1
|
Hojo M, Maeno A, Sakamoto Y, Ohnuki A, Tada Y, Yamamoto Y, Ikushima K, Inaba R, Suzuki J, Taquahashi Y, Yokota S, Kobayashi N, Ohnishi M, Goto Y, Numano T, Tsuda H, Alexander DB, Kanno J, Hirose A, Inomata A, Nakae D. Two-year intermittent exposure of a multiwalled carbon nanotube by intratracheal instillation induces lung tumors and pleural mesotheliomas in F344 rats. Part Fibre Toxicol 2022; 19:38. [PMID: 35590372 PMCID: PMC9118836 DOI: 10.1186/s12989-022-00478-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A mounting number of studies have been documenting the carcinogenic potential of multiwalled carbon nanotubes (MWCNTs); however, only a few studies have evaluated the pulmonary carcinogenicity of MWCNTs in vivo. A 2-year inhalation study demonstrated that MWNT-7, a widely used MWCNT, was a pulmonary carcinogen in rats. In another 2-year study, rats administered MWNT-7 by intratracheal instillation at the beginning of the experimental period developed pleural mesotheliomas but not lung tumors. To obtain data more comparable with rats exposed to MWNT-7 by inhalation, we administered MWNT-7 to F344 rats by intratracheal instillation once every 4-weeks over the course of 2 years at 0, 0.125, and 0.5 mg/kg body weight, allowing lung burdens of MWNT-7 to increase over the entire experimental period, similar to the inhalation study. RESULTS Absolute and relative lung weights were significantly elevated in both MWNT-7-treated groups. Dose- and time-dependent toxic effects in the lung and pleura, such as inflammatory, fibrotic, and hyperplastic lesions, were found in both treated groups. The incidences of lung carcinomas, lung adenomas, and pleural mesotheliomas were significantly increased in the high-dose group compared with the control group. The pleural mesotheliomas developed mainly at the mediastinum. No MWNT-7-related neoplastic lesions were noted in the other organs. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were elevated in both treated groups. The lung burden of MWNT-7 was dose- and time-dependent, and at the terminal necropsy, the average value was 0.9 and 3.6 mg/lung in the low-dose and high-dose groups, respectively. The number of fibers in the pleural cavity was also dose- and time-dependent. CONCLUSIONS Repeated administration of MWNT-7 by intratracheal instillation over the 2 years indicates that MWNT-7 is carcinogenic to both the lung and pleura of rats, which differs from the results of the 2 carcinogenicity tests by inhalation or intratracheal instillation.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan.
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Aya Ohnuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Ryota Inaba
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yuhji Taquahashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yokota
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Norihiro Kobayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Makoto Ohnishi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | | | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Aichi, Japan
| | | | - Jun Kanno
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Animal Medical Course, Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba, 290-0193, Japan. .,Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
2
|
Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El-Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M, Tomono S, Hady RHAE, Fukamachi K, Kanno J, Hirose A, Xu J, Suzuki S, Naiki-Ito A, Takahashi S, Tsuda H. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol 2022; 19:30. [PMID: 35449069 PMCID: PMC9026941 DOI: 10.1186/s12989-022-00469-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. METHODS Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice. RESULTS DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans. CONCLUSIONS Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be ignored.
Collapse
Affiliation(s)
- Dina Mourad Saleh
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Shengyong Luo
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Omnia Hosny Mohamed Ahmed
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - David B Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - William T Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Sivagami Gunasekaran
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ahmed M El-Gazzar
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelgied
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
- Department of Pediatrics and Human Development, Michigan State University, Michigan, USA
| | - Takamasa Numano
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Makoto Ohnishi
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Hadano, Kanagawa, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Randa Hussein Abd El Hady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Katsumi Fukamachi
- Department of Neurotoxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Kanno
- National Institute Hygienic Sciences, Kawasaki, Japan
| | | | - Jiegou Xu
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|