study of 3-monochloropropane-1,2-diol in CB6F1-rasH2 transgenic mice. Arch Toxicol 2016; 91:453-464. [PMID: 27017489 DOI: 10.1007/s00204-016-1696-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The carcinogenic potential of 3-monochloro-1,2-propanediol (3-MCPD) was evaluated in a short-term carcinogenicity testing study using CB6F1 rasH2-Tg (rasH2-Tg) mice. 3-MCPD is found in many foods and food ingredients as a result of storage or processing and is regarded as a carcinogen since it is known to induce Leydig cell and kidney tumors in rats. Male and female rasH2-Tg mice were administered 3-MCPD once daily by oral gavage at doses of 0, 10, 20, and 40 mg/kg body weight (bw) per day for 26 weeks. As a positive control, N-methyl-N-nitrosourea (MNU) was administered as a single intraperitoneal injection (75 mg/kg). In 3-MCPD-treated mice, there was no increase in the incidence of neoplastic lesions compared to the incidence in vehicle control mice. However, 3-MCPD treatment resulted in an increased incidence of tubular basophilia in the kidneys and germ cell degeneration in the testes, with degenerative germ cell debris in the epididymides of males at 20 and 40 mg/kg bw per day. In 3-MCPD-treated females, vacuolation of the brain and spinal cord was observed at 40 mg/kg bw per day; however, only one incidence of vacuolation was observed in males. Forestomach and cutaneous papilloma and/or carcinoma and lymphoma were observed in most rasH2 mice receiving MNU treatment. We concluded that 3-MCPD did not show carcinogenic potential in the present study using rasH2-Tg mice. The findings of this study suggest that the carcinogenic potential of 3-MCPD is species specific.
Collapse
|
9
|
Beken S, Kasper P, van der Laan JW. Regulatory Acceptance of Alternative Methods in the Development and Approval of Pharmaceuticals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:33-64. [DOI: 10.1007/978-3-319-33826-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Elmore SA, Cora MC, Gruebbel MM, Hayes SA, Hoane JS, Koizumi H, Peters R, Rosol TJ, Singh BP, Szabo KA. Proceedings of the 2014 National Toxicology Program Satellite Symposium. Toxicol Pathol 2014; 43:10-40. [PMID: 25385331 DOI: 10.1177/0192623314555526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 2014 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri" was held in Washington, D.C., in advance of the Society of Toxicologic Pathology's 33rd annual meeting. The goal of this annual NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting and discussion. Some lesions and topics covered during the symposium included a pulmonary mucinous adenocarcinoma in a male B6C3F1 mouse; plexiform vasculopathy in Wistar Han (Crl:WI[Han]) rats; staging of the estrous cycle in rats and mice; peri-islet fibrosis, hemorrhage, lobular atrophy and inflammation in male Sprague-Dawley (SD) rats; retinal dysplasia in Crl:WI[Han] rats and B6C3F1 mice; multicentric lymphoma with intravascular microemboli and tumor lysis syndrome, and 2 cases of myopathy and vascular anomaly in Tg.rasH2 mice; benign thymomas in Crl:WI[Han] rats; angiomatous lesions in the mesenteric lymph nodes of Crl:WI[Han] rats; an unusual foveal lesion in a cynomolgous monkey; and finally a series of nomenclatures challenges from the endocrine International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) Organ Working Group (OWG).
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michelle C Cora
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Margarita M Gruebbel
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Schantel A Hayes
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | - Jessica S Hoane
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| | | | - Rachel Peters
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts, USA
| | | | - Bhanu P Singh
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Kathleen A Szabo
- Charles River Laboratories, Pathology Associates, Durham, North Carolina, USA
| |
Collapse
|
11
|
Morton D, Sistare FD, Nambiar PR, Turner OC, Radi Z, Bower N. Regulatory Forum Commentary. Toxicol Pathol 2013; 42:799-806. [DOI: 10.1177/0192623313502130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/− mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment.
Collapse
Affiliation(s)
| | | | | | - Oliver C. Turner
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Zaher Radi
- Pfizer, Inc., Cambridge, Massachusetts, USA
| | - Nancy Bower
- Eisai, Inc., Woodcliff Lake, New Jersey, USA
| |
Collapse
|