1
|
Singh H, Mohanto S, Kumar A, Mishra AK, Kumar A, Mishra A, Ahmed MG, Singh MK, Yadav AP, Chopra S, Chopra H. Genetic and molecular profiling in Merkel Cell Carcinoma: Focus on MCPyV oncoproteins and emerging diagnostic techniques. Pathol Res Pract 2025:155869. [PMID: 40023704 DOI: 10.1016/j.prp.2025.155869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Merkel Cell Carcinoma (MCC) is an uncommon yet highly malignant form of skin cancer, frequently linked to the Merkel cell polyomavirus (MCPyV). This review comprehensively covers data from year 2000 to 2024, employing keywords such as MCC, MCPyV Oncoproteins, Immunohistochemistry, Southern Blot, Western Blot, Polymerase Chain Reaction (PCR), Digital Droplet PCR (ddPCR), Next-Generation Sequencing (NGS), and In Situ Hybridization (ISH). The search engines utilized were Google, PubMed Central, Scopus, and other journal databases like ScienceDirect. This review is essential for researchers and the broader medical community as it consolidates two decades of research on the genetic and molecular profiling of MCC, particularly focusing on MCPyV's role in its pathogenesis. It highlights the diagnostic advancements and therapeutic potential of targeting viral oncoproteins and provides insights into the development of both in vivo and in vitro models for better understanding MCC. The findings emphasize the significance of early detection, molecular diagnostics, and personalized treatment approaches, aiming to improve outcomes for patients with this malignant malignancy.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Anil Kumar
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad, Uttar Pradesh 244001, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mukesh Kr Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Win R, Minto W, Mah IK, Boyd K. Integration of Chromogenic RNAscope In Situ Hybridization for Target Validation in Drug Discovery. Toxicol Pathol 2025; 53:21-30. [PMID: 39829073 DOI: 10.1177/01926233241311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Characterizing the expression of novel targets in normal and diseased tissues is a fundamental component of a target validation data package. Often these targets are presented to the pathology team for assessment with bulk or single-cell RNAseq data and limited to no spatial tissue expression data. In situ hybridization to detect mRNA (RNAscope) is a valuable tool to (1) identify cells that may express the target protein and to corroborate protein expression during immunohistochemical (IHC) assay development or (2) to use as surrogate for single-cell expression IHC when antibodies are not available. Chromogenic RNAscope in situ hybridization (CISH) can be performed on frozen or formalin-fixed, paraffin-embedded (FFPE) tissues. This CISH workflow starts with RNA qualification of the tissue (to assess RNA integrity) by measuring the expression of housekeeping genes. RNA-qualified tissues then undergo CISH for the target in question, and positive CISH signals are quantified in VisioPharm by a combination of color deconvolution, size gating, and dot density thresholding. This RNA workflow can complement IHC or standalone in target validation for spatial characterization of novel targets.
Collapse
Affiliation(s)
- Rosanna Win
- Gilead Sciences, Foster City, California, USA
| | | | | | - Kelli Boyd
- Gilead Sciences, Foster City, California, USA
| |
Collapse
|
3
|
Huang J, Zhu W, Peng M, Yang C, Chen X, Wu T, Zeng D, Zhao Y, Chen X. Cloning, Identification, and Functional Analysis of the Foxl2 Gene in Procambarus clarkii. Genes (Basel) 2023; 14:2190. [PMID: 38137012 PMCID: PMC10743188 DOI: 10.3390/genes14122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Procambarus clarkii is the most widely distributed freshwater shrimp in China, with important economic value and great potential for development. The forkheadboxL2 (Foxl2) gene has been found to be involved in the reproductive development of many crustaceans. To understand the role of the Foxl2 gene in the gonad development of P. clarkii, we designed CDS-specific primers for the P. clarkii Foxl2 (PcFoxl2) gene and cloned its CDS sequence using RT-PCR. The nucleotide and protein sequence information was then analyzed through bioinformatics analysis. The expression and subcellular localization of PcFoxl2 in various tissues were detected using qRT-PCR and in situ hybridization. The effects of PcFoxl2 knockdown on gonad development were investigated using RNA interference. The results showed that the CDS length of the PcFoxl2 gene was 1614 bp and encoded 537 amino acids. Protein sequence comparison and phylogenetic analysis showed that PcFoxl2 was the closest relative to Crayfish. qRT-PCR analysis indicated that the expression level of PcFoxl2 in the testis was significantly higher (>40 fold) than that in the ovary (p < 0.01). The in situ hybridization results showed that PcFoxl2 was expressed in both the cytoplasm and the nucleus of egg cells, and that the expression was strongest in egg cells at the early stage of yolk synthesis, while weak in the secondary oocytes. The positive signal was strongest in the spermatocyte nucleolus, while only a trace signal was observed in the cytoplasm. After interfering with the PcFoxl2 gene using dsRNA, the expression of PcFoxl2 in the RNA interference group was significantly lower than that in the control group, and this interference effect lasted for one week. Moreover, the gonad index of the experimental group was significantly lower than that of the control group (p < 0.05) after 10 days of P. clarkii cultivation following PcFoxl2 knockdown. The expression levels of the nanos and S3a genes, which are related to gonad development, decreased significantly after PcFoxl2 gene interference. The results suggest that the Foxl2 gene is involved in the growth and development of gonads, particularly in the development of testis, and is related to the early development of oocytes. This study provides a theoretical basis for the artificial breeding of P. clarkii.
Collapse
Affiliation(s)
- Jin Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tiejun Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| |
Collapse
|