1
|
Xia X, Yang Y, Liu P, Chen L, Dai X, Xue P, Wang Y. The senolytic drug ABT-263 accelerates ovarian aging in older female mice. Sci Rep 2024; 14:23178. [PMID: 39369073 PMCID: PMC11457520 DOI: 10.1038/s41598-024-73828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Previous studies have reported that senolytic drugs can reverse obesity-mediated accumulation of senescent cells in the ovary and protect against cisplatin-induced ovarian injury by removing senescent cells. Early intervention with ABT-263 has been shown to mitigate ovarian aging. However, it remains unknown whether treatment with ABT-263 could rejuvenate the aged ovary in reproductively old females. Therefore, the current study was aimed to investigate whether advanced age intervention with ABT-263 could ameliorate age-related decline in ovarian function. Fourteen 16-month-old mice with a C57/BL6 background were treated with ABT-263 (N = 7) or vehicle (N = 7) for two weeks. Mice were initially treated with ABT-263 (60 mg/kg/d) or vehicle for 7 consecutive days. After a 7-day break, the treatment was repeated for another 7 consecutive days. Six 2-month-old mice with C57BL/6 were used as a young control. The hormonal levels, estrus cycles, ovarian reserve, ovarian cell proliferation and apoptosis, ovarian fibrosis, and steroidogenic gene expression of ovarian stromal cells were evaluated. ABT-263 treatment did not rescue abnormal estrus cycles and sex hormonal levels, or inhibit the formation of multinucleated giant cells and ovarian stromal cell apoptosis in aged ovaries. However, it reduced ovarian fibrosis and preserved the steroidogenic gene expression of ovarian stromal cells in aged ovaries. Importantly, ABT-263 treatment further depleted ovarian follicles in aged mice. In conclusion, ABT-263 treatment accelerated the depletion of ovarian follicles in aged mice, suggesting that senolytic drugs for reproductively old female may adversely affect female fertility.
Collapse
Affiliation(s)
- Xiyang Xia
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yingying Yang
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Pengfei Liu
- The Department of Animal Center, Kebiao Medical Testing Center, Changzhou, Jiangsu, China
| | - Li Chen
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiuliang Dai
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Pingping Xue
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Yufeng Wang
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585249. [PMID: 38559112 PMCID: PMC10979947 DOI: 10.1101/2024.03.15.585249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samuel M. J. Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David J. Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tara N. Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A. Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffery J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J. Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. Biol Reprod 2023; 109:586-600. [PMID: 37561446 PMCID: PMC10651076 DOI: 10.1093/biolre/ioad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.
Collapse
Affiliation(s)
- Michelle E Kossack
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Lucy Tian
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Kealyn Bowie
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Jessica S Plavicki
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524593. [PMID: 36712047 PMCID: PMC9882255 DOI: 10.1101/2023.01.18.524593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage cells arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing data sets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes that were not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature, differentiated gonad.
Collapse
|
5
|
Taketa Y. Luteal toxicity evaluation in rats. J Toxicol Pathol 2022; 35:7-17. [PMID: 35221491 PMCID: PMC8828616 DOI: 10.1293/tox.2021-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
The corpora lutea (CL) are endocrine glands that form in the ovary after ovulation and
secrete the steroid hormone, progesterone (P4). P4 plays a critical role in estrous and
menstrual cycles, implantation, and pregnancy. The incomplete rodent estrous cycle stably
lasts 4–5 days and its morphological features can be distinguished during each estrous
cycle stage. In rat ovaries, there are two main types of CL: newly formed ones due to the
current ovulation (new CL), and CL remaining from prior estrous cycles (old CL). In the
luteal regression process, CL were almost fully regressed after four estrous cycles in
Sprague-Dawley rats. P4 secretion from CL in rodents is regulated by the balance between
synthesis and catabolism. In general, luteal toxicity should be evaluated by considering
antemortem and postmortem data. Daily vaginal smear observations provided useful
information on luteal toxicity. In histopathological examinations, not only the ovaries
and CL but also other related tissues and organs including the uterus, vagina, mammary
gland, and adrenal glands, must be carefully examined for exploring luteal changes. In
this review, histological and functional characteristics of CL in rats are summarized, and
representative luteal toxicity changes are presented for improved luteal toxicity
evaluation in preclinical toxicity research.
Collapse
Affiliation(s)
- Yoshikazu Taketa
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| |
Collapse
|
6
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
7
|
Wang J, Fu X, Zhang D, Yu L, Lu Z, Gao Y, Liu X, Man J, Li S, Li N, Wang M, Liu X, Chen X, Zang W, Yang Q, Wang J. Effects of crenolanib, a nonselective inhibitor of PDGFR, in a mouse model of transient middle cerebral artery occlusion. Neuroscience 2017; 364:202-211. [PMID: 28943249 PMCID: PMC5653447 DOI: 10.1016/j.neuroscience.2017.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Neurogenesis in the subventricular zone (SVZ) plays a vital role in neurologic recovery after stroke. However, only a small fraction of newly generated neuroblasts from the SVZ will survive long-term. Successful migration and survival of neuroblasts requires angiogenesis, lesion-derived chemo-attractants, and appropriate local microenvironments, which are partly regulated by the platelet-derived growth factor receptor (PDGFR) signaling pathway. In this study, we investigated the effects of PDGFR inhibition in a mouse model of transient middle cerebral artery occlusion (MCAO). We blocked the pathway using a nonselective PDGFR inhibitor, crenolanib, during the acute post-MCAO phase (days 1-3) or during the sub-acute phase (days 7-9). Downregulating the PDGFR signaling pathway with crenolanib from day 1 to day 3 after MCAO significantly decreased the migration of neuroblasts from the SVZ to the peri-infarct region, decreased angiogenesis, and lowered expression of vascular endothelial growth factor, stromal cell-derived factor-1, and monocyte chemotactic protein-1. Downregulation of the PDGFR signaling pathway on days 7-9 with crenolanib significantly increased apoptosis of the neuroblasts that had migrated to the peri-infarct region, increased the number of activated microglia, and decreased the expression of brain-derived neurotrophic factor, neurotrophin-3, and interleukin-10. Crenolanib treatment increased the apoptosis of pericytes and decreased the pericyte/vascular coverage, but had no effects on apoptosis of astrocytes. We conclude that the PDGFR signaling pathway plays a vital role in the SVZ neurogenesis after stroke. It can also affect angiogenesis, lesion-derived chemo-attractants, and the local microenvironment, which are all important to stroke-induced neurogenesis.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Di Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yufeng Gao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianliang Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang Man
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sijia Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Zang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Novel methyl indolinone-6-carboxylates containing an indole moiety as angiokinase inhibitors. Eur J Med Chem 2017; 139:492-502. [DOI: 10.1016/j.ejmech.2017.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/07/2023]
|
9
|
Novel 6-methoxycarbonyl indolinones bearing a pyrrole Mannich base moiety as angiokinase inhibitors. Bioorg Med Chem 2017; 25:1778-1786. [DOI: 10.1016/j.bmc.2017.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/21/2017] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
|