1
|
Win R, Minto W, Mah IK, Boyd K. Integration of Chromogenic RNAscope In Situ Hybridization for Target Validation in Drug Discovery. Toxicol Pathol 2025:1926233241311275. [PMID: 39829073 DOI: 10.1177/01926233241311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Characterizing the expression of novel targets in normal and diseased tissues is a fundamental component of a target validation data package. Often these targets are presented to the pathology team for assessment with bulk or single-cell RNAseq data and limited to no spatial tissue expression data. In situ hybridization to detect mRNA (RNAscope) is a valuable tool to (1) identify cells that may express the target protein and to corroborate protein expression during immunohistochemical (IHC) assay development or (2) to use as surrogate for single-cell expression IHC when antibodies are not available. Chromogenic RNAscope in situ hybridization (CISH) can be performed on frozen or formalin-fixed, paraffin-embedded (FFPE) tissues. This CISH workflow starts with RNA qualification of the tissue (to assess RNA integrity) by measuring the expression of housekeeping genes. RNA-qualified tissues then undergo CISH for the target in question, and positive CISH signals are quantified in VisioPharm by a combination of color deconvolution, size gating, and dot density thresholding. This RNA workflow can complement IHC or standalone in target validation for spatial characterization of novel targets.
Collapse
Affiliation(s)
- Rosanna Win
- Gilead Sciences, Foster City, California, USA
| | | | | | - Kelli Boyd
- Gilead Sciences, Foster City, California, USA
| |
Collapse
|
2
|
Huang J, Zhu W, Peng M, Yang C, Chen X, Wu T, Zeng D, Zhao Y, Chen X. Cloning, Identification, and Functional Analysis of the Foxl2 Gene in Procambarus clarkii. Genes (Basel) 2023; 14:2190. [PMID: 38137012 PMCID: PMC10743188 DOI: 10.3390/genes14122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Procambarus clarkii is the most widely distributed freshwater shrimp in China, with important economic value and great potential for development. The forkheadboxL2 (Foxl2) gene has been found to be involved in the reproductive development of many crustaceans. To understand the role of the Foxl2 gene in the gonad development of P. clarkii, we designed CDS-specific primers for the P. clarkii Foxl2 (PcFoxl2) gene and cloned its CDS sequence using RT-PCR. The nucleotide and protein sequence information was then analyzed through bioinformatics analysis. The expression and subcellular localization of PcFoxl2 in various tissues were detected using qRT-PCR and in situ hybridization. The effects of PcFoxl2 knockdown on gonad development were investigated using RNA interference. The results showed that the CDS length of the PcFoxl2 gene was 1614 bp and encoded 537 amino acids. Protein sequence comparison and phylogenetic analysis showed that PcFoxl2 was the closest relative to Crayfish. qRT-PCR analysis indicated that the expression level of PcFoxl2 in the testis was significantly higher (>40 fold) than that in the ovary (p < 0.01). The in situ hybridization results showed that PcFoxl2 was expressed in both the cytoplasm and the nucleus of egg cells, and that the expression was strongest in egg cells at the early stage of yolk synthesis, while weak in the secondary oocytes. The positive signal was strongest in the spermatocyte nucleolus, while only a trace signal was observed in the cytoplasm. After interfering with the PcFoxl2 gene using dsRNA, the expression of PcFoxl2 in the RNA interference group was significantly lower than that in the control group, and this interference effect lasted for one week. Moreover, the gonad index of the experimental group was significantly lower than that of the control group (p < 0.05) after 10 days of P. clarkii cultivation following PcFoxl2 knockdown. The expression levels of the nanos and S3a genes, which are related to gonad development, decreased significantly after PcFoxl2 gene interference. The results suggest that the Foxl2 gene is involved in the growth and development of gonads, particularly in the development of testis, and is related to the early development of oocytes. This study provides a theoretical basis for the artificial breeding of P. clarkii.
Collapse
Affiliation(s)
- Jin Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tiejun Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| |
Collapse
|