1
|
Bolon B, Moser A, Chlipala E. Myelin Methods: A Mini-Review. Toxicol Pathol 2025:1926233241309332. [PMID: 39829055 DOI: 10.1177/01926233241309332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hematoxylin and eosin (H&E) staining is a suitable approach for detecting substantial structural changes in neural tissues but is less sensitive for identifying subtle alterations to subcellular structures and various chemical constituents, including myelin. Neurohistological methods to better evaluate myelin integrity by light microscopy include acidophilic dyes (eg, eriochrome cyanine R, toluidine blue [used with hard plastic sections]); lipoprotein-binding dyes (eg, Luxol fast blue [LFB], Weil's iron hematoxylin); lipid impregnation with metals (eg, Marchi's, which uses osmium tetroxide for en bloc staining before embedding); and immunohistochemical (IHC) methods to highlight various antigens (eg, myelin basic protein [MBP] and peripheral myelin protein 22 [PMP22]). Some IHC methods reveal enhanced marker expression in damaged myelin (eg, matrix metalloproteinase-9 [MMP9], S100). In neuropathology investigations, H&E is the first-tier screening method, whereas myelin stains (often LFB alone or in combination with dyes that highlight other structural elements) are second-tier procedures performed in combination with other neurohistological procedures to examine neuroaxonal injury and/or glial responses. The choice of myelin method depends on such considerations as cost, institutional preference, the procedure (fixation and embedding medium), and the study objective.
Collapse
Affiliation(s)
| | - Amber Moser
- Premier Laboratory, LLC, Longmont, Colorado, USA
| | | |
Collapse
|
2
|
Bolon B, Buza E, Galbreath E, Wicks J, Cargnin F, Hordeaux J. Neuropathological Findings in Nonclinical Species Following Administration of Adeno-Associated Virus (AAV)-Based Gene Therapy Vectors. Toxicol Pathol 2024; 52:489-505. [PMID: 39668663 DOI: 10.1177/01926233241300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Adeno-associated virus (AAV) gene therapy vectors are an accepted platform for treating severe neurological diseases. Test article (TA)-related and procedure-related neuropathological effects following administration of AAV-based vectors are observed in the central nervous system (CNS) and peripheral nervous system (PNS). Leukocyte accumulation (mononuclear cell infiltration > inflammation) may occur in brain, spinal cord, spinal nerve roots (SNRs), sensory and autonomic ganglia, and rarely nerves. Leukocyte accumulation may be associated with neuron necrosis (sensory ganglia > CNS) and/or glial changes (microgliosis and/or astrocytosis in the CNS, increased satellite glial cellularity in ganglia and/or Schwann cellularity in nerves). Axonal degeneration secondary to neuronal injury may occur in the SNR (dorsal > ventral), spinal cord (dorsal and occasionally lateral funiculi), and brainstem centrally and in nerves peripherally. Patterns of AAV-associated microscopic findings in the CNS and PNS differ for TAs administered into brain parenchyma (where tissue at the injection site is affected most) versus TAs delivered into cerebrospinal fluid (CSF) or systemically (which primarily impacts sensory ganglion neurons and their processes in SNR and spinal cord). Changes related to the TA and procedure may overlap. While often interpreted as adverse, AAV-associated neuronal necrosis and axonal degeneration of limited severity generally do not preclude clinical testing.
Collapse
Affiliation(s)
| | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Joan Wicks
- Spark Therapeutics, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Bolon B, Gary JM. Toxicologic Pathology Forum: Apoptosis/Single Cell Necrosis as a Possible Procedural Effect in Primate Brain Following Ice-Cold Saline Perfusion. Toxicol Pathol 2024; 52:343-349. [PMID: 38661106 DOI: 10.1177/01926233241247044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nonclinical studies of test articles (TAs) in nonhuman primates are often designed to assess both biodistribution and toxicity. For this purpose, studies commonly use intravenous perfusion of ice-cold (2°C-8°C) saline to facilitate measurements of TA-associated nucleic acids and proteins, after which tissues undergo later fixation by immersion for histological processing and microscopic evaluation. Intriguingly, minimal apoptosis/single cell necrosis (A/SCN) of randomly distributed neural cells is evident in the cerebral cortex and less often the hippocampus in animals from all groups, including vehicle-treated controls. Affected cells exhibit end-stage features such as cytoplasmic hypereosinophilia, nuclear condensation or fragmentation, and shape distortions, so their lineage(s) generally cannot be defined; classical apoptotic bodies are exceedingly rare. In addition, A/SCN is not accompanied by glial reactions, leukocyte infiltration/inflammation, or other parenchymal changes. The severity is minimal in controls but may be slightly exacerbated (to mild) by TA that accumulate in neural cells. One plausible hypothesis explaining this A/SCN exacerbation is that cold shock (perhaps complicated by concurrent tissue acidity and hypoxia) drives still-viable but TA-stressed cells to launch a self-directed death program. Taken together, these observations indicate that A/SCN in brain processed by cold saline perfusion with delayed immersion fixation represents a procedural artifact and not a TA-related lesion.
Collapse
|
4
|
Bolon B. Toxicologic Pathology Forum Opinion: Rational Approaches to Expanded Neurohistopathology Evaluation for Nonclinical General Toxicity Studies and Juvenile Animal Studies. Toxicol Pathol 2023; 51:363-374. [PMID: 38288942 DOI: 10.1177/01926233231225239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Existing nervous system sampling and processing "best practices" for nonclinical general toxicity studies (GTS) were designed to assess test articles with unknown, no known, or well-known neurotoxic potential. Similar practices are applicable to juvenile animal studies (JAS). In GTS and JAS, the recommended baseline sampling for all species includes brain (7 sections), spinal cord (cervical and lumbar divisions [cross and longitudinal sections for each]), and 1 nerve (sciatic or tibial [cross and longitudinal sections]) in hematoxylin and eosin-stained sections. Extra sampling and processing (ie, an "expanded neurohistopathology evaluation" [ENHP]) are used for agents with anticipated neuroactivity (toxic ± therapeutic) of incompletely characterized location and degree. Expanded sampling incorporates additional brain (usually 8-15 sections total), spinal cord (thoracic ± sacral divisions), ganglia (somatic ± autonomic, often 2-8 total), and/or nerves (2-6 total) depending on the species and study objectives. Expanded processing typically adds special neurohistological procedures (usually 1-4 for selected samples) to characterize glial reactions, myelin integrity, and/or neuroaxonal damage. In my view, GTS and JAS designs should sample neural tissues at necropsy as if ENHP will be needed eventually, and when warranted ENHP may incorporate expanded sampling and/or expanded processing depending on the study objective(s).
Collapse
|
5
|
Hanna K, Nieves J, Dowd C, Bender KO, Sharma P, Singh B, Renz M, Ver Hoeve JN, Cepeda D, Gelfman CM, Riley BE, Grishanin RN. Preclinical evaluation of ADVM-062, a novel intravitreal gene therapy vector for the treatment of blue cone monochromacy. Mol Ther 2023; 31:2014-2027. [PMID: 36932675 PMCID: PMC10362383 DOI: 10.1016/j.ymthe.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Blue cone monochromacy (BCM) is a rare X-linked retinal disease characterized by the absence of L- and M-opsin in cone photoreceptors, considered a potential gene therapy candidate. However, most experimental ocular gene therapies utilize subretinal vector injection which would pose a risk to the fragile central retinal structure of BCM patients. Here we describe the use of ADVM-062, a vector optimized for cone-specific expression of human L-opsin and administered using a single intravitreal (IVT) injection. Pharmacological activity of ADVM-062 was established in gerbils, whose cone-rich retina naturally lacks L-opsin. A single IVT administration dose of ADVM-062 effectively transduced gerbil cone photoreceptors and produced a de novo response to long-wavelength stimuli. To identify potential first-in-human doses we evaluated ADVM-062 in non-human primates. Cone-specific expression of ADVM-062 in primates was confirmed using ADVM-062.myc, a vector engineered with the same regulatory elements as ADVM-062. Enumeration of human OPN1LW.myc-positive cones demonstrated that doses ≥3 × 1010 vg/eye resulted in transduction of 18%-85% of foveal cones. A Good Laboratory Practice (GLP) toxicology study established that IVT administration of ADVM-062 was well tolerated at doses that could potentially achieve clinically meaningful effect, thus supporting the potential of ADVM-062 as a one-time IVT gene therapy for BCM.
Collapse
Affiliation(s)
- Kelly Hanna
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | - Julio Nieves
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | - Christine Dowd
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | | | - Pallavi Sharma
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | - Baljit Singh
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | - Mark Renz
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | | | - Diana Cepeda
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA
| | | | - Brigit E Riley
- Adverum Biotechnologies, Inc., Redwood City, CA 94063, USA.
| | | |
Collapse
|
6
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
7
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer S, Crawford LK, Engelhardt JA, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Points to Consider: Sampling, Processing, Evaluation, Interpretation, and Reporting of Test Article-Related Ganglion Pathology for Nonclinical Toxicity Studies. Toxicol Pathol 2023; 51:176-204. [PMID: 37489508 DOI: 10.1177/01926233231179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Certain biopharmaceutical products consistently affect dorsal root ganglia, trigeminal ganglia, and/or autonomic ganglia. Product classes targeting ganglia include antineoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, and anti-nerve growth factor agents. This article outlines "points to consider" for sample collection, processing, evaluation, interpretation, and reporting of ganglion findings; these points are consistent with published best practices for peripheral nervous system evaluation in nonclinical toxicity studies. Ganglion findings often occur as a combination of neuronal injury (e.g., degeneration, necrosis, and/or loss) and/or glial effects (e.g., increased satellite glial cell cellularity) with leukocyte accumulation (e.g., mononuclear cell infiltration or inflammation). Nerve fiber degeneration and/or glial reactions may be seen in nerves, dorsal spinal nerve roots, spinal cord, and occasionally brainstem. Interpretation of test article (TA)-associated effects may be confounded by incidental background changes or experimental procedure-related changes and limited historical control data. Reports should describe findings at these sites, any TA relationship, and the criteria used for assigning severity grades. Contextualizing adversity of ganglia findings can require a weight-of-evidence approach because morphologic changes of variable severity occur in ganglia but often are not accompanied by observable overt in-life functional alterations detectable by conventional behavioral and neurological testing techniques.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Gene Therapy Program, Philadelphia, Pennsylvania, USA
| | | | - LaTasha K Crawford
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
8
|
Bolon B. Toxicologic Pathology Forum Opinion: Interpretation of Gliosis in the Brain and Spinal Cord Observed During Nonclinical Safety Studies. Toxicol Pathol 2023; 51:68-76. [PMID: 37057409 DOI: 10.1177/01926233231164557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.
Collapse
|
9
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
10
|
Palazzi X, Pardo ID, Ritenour H, Rao DB, Bolon B, Garman RH. A Technical Guide to Sampling the Beagle Dog Nervous System for General Toxicity and Neurotoxicity Studies. Toxicol Pathol 2022; 50:432-465. [PMID: 35730663 DOI: 10.1177/01926233221099300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beagle dogs are a key nonrodent species in nonclinical safety evaluation of new biomedical products. The Society of Toxicologic Pathology (STP) has published "best practices" recommendations for nervous system sampling in nonrodents during general toxicity studies (Toxicol Pathol 41[7]: 1028-1048, 2013), but their adaptation to the Beagle dog has not been defined specifically. Here we provide 2 trimming schemes suitable for evaluating the unique neuroanatomic features of the dog brain in nonclinical toxicity studies. The first scheme is intended for general toxicity studies (Tier 1) to screen test articles with unknown or no anticipated neurotoxic potential; this plan using at least 7 coronal hemisections matches the STP "best practices" recommendations. The second trimming scheme for neurotoxicity studies (Tier 2) uses up to 14 coronal levels to investigate test articles where the brain is a suspected or known target organ. Collection of spinal cord, ganglia (somatic and autonomic), and nerves for dogs during nonclinical studies should follow published STP "best practices" recommendations for sampling the central (Toxicol Pathol 41[7]: 1028-1048, 2013) and peripheral (Toxicol Pathol 46[4]: 372-402, 2018) nervous systems. This technical guide also demonstrates the locations and approaches to collecting uncommonly sampled peripheral nervous system sites.
Collapse
Affiliation(s)
| | | | | | - Deepa B Rao
- Greenfield Pathology Services, Inc., Greenfield, Indiana, USA
| | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc., Murrysville, Pennsylvania, USA
| |
Collapse
|
11
|
Bangari DS, Lanigan LG, Goulet F, Siso S, Bolon B. Society of Toxicologic Pathology Neuropathology Interest Group Article: Neuropathologic Findings in Nonhuman Primates Associated With Administration of Biomolecule-Based Test Articles. Toxicol Pathol 2022; 50:693-711. [PMID: 35695393 DOI: 10.1177/01926233221101314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing specificity of novel druggable targets coupled with the complexity of emerging therapeutic modalities for treating human diseases has created a growing need for nonhuman primates (NHPs) as models for translational drug discovery and nonclinical safety assessment. In particular, NHPs are critical for investigating potential unexpected/undesired on-target and off-target liabilities associated with administration of candidate biotherapeutics (nucleic acids, proteins, viral gene therapy vectors, etc.) to treat nervous system disorders. Nervous system findings unique to or overrepresented in NHPs administered biomolecule-based ("biologic") test articles include mononuclear cell infiltration in most neural tissues for all biomolecule classes as well as neuronal necrosis with glial cell proliferation in sensory ganglia for certain viral vectors. Such test article-related findings in NHPs often must be differentiated from procedural effects (e.g., local parenchymal or meningeal reactions associated with an injection site or implanted catheter to administer a test article directly into the central nervous system) or spontaneous background findings (e.g., neuronal autophagy in sensory ganglia).
Collapse
Affiliation(s)
- Dinesh S Bangari
- Global Discovery Pathology, Translational In-Vivo Models Platform, Sanofi, Cambridge, Massachusetts, USA
| | | | - Felix Goulet
- Charles River Laboratories, Senneville, Quebec, Canada
| | - Silvia Siso
- Translational Imaging and Pathology, Codiak BioSciences, Cambridge, Massachusetts, USA
| | | |
Collapse
|
12
|
Fader KA, Pardo ID, Kovi RC, Somps CJ, Wang HH, Vaidya VS, Ramaiah SK, Sirivelu MP. Circulating neurofilament light chain as a promising biomarker of AAV-induced dorsal root ganglia toxicity in nonclinical toxicology species. Mol Ther Methods Clin Dev 2022; 25:264-277. [PMID: 35505662 PMCID: PMC9024379 DOI: 10.1016/j.omtm.2022.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV)-induced dorsal root ganglia (DRG) toxicity has been observed in several nonclinical species, where lesions are characterized by neuronal degeneration/necrosis, nerve fiber degeneration, and mononuclear cell infiltration. As AAV vectors become an increasingly common platform for novel therapeutics, non-invasive biomarkers are needed to better characterize and manage the risk of DRG neurotoxicity in both nonclinical and clinical studies. Based on biological relevance, reagent availability, antibody cross-reactivity, DRG protein expression, and assay performance, neurofilament light chain (NF-L) emerged as a promising biomarker candidate. Dose- and time-dependent changes in NF-L were evaluated in male Wistar Han rats and cynomolgus monkeys following intravenous or intrathecal AAV injection, respectively. NF-L profiles were then compared against microscopic DRG lesions on day 29 post-dosing. In animals exhibiting DRG toxicity, plasma/serum NF-L was strongly associated with the severity of neuronal degeneration/necrosis and nerve fiber degeneration, with elevations beginning as early as day 8 in rats (≥5 × 1013 vg/kg) and day 14 in monkeys (≥3.3 × 1013 vg/dose). Consistent with the unique positioning of DRGs outside the blood-brain barrier, NF-L in cerebrospinal fluid was only weakly associated with DRG findings. In summary, circulating NF-L is a promising biomarker of AAV-induced DRG toxicity in nonclinical species.
Collapse
Affiliation(s)
- Kelly A Fader
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT 06340, USA
| | | | - Ramesh C Kovi
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Christopher J Somps
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Groton, CT 06340, USA
| | - Helen Hong Wang
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Vishal S Vaidya
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Shashi K Ramaiah
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Madhu P Sirivelu
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Pfizer Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
14
|
Hutt JA, Assaf BT, Bolon B, Cavagnaro J, Galbreath E, Grubor B, Kattenhorn LM, Romeike A, Whiteley LO. Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicol Pathol 2021; 50:118-146. [PMID: 34657529 DOI: 10.1177/01926233211041962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.
Collapse
Affiliation(s)
- Julie A Hutt
- Greenfield Pathology Services, Inc, Greenfield, IN, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | | | | | - Branka Grubor
- Biogen, Preclinical Safety/Comparative Pathology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
15
|
Woicke J, Al-Haddawi MM, Bienvenu JG, Caverly Rae JM, Chanut FJ, Colman K, Cullen JM, Davis W, Fukuda R, Huisinga M, Walker UJ, Kai K, Kovi RC, Macri NP, Marxfeld HA, Nikula KJ, Pardo ID, Rosol TJ, Sharma AK, Singh BP, Tamura K, Thibodeau MS, Vezzali E, Vidal JD, Meseck EK. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Dog. Toxicol Pathol 2021; 49:5-109. [PMID: 33393871 DOI: 10.1177/0192623320968181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the societies of toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in most tissues and organs from the dog used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions, lesions induced by exposure to test materials, and relevant infectious and parasitic lesions. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
| | | | | | | | | | - Karyn Colman
- Genomics Institute for the Novartis Research Foundation, La Jolla, CA, USA
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | | | - Ryo Fukuda
- Axcelead Drug Discovery Partners, Inc, Fujisawa, Kanagawa, Japan
| | | | | | - Kiyonori Kai
- Daiichi Sankyo Co, Ltd, Medical Safety Research Laboratories, Edogawa-ku, Tokyo, Japan
| | - Ramesh C Kovi
- Experimental Pathology Laboratories (EPL), Inc, Research Triangle Park, NC, USA.,National Toxicology Program (NTP), US National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | | | | | | | | | - Thomas J Rosol
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | | | | | - Kazutoshi Tamura
- Pathology Department, BoZo Research Center Inc, Shizuoka, Gotemba, Japan
| | | | | | | | - Emily K Meseck
- Novartis Pharmaceutical Corporation, East Hanover, NJ, USA
| |
Collapse
|
16
|
Rao DB, Bolon B, Pardo ID. Special Issue on Toxicologic Neuropathology of the Peripheral Nervous System: A Special Compendium of Past, Present, and Future Developments in a Neglected Field. Toxicol Pathol 2021; 48:5-9. [PMID: 31845625 DOI: 10.1177/0192623319875090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuropathology of the peripheral nervous system (PNS) is an underappreciated area in toxicologic pathology. Toxicity to nerves and ganglia can result from toxic insults following exposure to environmental, occupational, and industrial chemicals; drugs and biologics; cosmetics and food additives; and even physical agents such as noise. The following introduction provides an overview of this special issue of Toxicologic Pathology on toxicologic neuropathology of the PNS and highlights the range of key topics in this field that are reviewed in this compilation.
Collapse
Affiliation(s)
- Deepa B Rao
- Tox Path Associates [a Stagebio Company], Frederick, MD, USA
| | | | | |
Collapse
|
17
|
Wilson I, Vitelli C, Yu GK, Pacheco G, Vincelette J, Bunting S, Sisó S. Quantitative Assessment of Neuroinflammation, Myelinogenesis, Demyelination, and Nerve Fiber Regeneration in Immunostained Sciatic Nerves From Twitcher Mice With a Tissue Image Analysis Platform. Toxicol Pathol 2021; 49:950-962. [PMID: 33691530 DOI: 10.1177/0192623321991469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scoring demyelination and regeneration in hematoxylin and eosin-stained nerves poses a challenge even for the trained pathologist. This article demonstrates how combinatorial multiplex immunohistochemistry (IHC) and quantitative digital pathology bring new insights into the peripheral neuropathogenesis of the Twitcher mouse, a model of Krabbe disease. The goal of this investigational study was to integrate modern pathology tools to traditional anatomic pathology microscopy workflows, in order to generate quantitative data in a large number of samples, and aid the understanding of complex disease pathomechanisms. We developed a novel IHC toolkit using a combination of CD68, periaxin-1, phosphorylated neurofilaments and SOX-10 to interrogate inflammation, myelination, axonal size, and Schwann cell counts in sciatic nerves from 17-, 21-, 25-, and 35-day-old wild-type and Twitcher mice using self-customized digital image algorithms. Our quantitative analyses highlight that nerve macrophage infiltration and interstitial expansion are the earliest detectable changes in Twitcher nerves. By 17 days of age, while the diameter of axons is small, the number of myelinated axons is still normal. However, from 21 days onward Twitcher nerves contain 75% of wild-type myelinated nerve fiber numbers despite containing 3 times more Schwann cells. In 35-day-old Twitcher mice when demyelination is detectable, nerve myelination drops to 50%.
Collapse
Affiliation(s)
- Irene Wilson
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| | - Cathy Vitelli
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Guoying Karen Yu
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Glenn Pacheco
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Jon Vincelette
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Stuart Bunting
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA
| | - Sílvia Sisó
- Research and Early Development, 10926BioMarin Pharmaceutical Inc., San Rafael, CA, USA.,Dominican University of California, San Rafael, CA, USA
| |
Collapse
|
18
|
Lanigan LG, Russell DS, Woolard KD, Pardo ID, Godfrey V, Jortner BS, Butt MT, Bolon B. Comparative Pathology of the Peripheral Nervous System. Vet Pathol 2020; 58:10-33. [PMID: 33016246 DOI: 10.1177/0300985820959231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peripheral nervous system (PNS) relays messages between the central nervous system (brain and spinal cord) and the body. Despite this critical role and widespread distribution, the PNS is often overlooked when investigating disease in diagnostic and experimental pathology. This review highlights key features of neuroanatomy and physiology of the somatic and autonomic PNS, and appropriate PNS sampling and processing techniques. The review considers major classes of PNS lesions including neuronopathy, axonopathy, and myelinopathy, and major categories of PNS disease including toxic, metabolic, and paraneoplastic neuropathies; infectious and inflammatory diseases; and neoplasms. This review describes a broad range of common PNS lesions and their diagnostic criteria and provides many useful references for pathologists who perform PNS evaluations as a regular or occasional task in their comparative pathology practice.
Collapse
|
19
|
Bradley AE, Bolon B, Butt MT, Cramer SD, Czasch S, Garman RH, George C, Gröters S, Kaufmann W, Kovi RC, Krinke G, Little PB, Narama I, Rao DB, Sharma AK, Shibutani M, Sills R. Proliferative and Nonproliferative Lesions of the Rat and Mouse Central and Peripheral Nervous Systems: New and Revised INHAND Terms. Toxicol Pathol 2020; 48:827-844. [PMID: 32912053 DOI: 10.1177/0192623320951154] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Harmonization of diagnostic terminology used during the histopathologic analysis of rodent tissue sections from nonclinical toxicity studies will improve the consistency of data sets produced by laboratories located around the world. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a cooperative enterprise of 4 major societies of toxicologic pathology to develop a globally accepted standard vocabulary for proliferative and nonproliferative lesions in rodents. A prior manuscript (Toxicol Pathol 2012;40[4 Suppl]:87S-157S) defined multiple diagnostic terms for toxicant-induced lesions, common spontaneous and age-related changes, and principal confounding artifacts in the rat and mouse central nervous system (CNS) and peripheral nervous system (PNS). The current article defines 9 new diagnostic terms and updates 2 previous terms for findings in the rodent CNS and PNS, the need for which has become evident in the years since the publication of the initial INHAND nomenclature for findings in rodent neural tissues. The nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).
Collapse
Affiliation(s)
- Alys E Bradley
- 57146Charles River Laboratories Edinburgh Ltd., Tranent, United Kingdom
| | | | - Mark T Butt
- Tox Path Specialists, LLC, Frederick, MD, USA
| | | | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc., Murrysville, PA, USA
| | | | | | | | - Ramesh C Kovi
- Experimental Pathology Laboratories (EPL), Inc., Research Triangle Park, NC, USA.,National Toxicology Program (NTP), US National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | | | - Peter B Little
- Experimental Pathology Laboratories (EPL), Inc., Durham, NC, USA
| | - Isao Narama
- 92109BioSafety Research Center, Inc. (BSRC), Iwata, Japan
| | - Deepa B Rao
- Tox Path Specialists, LLC, Frederick, MD, USA
| | | | - Makoto Shibutani
- Tokyo University of Agriculture and Technology, Laboratory of Veterinary Pathology, Tokyo, Japan
| | - Robert Sills
- National Toxicology Program (NTP), US National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Bolon B, Krinke GJ, Pardo ID. Essential References for Structural Analysis of the Peripheral Nervous System for Pathologists and Toxicologists. Toxicol Pathol 2019; 48:87-95. [DOI: 10.1177/0192623319868160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxicologic neuropathology for the peripheral nervous system (PNS) is a vital but often underappreciated element of basic translational research and safety assessment. Evaluation of the PNS may be complicated by unfamiliarity with normal nerve and ganglion biology, which differs to some degree among species; the presence of confounding artifacts related to suboptimal sampling and processing; and limited experience with differentiating such artifacts from genuine disease manifestations and incidental background changes. This compilation of key PNS neurobiology, neuropathology, and neurotoxicology references is designed to allow pathologists and toxicologists to readily access essential information that is needed to enhance their proficiency in evaluating and interpreting toxic changes in PNS tissues from many species.
Collapse
|