1
|
Balamayooran G, Tooze JA, Gardin JF, Long MC, Caudell DL, Cline JM, Kock ND, Paitsel M, Moore S, Jorgensen MJ. Age and sex associated organ weight differences in vervets/African green monkeys (Chlorocebus aethiops sabaeus). J Med Primatol 2024; 53:e12721. [PMID: 39048121 PMCID: PMC11378953 DOI: 10.1111/jmp.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
AbstractBackgroundAfrican green monkeys (AGMs, also known as vervets, Cholorocebus aethiops sabaeus) have been used in a variety of biomedical research studies. The aim of this study was to generate a reference for normal organ weights and percentage organ weights in AGMs of different age categories and sex.MethodsThe organ weights were compiled from 479 AGMs (285 females and 194 males) from 2004 to 2021. Age and sex differences of absolute and relative organ weights were analyzed using analysis of variance.ResultsThe findings demonstrate that males had higher body and organ weights than age‐matched females, but relative organ weights did not differ between males and females. At maturity, adrenal gland, brain, kidney, liver, thymus, and thyroid gland weights as a percentage of body weight declined, but relative weights of prostate gland, testes, and uterus were higher.ConclusionThese data should be beneficial to biomedical researchers and pathologists working with AGMs.
Collapse
Affiliation(s)
- Gayathriy Balamayooran
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet A Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jean F Gardin
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Margaret C Long
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David L Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica Paitsel
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Stacy Moore
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Scholz H, Sordi V, Piemonti L. Cautious Optimism Warranted for Stem Cell-Derived Islet Transplantation in Type 2 Diabetes. Transpl Int 2024; 37:13358. [PMID: 39131791 PMCID: PMC11310020 DOI: 10.3389/ti.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Affiliation(s)
- Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Li Q, Geng T, Li H, Zheng S, Svedlund S, Gan L, Egnell AC, Gao S, Chen R, Hu P. Analysis of the pharmacokinetics and efficacy of RBD1016 - A GalNAc-siRNA targeting Hepatitis B Virus X gene using semi-mechanistic PK/PD model. Heliyon 2024; 10:e31924. [PMID: 38841435 PMCID: PMC11152740 DOI: 10.1016/j.heliyon.2024.e31924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Small interference RNA (siRNA) is a class of short double-stranded RNA molecules that cause mRNA degradation through an RNA interference mechanism and is a promising therapeutic modality. RBD1016 is a siRNA drug in clinical development for the treatment of chronic Hepatitis B Virus (HBV) infection, which contains a conjugated with N-acetylglucosamine moiety that can facilitate its hepatic delivery. We aimed to construct a semi-mechanistic model of RBD1016 in pre-clinical animals, to elucidate the pharmacokinetic/pharmacodynamic (PK/PD) profiles in mice and PK profiles in monkeys, which can lay the foundation for potential future translation of RBD1016 PK and PD from the pre-clinical stage to the clinic stage. The proposed semi-mechanistic PK/PD model fitted PK and PD data in HBV transgenic mice well and described plasma and liver concentrations in the monkeys well. The simulation results showed that our model has a reasonable predictive ability for Hepatitis B surface antigen (HBsAg) levels after multiple dosing in mice. Further PK and PD data for RBD1016, including clinical data, will assist in refining the model presented here. Our current effort focused on model building for RBD1016, we anticipate that the model could apply to other GalNAc-siRNA drugs.
Collapse
Affiliation(s)
- Qian Li
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taohua Geng
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Haiyan Li
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Shuquan Zheng
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Sara Svedlund
- Ribocure Pharmaceuticals AB, Medicinaregatan 8A, Gothenburg, Sweden
| | - Liming Gan
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
- Ribocure Pharmaceuticals AB, Medicinaregatan 8A, Gothenburg, Sweden
| | - Ann-Charlotte Egnell
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
- Ribocure Pharmaceuticals AB, Medicinaregatan 8A, Gothenburg, Sweden
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Rui Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Navarro R, Frago S, Hangiu O, Erce-Llamazares A, Lázaro-Gorines R, Morcillo MA, Rodriguez-Peralto JL, Sanz L, Compte M, Alvarez-Vallina L. Pharmacokinetics and safety of LEAD-452, an EGFR-specific 4-1BB-agonistic trimerbody in non-human primates. Toxicol Appl Pharmacol 2024; 487:116961. [PMID: 38740095 DOI: 10.1016/j.taap.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
LEAD-452 is a humanized bispecific EGFR-targeted 4-1BB-agonistic trimerbody with a unique trimeric configuration compared to other 4-1BB-specific antibodies that are currently in development. Indeed, enhanced tumor-specific costimulation and very remarkable safety and efficacy profiles have been observed in mouse models. Here, we conducted for the first time a preclinical pharmacokinetic and toxicity study in non-human primates (NHP) (Macaca fascicularis). LEAD-452 exhibits comparable binding affinity for human and macaque targets, indicating its pharmacological significance for safety testing across species. The NHP were administered LEAD-452 in a series of ascending doses, ranging from 0.1 mg/kg to 10 mg/kg, and repeated doses up to 20 mg/kg. The administration of LEAD-452 was found to be clinically well tolerated, with no major related adverse effects observed. Furthermore, there have been no reported cases of liver toxicity, thrombocytopenia, and neutropenia, which are commonly associated with treatments using conventional anti-4-1BB IgG-based antibodies. In addition, neither IgM nor IgG-based anti-drug antibodies were detected in serum samples from NHP during the study, regardless of the dose of LEAD-452 administered. These results support the clinical development of LEAD-452 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel A Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - José L Rodriguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Pathology, Universidad Complutense, Madrid, Spain; Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Fundación para la Investigación Biomédica Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain.
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
5
|
Hu X, White K, Young C, Olroyd AG, Kievit P, Connolly AJ, Deuse T, Schrepfer S. Hypoimmune islets achieve insulin independence after allogeneic transplantation in a fully immunocompetent non-human primate. Cell Stem Cell 2024; 31:334-340.e5. [PMID: 38335966 DOI: 10.1016/j.stem.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Kathy White
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Chi Young
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Ari G Olroyd
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Paul Kievit
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Andrew J Connolly
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Tobias Deuse
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA
| | - Sonja Schrepfer
- Sana Biotechnology, Inc., 1 Tower Place, South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Nishi K, Yagi H, Ohtomo M, Nagata S, Udagawa D, Tsuchida T, Morisaku T, Kitagawa Y. A thioacetamide-induced liver fibrosis model for pre-clinical studies in microminipig. Sci Rep 2023; 13:14996. [PMID: 37696857 PMCID: PMC10495379 DOI: 10.1038/s41598-023-42144-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Drug-induced liver fibrosis models are used in normal and immunosuppressed small animals for transplantation and regenerative medicine to improve liver fibrosis. Although large animal models are needed for pre-clinical studies, they are yet to be established owing to drug sensitivity in animal species and difficulty in setting doses. In this study, we evaluated liver fibrosis by administering thioacetamide (TA) to normal microminipig and thymectomized microminipig; 3 times for 1 week (total duration: 8 weeks). The pigs treated with TA showed elevated blood cytokine levels and a continuous liver injury at 8 weeks. RNA-seq of the liver showed increased expression of fibrosis-related genes after TA treatment. Histopathological examination showed degenerative necrosis of hepatocytes around the central vein, and revealed fibrogenesis and hepatocyte proliferation. TA treatment caused CD3-positive T cells and macrophages scattered within the hepatic lobule to congregate near the center of the lobule and increased αSMA-positive cells. Thymectomized pigs showed liver fibrosis similar to that of normal pigs, although the clinical signs tended to be milder. This model is similar to pathogenesis of liver fibrosis reported in other animal models. Therefore, it is expected to contribute to research as a drug discovery and pre-clinical transplantation models.
Collapse
Affiliation(s)
- Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan.
| | - Mana Ohtomo
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Udagawa
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Tomonori Tsuchida
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Toshinori Morisaku
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35, Shinano-machi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
She HQ, Sun YF, Chen L, Xiao QX, Luo BY, Zhou HS, Zhou D, Chang QY, Xiong LL. Current analysis of hypoxic-ischemic encephalopathy research issues and future treatment modalities. Front Neurosci 2023; 17:1136500. [PMID: 37360183 PMCID: PMC10288156 DOI: 10.3389/fnins.2023.1136500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the leading cause of long-term neurological disability in neonates and adults. Through bibliometric analysis, we analyzed the current research on HIE in various countries, institutions, and authors. At the same time, we extensively summarized the animal HIE models and modeling methods. There are various opinions on the neuroprotective treatment of HIE, and the main therapy in clinical is therapeutic hypothermia, although its efficacy remains to be investigated. Therefore, in this study, we discussed the progress of neural circuits, injured brain tissue, and neural circuits-related technologies, providing new ideas for the treatment and prognosis management of HIE with the combination of neuroendocrine and neuroprotection.
Collapse
Affiliation(s)
- Hong-Qing She
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Xia Xiao
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Yan Luo
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Su Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Di Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Quan-Yuan Chang
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Translational Neurology Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- WANG TINGHUA Translation Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Stone D, Aubert M, Jerome KR. Adeno-associated virus vectors and neurotoxicity-lessons from preclinical and human studies. Gene Ther 2023:10.1038/s41434-023-00405-1. [PMID: 37165032 PMCID: PMC11247785 DOI: 10.1038/s41434-023-00405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Over 15 years after hepatotoxicity was first observed following administration of an adeno-associated virus (AAV) vector during a hemophilia B clinical trial, recent reports of treatment-associated neurotoxicity in animals and humans have brought the potential impact of AAV-associated toxicity back to prominence. In both pre-clinical studies and clinical trials, systemic AAV administration has been associated with neurotoxicity in peripheral nerve ganglia and spinal cord. Neurological signs have also been seen following direct AAV injection into the brain, both in non-human primates and in a clinical trial for late infantile Batten disease. Neurotoxic events appear variable across species, and preclinical animal studies do not fully predict clinical observations. Accumulating data suggest that AAV-associated neurotoxicity may be underdiagnosed and may differ between species in terms of frequency and/or severity. In this review, we discuss the different animal models that have been used to demonstrate AAV-associated neurotoxicity, its potential causes and consequences, and potential approaches to blunt AAV-associated neurotoxicity.
Collapse
Affiliation(s)
- Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Chamanza R, Amuzie CJ, Chilton J, Engelhardt JA. Special Issue on the Pathobiology of Laboratory Nonhuman Primates: A Review of Species, Substrain, Geographical Origin, Age, and Modality-Related Factors. Toxicol Pathol 2022; 50:548-551. [PMID: 35768952 DOI: 10.1177/01926233221106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonhuman primates (NHPs) are utilized in nonclinical safety testing due to their phylogenetic proximity to humans and similarity in physiology and anatomy. However, ethical considerations and the increased demand for NHPs, coupled with the current shortage in their supply, have increased the calls to minimize their use. In addition, the increased demand and supply shortage of NHPs have increased the use of animals sourced from different geographical origins, and animals of different ages, which can complicate the interpretation of study results. Coupled with the relative uniqueness of findings induced by novel therapeutic modalities, there is an increasing need for a deeper understanding of the systemic pathobiology of NHPs. Here we provide a brief preview of the two main themes discussed in this special issue, which include the influence of geographical origin, age, and sex on background pathology, clinical pathology reference values, other relevant toxicology endpoints, and organ system pathology.
Collapse
Affiliation(s)
- Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, High Wycombe, UK
| | - Chidozie J Amuzie
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | | | | |
Collapse
|