1
|
Sokolowski K, Liu J, Delatte MS, Authier S, McMaster O, Bolon B. The Role of Neuropathology Evaluation in the Nonclinical Assessment of Seizure Liability. Toxicol Pathol 2024; 52:566-573. [PMID: 39633285 DOI: 10.1177/01926233241300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Test article (TA)-induced seizures represent a major safety concern in drug development. Seizures (altered brain wave [electrophysiological] patterns) present clinically as abnormal consciousness with or without tonic/clonic convulsions (where "tonic" = stiffening and "clonic" = involuntary rhythmical movements). Neuropathological findings following seizures may be detected using many methods. Neuro-imaging may show a structural abnormality underlying seizures, such as focal cortical dysplasia or hippocampal sclerosis in patients with chronic epilepsy. Neural cell type-specific biomarkers in blood or cerebrospinal fluid may highlight neuronal damage and/or glial reactions but are not specific indicators of seizures while serum electrolyte and glucose imbalances may induce seizures. Gross observations and brain weights generally are unaffected by TAs with seizurogenic potential, but microscopic evaluation may reveal seizure-related neuron death in some brain regions (especially neocortex, hippocampus, and/or cerebellum). Current globally accepted best practices for neural sampling in nonclinical general toxicity studies provide a suitable screen for brain regions that are known sites of electrical disruption and/or display seizure-induced neural damage. Conventional nonclinical studies can afford an indication that a TA has a potential seizure liability (via in-life signs and/or microscopic evidence of neuron necrosis), but confirmation requires measuring brain electrical (electroencephalographic) activity in a nonclinical study.
Collapse
Affiliation(s)
| | - Judy Liu
- Brown University, Providence, Rhode Island, USA
| | | | | | - Owen McMaster
- U.S. Food & Drug Administration, Silver Spring, Maryland, USA
| | | |
Collapse
|
2
|
Bolon B, Buza E, Galbreath E, Wicks J, Cargnin F, Hordeaux J. Neuropathological Findings in Nonclinical Species Following Administration of Adeno-Associated Virus (AAV)-Based Gene Therapy Vectors. Toxicol Pathol 2024; 52:489-505. [PMID: 39668663 DOI: 10.1177/01926233241300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Adeno-associated virus (AAV) gene therapy vectors are an accepted platform for treating severe neurological diseases. Test article (TA)-related and procedure-related neuropathological effects following administration of AAV-based vectors are observed in the central nervous system (CNS) and peripheral nervous system (PNS). Leukocyte accumulation (mononuclear cell infiltration > inflammation) may occur in brain, spinal cord, spinal nerve roots (SNRs), sensory and autonomic ganglia, and rarely nerves. Leukocyte accumulation may be associated with neuron necrosis (sensory ganglia > CNS) and/or glial changes (microgliosis and/or astrocytosis in the CNS, increased satellite glial cellularity in ganglia and/or Schwann cellularity in nerves). Axonal degeneration secondary to neuronal injury may occur in the SNR (dorsal > ventral), spinal cord (dorsal and occasionally lateral funiculi), and brainstem centrally and in nerves peripherally. Patterns of AAV-associated microscopic findings in the CNS and PNS differ for TAs administered into brain parenchyma (where tissue at the injection site is affected most) versus TAs delivered into cerebrospinal fluid (CSF) or systemically (which primarily impacts sensory ganglion neurons and their processes in SNR and spinal cord). Changes related to the TA and procedure may overlap. While often interpreted as adverse, AAV-associated neuronal necrosis and axonal degeneration of limited severity generally do not preclude clinical testing.
Collapse
Affiliation(s)
| | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Joan Wicks
- Spark Therapeutics, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Schafer KA, Atzpodien E, Bach U, Bartoe J, Booler H, Brassard J, Farman C, Kochi M, Lejeune T, Meseck E, Nolte T, Ramos M, Short B, Sorden S, Teixeira L, Turner O, Walling B, Yekkala K, Yoshizawa K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of Nonrodent Ocular Tissues. Toxicol Pathol 2024; 52:368-455. [PMID: 39658869 DOI: 10.1177/01926233241283708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/ inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in ocular tissues (eyes and glands and ocular adnexa) from laboratory nonrodent species (rabbits, dogs, minipigs, and nonhuman primates) used in nonclinical safety studies with an emphasis on ocular-targeted dosing. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes descriptions and visual depictions of spontaneous lesions and lesions induced by exposure to various test materials. A widely accepted and utilized internationally harmonized nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- K A Schafer
- Greenfield Pathology Services, Inc., Greenfield, Indiana, USA
| | | | - U Bach
- Bayer AG, Wuppertal, Germany
| | - J Bartoe
- Horus Consulting, LLC, Spring Lake, Michigan, USA
| | - H Booler
- Novartis Biomedical Research, Basel, Switzerland
| | - J Brassard
- Brassard Toxicologic Pathology Consultancy, Tustin, California, USA
| | - C Farman
- Greenfield Pathology Services, Inc., Greenfield, Indiana, USA
| | - M Kochi
- Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - T Lejeune
- Charles River Montreal ULC, Senneville, Quebec, Canada
| | - E Meseck
- Novartis Biomedical Research, East Hanover, New Jersey, USA
| | - T Nolte
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - M Ramos
- Abbvie, Irvine, California, USA
| | - B Short
- Brian Short Consulting, LLC, Laguna Beach, California, USA
| | - S Sorden
- Labcorp, Madison, Wisconsin, USA
| | - L Teixeira
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - O Turner
- Novartis Biomedical Research, East Hanover, New Jersey, USA
| | - B Walling
- Charles River Laboratories, Ashland, Ohio, USA
| | - K Yekkala
- Johnson & Johnson Innovative Medicine, Springhouse, Pennsylvania, USA
| | - K Yoshizawa
- Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
4
|
Gary JM, Cramer S, Bolon B, Bradley AE, Butt MT. Incidental Gliosis in the Central Nervous System of Control Nonhuman Primates and Rats. Toxicol Pathol 2024; 52:114-122. [PMID: 38828567 DOI: 10.1177/01926233241253255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Gliosis, including microgliosis and astrocytosis, can be challenging to interpret in nonclinical studies. Incidences of glial foci in brains and spinal cords of control rats and nonhuman primates (NHPs) were reviewed in the historical control databases from two contract research organizations, including one specializing in neuropathology. In the brain, minimal to mild (grades 1-2) microgliosis was the most common diagnosis, especially in NHPs, although occasional moderate or marked microgliosis (grades 3 and 4) was encountered in both species. Microgliosis was more common in the cerebral cortex, cerebellum, and medulla oblongata in both species and was frequent in the white matter (brain), thalamus, and basal nuclei of NHPs. Gliosis ("not otherwise specified") of minimal severity was diagnosed in similar brain sub-sites for both species and was more common in NHPs compared with rats. Astrocytosis was most prominent in the cerebellum (molecular layer) of NHPs but was otherwise uncommon. In the spinal cord, microgliosis was most common in the lateral white matter tracts in rats and NHPs, and in the dorsal white matter tracts in NHPs. These data indicate that low-grade spontaneous glial responses occur with some frequency in control animals of two common nonclinical species.
Collapse
|
5
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
6
|
Bolon B. Toxicologic Pathology Forum Opinion: Rational Approaches to Expanded Neurohistopathology Evaluation for Nonclinical General Toxicity Studies and Juvenile Animal Studies. Toxicol Pathol 2023; 51:363-374. [PMID: 38288942 DOI: 10.1177/01926233231225239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Existing nervous system sampling and processing "best practices" for nonclinical general toxicity studies (GTS) were designed to assess test articles with unknown, no known, or well-known neurotoxic potential. Similar practices are applicable to juvenile animal studies (JAS). In GTS and JAS, the recommended baseline sampling for all species includes brain (7 sections), spinal cord (cervical and lumbar divisions [cross and longitudinal sections for each]), and 1 nerve (sciatic or tibial [cross and longitudinal sections]) in hematoxylin and eosin-stained sections. Extra sampling and processing (ie, an "expanded neurohistopathology evaluation" [ENHP]) are used for agents with anticipated neuroactivity (toxic ± therapeutic) of incompletely characterized location and degree. Expanded sampling incorporates additional brain (usually 8-15 sections total), spinal cord (thoracic ± sacral divisions), ganglia (somatic ± autonomic, often 2-8 total), and/or nerves (2-6 total) depending on the species and study objectives. Expanded processing typically adds special neurohistological procedures (usually 1-4 for selected samples) to characterize glial reactions, myelin integrity, and/or neuroaxonal damage. In my view, GTS and JAS designs should sample neural tissues at necropsy as if ENHP will be needed eventually, and when warranted ENHP may incorporate expanded sampling and/or expanded processing depending on the study objective(s).
Collapse
|
7
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|