1
|
Chabot MB, Fleming AM, Burrows CJ. Identification of the Major Product of Guanine Oxidation in DNA by Ozone. Chem Res Toxicol 2022; 35:1809-1813. [PMID: 35642826 DOI: 10.1021/acs.chemrestox.2c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozonolysis of guanosine formed the 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) nucleoside along with trace spiroiminodihydantoin (Sp). On the basis of literature precedent, we propose an unconventional ozone mechanism involving incorporation of only one oxygen atom of O3 to form 2Ih with evolution of singlet oxygen responsible for Sp formation. The increased yield of Sp in the buffered 1O2-stabilizing solvent D2O, formation of 2Ih in a short oligodeoxynucleotide, and 18O-isotope labeling provided evidence to support this mechanism. The elusiveness and challenges of working with 2Ih are described in a series of studies on the significant context effects on the half-life of the 2Ih glycosidic bond.
Collapse
Affiliation(s)
- Michael B Chabot
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
2
|
Wagner JR, Madugundu GS, Cadet J. Ozone-Induced DNA Damage: A Pandora's Box of Oxidatively Modified DNA Bases. Chem Res Toxicol 2021; 34:80-90. [PMID: 33417438 DOI: 10.1021/acs.chemrestox.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides. The oxidation of 5mC was 2.5-fold more susceptible than C considering the relative mole fraction of 5mC to C in CT-DNA. Other common oxidation products of pyrimidines (e.g., 5,6-dihydroxy-5,6-dihydropyrimidines, the so-called pyrimidine 5,6-glycols) were formed with a lower yield than 5-hydroxyhydantoin derivatives. In addition, several common oxidation products of G were observed (e.g., 8-oxo-7,8-dihydroguanine (8oxoG)) albeit with relatively minor yields. The sum of individual products was notably less than the loss of 2'-deoxyribonucleosides from which they were derived. In a search for additional products, we discovered the formation of pyrimidine ring fragments, predominantly N-formamide and N-urea, which were measured as a dinucleotide next to a nonmodified nucleotide upon partial digestion of oxidized DNA. Interestingly, the latter fragments were also observed in dinucleotides containing 8oxoG, indicating the formation of tandem lesions during ozonolysis of DNA. The oxidation of DNA upon exposure to ozone can be explained by reactions of an intermediate ozonide. These studies underline the complexity of ozone-induced DNA damage and provide valuable information to assess the formation of this damage in cellular DNA.
Collapse
Affiliation(s)
- J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Guru S Madugundu
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
3
|
Harkema JR, Wagner JG. Innate Lymphoid Cell-Dependent Airway Epithelial and Inflammatory Responses to Inhaled Ozone: A New Paradigm in Pathogenesis. Toxicol Pathol 2019; 47:993-1003. [PMID: 31537180 DOI: 10.1177/0192623319873872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological associations have been made between the new onset of childhood rhinitis/asthma and exposures to elevated ambient levels of ozone, a commonly encountered gaseous air pollutant. Our laboratory was the first to find that mice repeatedly exposed to ozone develop nasal type 2 immunity and eosinophilic rhinitis with mucous cell metaplasia. More recently, we have found that these ozone-induced upper airway alterations are mediated by group 2 innate lymphoid cells (ILC2s) and not by T and B cells that are important in adaptive immune responses typically associated with allergic rhinitis and asthma. Furthermore, repeated exposures of mice to ozone cause ILC2-mediated type 2 immunity and airway pathology in the lungs, like those found in the nasal airways. Our recent findings in ozone-exposed mice complement and extend previous reports of nonallergic nasal airway disease in ozone-exposed rats and nonhuman primates. Overall, these experimental results in laboratory animals suggest a plausible ILC2-dependent paradigm for the toxicologic pathobiology that underlies the development of nonallergic rhinitis/asthma in children who live in environments with repeated occurrences of high ambient concentrations of ozone.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Arnold C. Sensory Overload? Air Pollution and Impaired Olfaction. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:62001. [PMID: 31190551 PMCID: PMC6791585 DOI: 10.1289/ehp3621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
5
|
Muttray A, Gosepath J, Schmall F, Brieger J, Mayer-Popken O, Melia M, Letzel S. An acute exposure to ozone impairs human olfactory functioning. ENVIRONMENTAL RESEARCH 2018; 167:42-50. [PMID: 30007872 DOI: 10.1016/j.envres.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Ozone is a ubiquitous and irritant gas. We questioned whether an acute exposure to 0.2 ppm ozone impaired olfactory functioning. METHODS Healthy, normosmic subjects were exposed according to a parallel group design either to 0.2 ppm ozone (n = 15) or to sham (n = 13) in an exposure chamber for two hours. Possible irritating effects were assessed by questionnaire (range 0-5). The detection threshold of n-butanol was measured with the Sniffin' Sticks test before and after exposure. Olfactory thresholds were logarithmized and a two-way analysis of variance (ANOVA) with repeated measurements was carried out to test the effects of exposure (ozone vs. sham) and time (before vs. after exposure). Additionally, nasal secretions were taken at a preliminary examination and after exposure to determine interleukins 1ß and 8. RESULTS No irritating effects to the upper airways were observed. In the ozone group, the median score for cough increased from 0 to 2 at the end of exposure (sham group 0 and 0, respectively, p < 0.001). The ANOVA showed a main effect for ozone exposure (F (1, 26) = 27.6, p = 0.0002), indicating higher olfactory thresholds in the ozone group. Concentrations of interleukins in nasal secretions did not increase following ozone exposure. CONCLUSIONS This study shows a clear impairment of olfactory functioning following an acute exposure to 0.2 ppm ozone.
Collapse
Affiliation(s)
- Axel Muttray
- Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany.
| | - Jan Gosepath
- Department of Otolaryngology of the University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Florian Schmall
- Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany; Department of Otolaryngology of the University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jürgen Brieger
- Department of Otolaryngology of the University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Otfried Mayer-Popken
- Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Michael Melia
- Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Stephan Letzel
- Institute of Occupational, Social and Environmental Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| |
Collapse
|
6
|
Megele R, Riemenschneider MJ, Dodoo-Schittko F, Feyrer M, Kleindienst A. Intra-tumoral treatment with oxygen-ozone in glioblastoma: A systematic literature search and results of a case series. Oncol Lett 2018; 16:5813-5822. [PMID: 30344733 PMCID: PMC6176341 DOI: 10.3892/ol.2018.9397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Despite progress in surgery and radiochemotherapy, the prognosis of glioblastoma (GB) remains poor. GB cells exhibit a preference for hypoxia to maintain their tumor-forming capacity. Treatment strategies utilizing oxygen (O2) or ozone (O3) and generating reactive oxygen species induce cell growth inhibition and apoptosis. The anti-tumorigenic properties of O2-O3 are accompanied by a key role in regulating immunogenicity. The present study reported a case series of an intra-tumoral O2-O3 application in recurrent GB. Following surgery in combination with standard radiochemotherapy, O2-O3 (5 ml at 40 µg/ml) was applied every four weeks into the tumor vicinity. The patients received a median of 27 (range, 3–44) O2-O3 applications. In addition, a systematic literature search was performed in order to evaluate the role of O3 in the treatment of malignancies. The median overall survival rate was 40 (range, 16–53) months. The median survival rate following the first recurrence or the initiation of the O2-O3 treatment, respectively, was 34 (range, 12–53) months. In one patient, a local infection and in another, hemorrhage occurred, necessitating in both the temporary removal of the reservoir. The data from the present study support the potential benefit of an intra-tumoral O2-O3 application in recurrent GB. The scientific literature revealed by the bibliographic search suggests that O3 may be considered a viable adjuvant therapy in oncological patients. The present study may serve as a starting point for further observational and clinical studies elucidating the cellular and systemic effects of O2 and/or O3 and demonstrating their efficacy and safety in larger patient samples.
Collapse
Affiliation(s)
- Richard Megele
- Department of Neurosurgery, Klinikum St. Marien, D-92224 Amberg, Germany
| | | | - Frank Dodoo-Schittko
- Medical Sociology, Institute of Epidemiology and Preventative Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Matthias Feyrer
- Department of Radiology, Klinikum St. Marien, D-92224 Amberg, Germany
| | - Andrea Kleindienst
- Department of Neurosurgery, Klinikum St. Marien, D-92224 Amberg, Germany.,Department of Neurosurgery, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
7
|
Abstract
Tobacco smoke is a known human carcinogen that primarily produces malignant lesions in the respiratory tract, although it also affects multiple other sites. A reliable and practical animal model of tobacco smoke–induced lung cancer would be helpful for in studies of product modification and chemoprevention. Over the years, many attempts to reproduce lung cancer in experimental animals exposed to tobacco smoke have been made, most often with negative or only marginally positive results. In hamsters, malignant lesions have been produced in the larynx, but not in the deeper lung. Female rats and female B6C3F1 mice, when exposed over lifetime to tobacco smoke, develop tumors in the nasal passages and also in the lung. Contrary to what is seen in human lung cancers, most rodent tumors are located peripherally and only about half of them show frank malignant features. Distant metastases are extremely rare. Male and female strain A mice exposed to 5 months to tobacco smoke and then kept for another 4 months in air respond to tobacco smoke with increased lung tumor multiplicities. However, the increase over background levels is comparatively small, making it difficult to detect significant differences when the effects of chemopreventive agents are evaluated. On the other hand, biomarkers of exposure and of effect as well as evaluation of putative carcinogenic mechanisms in rats and mice exposed to tobacco smoke allow detection of early events and their modification by different smoke types or chemopreventive agents. The challenge will be to make such data broadly acceptable and accepted in lieu of having to do more and more long term studies involving larger and larger number of animals.
Collapse
Affiliation(s)
- Hanspeter Witschi
- Center for Health and the Environment, University of California, Davis, Davis, California, USA.
| |
Collapse
|
8
|
Ajmani GS, Suh HH, Pinto JM. Effects of Ambient Air Pollution Exposure on Olfaction: A Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1683-1693. [PMID: 27285588 PMCID: PMC5089874 DOI: 10.1289/ehp136] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. OBJECTIVES To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. METHODS We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. RESULTS We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. CONCLUSIONS Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683-1693; http://dx.doi.org/10.1289/EHP136.
Collapse
Affiliation(s)
- Gaurav S. Ajmani
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Helen H. Suh
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jayant M. Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Address correspondence to J.M. Pinto, Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, MC103, 5841 South Maryland Ave., Chicago, IL 60647 USA. Telephone: (773) 702-6727. E-mail:
| |
Collapse
|
9
|
Ong CB, Kumagai K, Brooks PT, Brandenberger C, Lewandowski RP, Jackson-Humbles DN, Nault R, Zacharewski TR, Wagner JG, Harkema JR. Ozone-Induced Type 2 Immunity in Nasal Airways. Development and Lymphoid Cell Dependence in Mice. Am J Respir Cell Mol Biol 2016. [PMID: 26203683 DOI: 10.1165/rcmb.2015-0165oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhalation exposures to ozone commonly encountered in photochemical smog cause airway injury and inflammation. Elevated ambient ozone concentrations have been epidemiologically associated with nasal airway activation of neutrophils and eosinophils. In the present study, we elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and associated epithelial changes in mice repeatedly exposed to ozone. Lymphoid cell-sufficient C57BL/6 mice were exposed to 0 or 0.5 parts per million (ppm) ozone for 1, 2, 4, or 9 consecutive weekdays (4 h/d). Lymphoid cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 weekdays. Nasal tissues were taken at 2 or 24 hours after exposure for morphometric and gene expression analyses. C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis, with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13, and Tnf mRNA. In contrast, 9-day ozone exposure elicited type 2 immune responses in C57BL/6 mice, with mucosal mRNA overexpression of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13; increased density of mucosal eosinophils; and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous cell metaplasia, hyalinosis, and increased YM1/YM2 proteins). Rag2(-/-)Il2rg(-/-) mice exposed to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to type 2 immunity. These results provide a plausible paradigm for the activation of eosinophilic inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected to episodic exposures to high ambient ozone.
Collapse
Affiliation(s)
- Chee Bing Ong
- 1 Department of Pathobiology and Diagnostic Investigation
| | | | | | | | | | | | - Rance Nault
- 3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Timothy R Zacharewski
- 3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - James G Wagner
- 1 Department of Pathobiology and Diagnostic Investigation
| | - Jack R Harkema
- 1 Department of Pathobiology and Diagnostic Investigation
| |
Collapse
|
10
|
Kasahara DI, Williams AS, Benedito LA, Ranscht B, Kobzik L, Hug C, Shore SA. Role of the adiponectin binding protein, T-cadherin (cdh13), in pulmonary responses to subacute ozone. PLoS One 2013; 8:e65829. [PMID: 23755285 PMCID: PMC3675043 DOI: 10.1371/journal.pone.0065829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
Adiponectin, an adipose derived hormone with pleiotropic functions, binds to several proteins, including T-cadherin. We have previously reported that adiponectin deficient (Adipo(-/-)) mice have increased IL-17A-dependent neutrophil accumulation in their lungs after subacute exposure to ozone (0.3 ppm for 72 hrs). The purpose of this study was to determine whether this anti-inflammatory effect of adiponectin required adiponectin binding to T-cadherin. Wildtype, Adipo(-/-) , T-cadherin deficient (T-cad(-/-) ), and bideficient (Adipo(-/-)/T-cad(-/-) ) mice were exposed to subacute ozone or air. Compared to wildtype mice, ozone-induced increases in pulmonary IL-17A mRNA expression were augmented in T-cad(-/-) and Adipo(-/-) mice. Compared to T-cad(-/-) mice, there was no further increase in IL-17A in Adipo(-/-)/T-cad(-/-) mice, indicating that adiponectin binding to T-cadherin is required for suppression of ozone-induced IL-17A expression. Similar results were obtained for pulmonary mRNA expression of saa3, an acute phase protein capable of inducing IL-17A expression. Comparison of lung histological sections across genotypes also indicated that adiponectin attenuation of ozone-induced inflammatory lesions at bronchiolar branch points required T-cadherin. BAL neutrophils and G-CSF were augmented in T-cad(-/-) mice and further augmented in Adipo(-/-)/T-cad(-/-) mice. Taken together with previous observations indicating that augmentation of these moieties in ozone exposed Adipo(-/-) mice is partially IL-17A dependent, the results indicate that effects of T-cadherin deficiency on BAL neutrophils and G-CSF are likely secondary to changes in IL-17A, but that adiponectin also acts via T-cadherin independent pathways. Our results indicate that T-cadherin is required for the ability of adiponectin to suppress some but not all aspects of ozone-induced pulmonary inflammation.
Collapse
Affiliation(s)
- David I. Kasahara
- Department of Environmental Health, Harvard School of Public Health (HSPH), Boston, Massachusetts, United States of America
| | - Alison S. Williams
- Department of Environmental Health, Harvard School of Public Health (HSPH), Boston, Massachusetts, United States of America
| | - Leandro A. Benedito
- Department of Environmental Health, Harvard School of Public Health (HSPH), Boston, Massachusetts, United States of America
| | - Barbara Ranscht
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health (HSPH), Boston, Massachusetts, United States of America
| | - Christopher Hug
- Division of Pulmonary Medicine, Children's Hospital Boston, Harvard Medical School (HMS), Boston, Massachusetts, United States of America
| | - Stephanie A. Shore
- Department of Environmental Health, Harvard School of Public Health (HSPH), Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Maciag A, Anderson LM. Reactive Oxygen Species And Lung Tumorigenesis By Mutant K-ras: A Working Hypothesis. Exp Lung Res 2009; 31:83-104. [PMID: 15765920 DOI: 10.1080/01902140490495048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wild-type K-ras is tumor suppressive in mouse lung, but mutant K-ras is actively oncogenic. Thus, the mutant protein must acquire new, dominant protumorigenic properties. Generation of reactive oxygen species could be one such property. The authors demonstrate increased peroxides in lung epithelial cells (E10)-transfected with mutant hK-ras(va112). An associated increase in DNA damage (comet assay) correlates with increased cyclooxygenase-2 protein. This DNA damage is completely abrogated by a specific cyclooxygenase-2 inhibitor (SC58125) or by a cell-permeable modified catalase. Literature is reviewed regarding generation of reactive oxygen and cyclooxygenase-2 induction by ras, cyclooxygenase-2 release of DNA-damaging reactive oxygen, and involvement of cyclooxygenase-2 and reactive oxygen in lung cancer
Collapse
Affiliation(s)
- Anna Maciag
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
12
|
Kim MY, Cho MY. Toxicity and carcinogenicity of ozone in combination with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and dibutyl phthalate in B6C3F1 mice for 16 and 32 weeks. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:216-222. [PMID: 19725464 DOI: 10.1016/s0895-3988(09)60048-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To evaluate the toxic and carcinogenic potential of ozone alone or in combination with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and/or dibutyl phthalate (DBP). METHODS Male and female B6C3F1 mice were exposed, through inhalation, intravenous administration and diet, to 0.5 ppm of ozone, 1.0 mg/kg of NNK and 5000 ppm of DBP, individually and in combination for 16 and 32 weeks. RESULTS No treatment-related death was seen, but significant differences in body and organ weights between control and treated mice were observed during the study. No incidence of lung tumor incidence was recorded in mice exposed to either ozone alone or combined treatment. Oviductal carcinomas were observed in female mice exposed to ozone or DBP alone for 16 weeks and ozone in combination with NNK and DBP for 32 weeks. CONCLUSION Although ozone alone and in conjunction with NNK and/or DBP does not induce lung cancer under our experimental conditions, they induce oviductal carcinomas in B6C3F1 mice.
Collapse
Affiliation(s)
- Min Young Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea.
| | | |
Collapse
|
13
|
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006; 34:252-69. [PMID: 16698724 DOI: 10.1080/01926230600713475] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nose is a very complex organ with multiple functions that include not only olfaction, but also the conditioning (e.g., humidifying, warming, and filtering) of inhaled air. The nose is also a "scrubbing tower" that removes inhaled chemicals that may be harmful to the more sensitive tissues in the lower tracheobronchial airways and pulmonary parenchyma. Because the nasal airway may also be a prime target for many inhaled toxicants, it is important to understand the comparative aspects of nasal structure and function among laboratory animals commonly used in inhalation toxicology studies, and how nasal tissues and cells in these mammalian species may respond to inhaled toxicants. The surface epithelium lining the nasal passages is often the first tissue in the nose to be directly injured by inhaled toxicants. Five morphologically and functionally distinct epithelia line the mammalian nasal passages--olfactory, respiratory, squamous, transitional, and lymphoepithelial--and each nasal epithelium may be injured by an inhaled toxicant. Toxicant-induced epithelial lesions in the nasal passages of laboratory animals (and humans) are often site-specific and dependent on the intranasal regional dose of the inhaled chemical and the sensitivity of the nasal epithelial tissue to the specific chemical. In this brief review, we present examples of nonneoplastic epithelial lesions (e.g., cell death, hyperplasia, metaplasia) caused by single or repeated exposure to various inhaled chemical toxicants. In addition, we provide examples of how nasal maps may be used to record the character, magnitude and distribution of toxicant-induced epithelial injury in the nasal airways of laboratory animals. Intranasal mapping of nasal histopathology (or molecular and biochemical alterations to the nasal mucosa) may be used along with innovative dosimetric models to determine dose/response relationships and to understand if site-specific lesions are driven primarily by airflow, by tissue sensitivity, or by another mechanism of toxicity. The present review provides a brief overview of comparative nasal structure, function and toxicologic pathology of the mammalian nasal epithelium and a brief discussion on how data from animal toxicology studies have been used to estimate the risk of inhaled chemicals to human health.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
14
|
Ito K, Inoue S, Hiraku Y, Kawanishi S. Mechanism of site-specific DNA damage induced by ozone. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 585:60-70. [PMID: 15923135 DOI: 10.1016/j.mrgentox.2005.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 12/20/2022]
Abstract
Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed.
Collapse
Affiliation(s)
- Kimiko Ito
- Department of Life Science, Tsu City College, Mie 514-0112, Japan
| | | | | | | |
Collapse
|
15
|
Nyska A, Yoshizawa K, Jokinen MP, Brix AE, Sells DM, Wyde ME, Orzech DP, Kissling GE, Walker NJ. Olfactory epithelial metaplasia and hyperplasia in female Harlan Sprague-Dawley rats following chronic treatment with polychlorinated biphenyls. Toxicol Pathol 2005; 33:371-7. [PMID: 15805076 DOI: 10.1080/01926230590930209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The National Toxicology Program recently completed a series of studies to evaluate the relative potency for toxicity and carcinogenicity of several polyhalogenated aromatic hydrocarbons including dioxin-like compounds (DLCs) and polychlorinated biphenyls. Female Sprague-Dawley rats were administered by gavage for up to 2 years with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); 3,3',4,4',5-pentachlorobiphenyl (PCB126); 2,3,4,7,8-pentachlorodibenzofuran (PeCDF); 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153); a tertiary mixture of TCDD, PCB126, and PeCDF; a binary mixture of PCB126 and 153; or a binary mixture of PCB126 and 2,3',4,4',5-pentachlorobiphenyl (PCB118); control animals received corn oil-acetone vehicle (99:1) alone. Nasal epithelial changes were observed only in animals exposed for 2 years to the higher doses of the binary mixtures of PCB126 + PCB153 (1000 ng/kg and 1000 microg/kg) and PCB126 + PCB118 (216 and 360 ng TCDD equivalents/kg). In both studies, the changes were of the same nonneoplastic nature, localized to nasal sections II and III located, respectively, at the level of the incisive papilla anterior to the first palatial ridge (section II) and through the middle of the second molar teeth (section III). The changes consisted of hyperplasia of the respiratory epithelium (level II) and metaplasia of olfactory epithelium to respiratory epithelium with further hyperplasia of the metaplastic respiratory epithelium (levels II and III). Variable amounts of acute inflammatory exudate appeared within the lumen of the nasal cavity, overlying the affected epithelium. Occasionally, the inflammation eroded through the skull and into the adjacent olfactory bulbs.
Collapse
Affiliation(s)
- Abraham Nyska
- Laboratory of Experimental Pathology National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-9998, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheng TJ, Kao HP, Chan CC, Chang WP. Effects of ozone on DNA single-strand breaks and 8-oxoguanine formation in A549 cells. ENVIRONMENTAL RESEARCH 2003; 93:279-284. [PMID: 14615238 DOI: 10.1016/s0013-9351(03)00041-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animal studies have demonstrated that ozone exposure can induce lung tumors. Recent epidemiological studies have also shown that increased ozone exposure is associated with a greater risk of lung cancer. This study used single-cell gel electrophoresis (the Comet assay) and flow cytometry to investigate DNA damage in A549 cells exposed to ozone levels below the current ambient standard. Cells were exposed to ozone at levels of 0, 60, 80, and 120 ppb, and then DNA single-strand breaks and 8-oxoguanine levels were measured. Additionally, the formamidopyrimidine glycosylase (Fpg) repair enzyme was added to the Comet assay to enhance detection of oxidative damage. Vitamins C and E were also added to determine their inhibitory effects on ozone-induced 8-oxoguanine. Measurements of tail length, tail intensity, and tail moment of the Comet assay were shown to correlate with each other. However, tail moment appeared to be more sensitive than the other two indicators in detecting DNA single-strand breaks. Tail moments of cells exposed to 80 and 120 ppb of ozone were significantly higher than those exposed to 0 ppb (P<0.05). These three indicators of DNA single-strand breaks with Fpg were shown to be increased and more sensitive than those without Fpg. After Fpg was introduced, the tail moments at ozone levels of 60, 80, and 120 ppb were significantly higher than those at 0 ppb (P<0.05). Furthermore, 8-oxoguanine levels, determined by fluorescence intensity, at 80 and 120 ppb of ozone exposure were significantly higher than the level at 0 ppb. Pretreatment with vitamins C and E reduced the 8-oxoguanine levels caused by ozone. We conclude that ozone levels below current ambient standards may induce DNA breaks and oxidative DNA damage. Moreover, the Fpg repair enzyme in the Comet assay can increase the sensitivity of oxidative damage detection in vitro.
Collapse
Affiliation(s)
- Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 1 Ren-Ai Rd., Sec. 1, Taipei 10018, Taiwan.
| | | | | | | |
Collapse
|