1
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
2
|
Grignaffini F, Barbuto F, Troiano M, Piazzo L, Simeoni P, Mangini F, De Stefanis C, Onetti Muda A, Frezza F, Alisi A. The Use of Artificial Intelligence in the Liver Histopathology Field: A Systematic Review. Diagnostics (Basel) 2024; 14:388. [PMID: 38396427 PMCID: PMC10887838 DOI: 10.3390/diagnostics14040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Digital pathology (DP) has begun to play a key role in the evaluation of liver specimens. Recent studies have shown that a workflow that combines DP and artificial intelligence (AI) applied to histopathology has potential value in supporting the diagnosis, treatment evaluation, and prognosis prediction of liver diseases. Here, we provide a systematic review of the use of this workflow in the field of hepatology. Based on the PRISMA 2020 criteria, a search of the PubMed, SCOPUS, and Embase electronic databases was conducted, applying inclusion/exclusion filters. The articles were evaluated by two independent reviewers, who extracted the specifications and objectives of each study, the AI tools used, and the results obtained. From the 266 initial records identified, 25 eligible studies were selected, mainly conducted on human liver tissues. Most of the studies were performed using whole-slide imaging systems for imaging acquisition and applying different machine learning and deep learning methods for image pre-processing, segmentation, feature extractions, and classification. Of note, most of the studies selected demonstrated good performance as classifiers of liver histological images compared to pathologist annotations. Promising results to date bode well for the not-too-distant inclusion of these techniques in clinical practice.
Collapse
Affiliation(s)
- Flavia Grignaffini
- Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza”, University of Rome, 00184 Rome, Italy; (F.G.); (F.B.); (L.P.); (F.M.); (F.F.)
| | - Francesco Barbuto
- Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza”, University of Rome, 00184 Rome, Italy; (F.G.); (F.B.); (L.P.); (F.M.); (F.F.)
| | - Maurizio Troiano
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (C.D.S.)
| | - Lorenzo Piazzo
- Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza”, University of Rome, 00184 Rome, Italy; (F.G.); (F.B.); (L.P.); (F.M.); (F.F.)
| | - Patrizio Simeoni
- National Transport Authority (NTA), D02 WT20 Dublin, Ireland;
- Faculty of Lifelong Learning, South East Technological University (SETU), R93 V960 Carlow, Ireland
| | - Fabio Mangini
- Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza”, University of Rome, 00184 Rome, Italy; (F.G.); (F.B.); (L.P.); (F.M.); (F.F.)
| | - Cristiano De Stefanis
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (C.D.S.)
| | | | - Fabrizio Frezza
- Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza”, University of Rome, 00184 Rome, Italy; (F.G.); (F.B.); (L.P.); (F.M.); (F.F.)
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.T.); (C.D.S.)
| |
Collapse
|
3
|
Ratziu V, Hompesch M, Petitjean M, Serdjebi C, Iyer JS, Parwani AV, Tai D, Bugianesi E, Cusi K, Friedman SL, Lawitz E, Romero-Gómez M, Schuppan D, Loomba R, Paradis V, Behling C, Sanyal AJ. Artificial intelligence-assisted digital pathology for non-alcoholic steatohepatitis: current status and future directions. J Hepatol 2024; 80:335-351. [PMID: 37879461 DOI: 10.1016/j.jhep.2023.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, ICAN Institute for Cardiometabolism and Nutrition, Hospital Pitié-Salpêtrière, INSERM UMRS 1138 CRC, Paris, France.
| | | | | | | | | | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío, CiberEHD, Insituto de Biomedicina de Sevilla (HUVR/CSIC/US), Universidad de Sevilla, Seville, Spain
| | - Detlef Schuppan
- Institute of Translational Immunology and Department of Medicine, University Medical Center, Mainz, Germany; Department of Hepatology and Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, San Diego, CA, USA
| | - Valérie Paradis
- Université Paris Cité, Service d'Anatomie Pathologique, Hôpital Beaujon, Paris, France
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Agten A, Blázquez-Moreno A, Crabbe M, Tuefferd M, Goehlmann H, Geys H, Peng CY, Claes J, Neyens T, Faes C. Measures of spatial heterogeneity in the liver tissue micro-environment as predictive factors for fibrosis score. Comput Biol Med 2023; 165:107382. [PMID: 37634463 DOI: 10.1016/j.compbiomed.2023.107382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The organization and interaction between hepatocytes and other hepatic non-parenchymal cells plays a pivotal role in maintaining normal liver function and structure. Although spatial heterogeneity within the tumor micro-environment has been proven to be a fundamental feature in cancer progression, the role of liver tissue topology and micro-environmental factors in the context of liver damage in chronic infection has not been widely studied yet. We obtained images from 110 core needle biopsies from a cohort of chronic hepatitis B patients with different fibrosis stages according to METAVIR score. The tissue sections were immunofluorescently stained and imaged to determine the locations of CD45 positive immune cells and HBsAg-negative and HBsAg-positive hepatocytes within the tissue. We applied several descriptive techniques adopted from ecology, including Getis-Ord, the Shannon Index and the Morisita-Horn Index, to quantify the extent to which immune cells and different types of liver cells co-localize in the tissue biopsies. Additionally, we modeled the spatial distribution of the different cell types using a joint log-Gaussian Cox process and proposed several features to quantify spatial heterogeneity. We then related these measures to the patient fibrosis stage by using a linear discriminant analysis approach. Our analysis revealed that the co-localization of HBsAg-negative hepatocytes with immune cells and the co-localization of HBsAg-positive hepatocytes with immune cells are equally important factors for explaining the METAVIR score in chronic hepatitis B patients. Moreover, we found that if we allow for an error of 1 on the METAVIR score, we are able to reach an accuracy of around 80%. With this study we demonstrate how methods adopted from ecology and applied to the liver tissue micro-environment can be used to quantify heterogeneity and how these approaches can be valuable in biomarker analyses for liver topology.
Collapse
Affiliation(s)
- Annelies Agten
- Data Science Institute, UHasselt - Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium.
| | - Alfonso Blázquez-Moreno
- Discovery Statistics, Global Development, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marjolein Crabbe
- Discovery Statistics, Global Development, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marianne Tuefferd
- Translational Biomarkers, Infectious Diseases, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Hinrich Goehlmann
- Translational Biomarkers, Infectious Diseases, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Helena Geys
- Discovery Statistics, Global Development, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Jari Claes
- Data Science Institute, UHasselt - Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | - Thomas Neyens
- Data Science Institute, UHasselt - Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium; L-BioStat, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Christel Faes
- Data Science Institute, UHasselt - Hasselt University, Agoralaan 1, BE 3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Hwang JH, Lim M, Han G, Park H, Kim YB, Park J, Jun SY, Lee J, Cho JW. Segmentation algorithm can be used for detecting hepatic fibrosis in SD rat. Lab Anim Res 2023; 39:16. [PMID: 37381051 DOI: 10.1186/s42826-023-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Liver fibrosis is an early stage of liver cirrhosis. As a reversible lesion before cirrhosis, liver failure, and liver cancer, it has been a target for drug discovery. Many antifibrotic candidates have shown promising results in experimental animal models; however, due to adverse clinical reactions, most antifibrotic agents are still preclinical. Therefore, rodent models have been used to examine the histopathological differences between the control and treatment groups to evaluate the efficacy of anti-fibrotic agents in non-clinical research. In addition, with improvements in digital image analysis incorporating artificial intelligence (AI), a few researchers have developed an automated quantification of fibrosis. However, the performance of multiple deep learning algorithms for the optimal quantification of hepatic fibrosis has not been evaluated. Here, we investigated three different localization algorithms, mask R-CNN, DeepLabV3+, and SSD, to detect hepatic fibrosis. RESULTS 5750 images with 7503 annotations were trained using the three algorithms, and the model performance was evaluated in large-scale images and compared to the training images. The results showed that the precision values were comparable among the algorithms. However, there was a gap in the recall, leading to a difference in model accuracy. The mask R-CNN outperformed the recall value (0.93) and showed the closest prediction results to the annotation for detecting hepatic fibrosis among the algorithms. DeepLabV3+ also showed good performance; however, it had limitations in the misprediction of hepatic fibrosis as inflammatory cells and connective tissue. The trained SSD showed the lowest performance and was limited in predicting hepatic fibrosis compared to the other algorithms because of its low recall value (0.75). CONCLUSIONS We suggest it would be a more useful tool to apply segmentation algorithms in implementing AI algorithms to predict hepatic fibrosis in non-clinical studies.
Collapse
Affiliation(s)
- Ji-Hee Hwang
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Minyoung Lim
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Gyeongjin Han
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Heejin Park
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Jinseok Park
- Research and Development Team, LAC Inc., 07807, Seoul, Korea
| | - Sang-Yeop Jun
- Research and Development Team, LAC Inc., 07807, Seoul, Korea
| | - Jaeku Lee
- Research and Development Team, LAC Inc., 07807, Seoul, Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| |
Collapse
|
6
|
Kim HJ, Baek EB, Hwang JH, Lim M, Jung WH, Bae MA, Son HY, Cho JW. Application of convolutional neural network for analyzing hepatic fibrosis in mice. J Toxicol Pathol 2023; 36:21-30. [PMID: 36683726 PMCID: PMC9837472 DOI: 10.1293/tox.2022-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
Recently, with the development of computer vision using artificial intelligence (AI), clinical research on diagnosis and prediction using medical image data has increased. In this study, we applied AI methods to analyze hepatic fibrosis in mice to determine whether an AI algorithm can be used to analyze lesions. Whole slide image (WSI) Sirius Red staining was used to examine hepatic fibrosis. The Xception network, an AI algorithm, was used to train normal and fibrotic lesion identification. We compared the results from two analyses, that is, pathologists' grades and researchers' annotations, to observe whether the automated algorithm can support toxicological pathologists efficiently as a new apparatus. The accuracies of the trained model computed from the training and validation datasets were greater than 99%, and that obtained by testing the model was 100%. In the comparison between analyses, all analyses showed significant differences in the results for each group. Furthermore, both normalized fibrosis grades inferred from the trained model annotated the fibrosis area, and the grades assigned by the pathologists showed significant correlations. Notably, the deep learning algorithm derived the highest correlation with the pathologists' average grade. Owing to the correlation outcomes, we conclude that the trained model might produce results comparable to those of the pathologists' grading of the Sirius Red-stained WSI fibrosis. This study illustrates that the deep learning algorithm can potentially be used for analyzing fibrotic lesions in combination with Sirius Red-stained WSIs as a second opinion tool in non-clinical research.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- Toxicological Pathology Research Group, Department of
Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu,
Daejeon 34114, Republic of Korea,College of Veterinary Medicine, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea,†These authors contributed equally to this work
| | - Eun Bok Baek
- College of Veterinary Medicine, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ji-Hee Hwang
- Toxicological Pathology Research Group, Department of
Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu,
Daejeon 34114, Republic of Korea
| | - Minyoung Lim
- Toxicological Pathology Research Group, Department of
Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu,
Daejeon 34114, Republic of Korea
| | - Won Hoon Jung
- Therapeutics & Biotechnology Division, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of
Korea
| | - Myung Ae Bae
- Therapeutics & Biotechnology Division, Korea Research
Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of
Korea
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea,*Corresponding authors: JW Cho (e-mail: ); HY Son (e-mail: )
| | - Jae-Woo Cho
- Toxicological Pathology Research Group, Department of
Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu,
Daejeon 34114, Republic of Korea,*Corresponding authors: JW Cho (e-mail: ); HY Son (e-mail: )
| |
Collapse
|
7
|
Yu H, Sharifai N, Jiang K, Wang F, Teodoro G, Farris AB, Kong J. Artificial intelligence based liver portal tract region identification and quantification with transplant biopsy whole-slide images. Comput Biol Med 2022; 150:106089. [PMID: 36137315 DOI: 10.1016/j.compbiomed.2022.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
Liver fibrosis staging is clinically important for liver disease progression prediction. As the portal tract fibrotic quantity and size in a liver biopsy correlate with the fibrosis stage, an accurate analysis of portal tract regions is clinically critical. Manual annotations of portal tract regions, however, are time-consuming and subject to large inter- and intra-observer variability. To address such a challenge, we develop a Multiple Up-sampling and Spatial Attention guided UNet model (MUSA-UNet) to segment liver portal tract regions in whole-slide images of liver tissue slides. To enhance the segmentation performance, we propose to use depth-wise separable convolution, the spatial attention mechanism, the residual connection, and multiple up-sampling paths in the developed model. This study includes 53 histopathology whole slide images from patients who received liver transplantation. In total, 6,012 patches derived from 30 images are used for our deep learning model training and validation. The remaining 23 whole slide images are utilized for the model testing. The average liver portal tract segmentation performance of the developed MUSA-UNet is 0.94 (Precision), 0.85 (Recall), 0.89 (F1 Score), 0.89 (Accuracy), 0.80 (Jaccard Index), and 0.91 (Fowlkes-Mallows Index), respectively. The clinical Scheuer fibrosis stage presents a strong correlation with the resulting average portal tract fibrotic area (R = 0.681, p<0.001) and portal tract percentage (R = 0.335, p = 0.02) computed from the MUSA-UNet segmentation results. In conclusion, our developed deep learning model MUSA-UNet can accurately segment portal tract regions from whole-slide images of liver tissue biopsies, presenting its promising potential to assist liver disease diagnosis in a computational manner.
Collapse
Affiliation(s)
- Hanyi Yu
- Department of Computer Science, Emory University, Atlanta, 30322, GA, USA.
| | - Nima Sharifai
- Department of Pathology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA.
| | - Kun Jiang
- Department of Pathology, Moffitt Cancer Center, Tampa, 33612, FL, USA.
| | - Fusheng Wang
- Department of Computer Science and Department of Biomedical Informatics, Stony Brook University, Stony Brook, 11794, NY, USA.
| | - George Teodoro
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, 31270, Minas Gerais, Brazil.
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, 30322, GA, USA.
| | - Jun Kong
- Department of Computer Science, Emory University, Atlanta, 30322, GA, USA; Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303, GA, USA; Winship Cancer Institute, Emory University, Atlanta, 30322, GA, USA.
| |
Collapse
|
8
|
Analysis of the Relevance Environment between Marxist Philosophy and System Theory Based on Deep Learning. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:6322272. [PMID: 35958377 PMCID: PMC9357689 DOI: 10.1155/2022/6322272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
In social science and natural science, MP (Marxist Philosophy) has played an active role in promoting its development, and MP also guides people’s practice and understanding. There is an inevitable connection with system theory MP. In a sense, both system theory and PMbelong to methodology and both contain the viewpoints of movement and development. In this paper, various text features in natural scenes are discussed in detail, and the original vector is studied by using CNN (Convective Neural Network) of DL (Deep Learning), so as to construct a one-dimensional text vector and realize the mutual influence and continuous optimization of feature extraction and text clustering. The experimental results show that under the condition of calculating the current cosine similarity measure, the accuracy rate is the highest, reaching 93.67%. This algorithm can effectively improve its performance in text classification tasks on large data sets.
Collapse
|
9
|
Mehrvar S, Himmel LE, Babburi P, Goldberg AL, Guffroy M, Janardhan K, Krempley AL, Bawa B. Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. J Pathol Inform 2021; 12:42. [PMID: 34881097 PMCID: PMC8609289 DOI: 10.4103/jpi.jpi_36_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Whole slide imaging enables the use of a wide array of digital image analysis tools that are revolutionizing pathology. Recent advances in digital pathology and deep convolutional neural networks have created an enormous opportunity to improve workflow efficiency, provide more quantitative, objective, and consistent assessments of pathology datasets, and develop decision support systems. Such innovations are already making their way into clinical practice. However, the progress of machine learning - in particular, deep learning (DL) - has been rather slower in nonclinical toxicology studies. Histopathology data from toxicology studies are critical during the drug development process that is required by regulatory bodies to assess drug-related toxicity in laboratory animals and its impact on human safety in clinical trials. Due to the high volume of slides routinely evaluated, low-throughput, or narrowly performing DL methods that may work well in small-scale diagnostic studies or for the identification of a single abnormality are tedious and impractical for toxicologic pathology. Furthermore, regulatory requirements around good laboratory practice are a major hurdle for the adoption of DL in toxicologic pathology. This paper reviews the major DL concepts, emerging applications, and examples of DL in toxicologic pathology image analysis. We end with a discussion of specific challenges and directions for future research.
Collapse
Affiliation(s)
- Shima Mehrvar
- Preclinical Safety, AbbVie Inc., North Chicago, IL, USA
| | | | - Pradeep Babburi
- Business Technology Solutions, AbbVie Inc., North Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
10
|
Hwang JH, Kim HJ, Park H, Lee BS, Son HY, Kim YB, Jun SY, Park JH, Lee J, Cho JW. Implementation and Practice of Deep Learning-Based Instance Segmentation Algorithm for Quantification of Hepatic Fibrosis at Whole Slide Level in Sprague-Dawley Rats. Toxicol Pathol 2021; 50:186-196. [PMID: 34866512 DOI: 10.1177/01926233211057128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exponential development in artificial intelligence or deep learning technology has resulted in more trials to systematically determine the pathological diagnoses using whole slide images (WSIs) in clinical and nonclinical studies. In this study, we applied Mask Regions with Convolution Neural Network (Mask R-CNN), a deep learning model that uses instance segmentation, to detect hepatic fibrosis induced by N-nitrosodimethylamine (NDMA) in Sprague-Dawley rats. From 51 WSIs, we collected 2011 cropped images with hepatic fibrosis annotations. Training and detection of hepatic fibrosis via artificial intelligence methods was performed using Tensorflow 2.1.0, powered by an NVIDIA 2080 Ti GPU. From the test process using tile images, 95% of model accuracy was verified. In addition, we validated the model to determine whether the predictions by the trained model can reflect the scoring system by the pathologists at the WSI level. The validation was conducted by comparing the model predictions in 18 WSIs at 20× and 10× magnifications with ground truth annotations and board-certified pathologists. Predictions at 20× showed a high correlation with ground truth (R 2 = 0.9660) and a good correlation with the average fibrosis rank by pathologists (R 2 = 0.8887). Therefore, the Mask R-CNN algorithm is a useful tool for detecting and quantifying pathological findings in nonclinical studies.
Collapse
Affiliation(s)
- Ji-Hee Hwang
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Hyun-Ji Kim
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea.,College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Heejin Park
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| | | | | | - Jaeku Lee
- Research & Development Team, LAC Inc, Seoul, Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Korea
| |
Collapse
|