1
|
He Q, Meneely J, Grant IR, Chin J, Fanning S, Situ C. Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects. Chin Med 2024; 19:89. [PMID: 38909250 PMCID: PMC11193263 DOI: 10.1186/s13020-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Rising resistance to antimicrobials, particularly in the case of methicillin-resistant Staphylococcus aureus (MRSA), represents a formidable global health challenge. Consequently, it is imperative to develop new antimicrobial solutions. This study evaluated 68 Chinese medicinal plants renowned for their historical applications in treating infectious diseases. METHODS The antimicrobial efficacy of medicinal plants were evaluated by determining their minimum inhibitory concentration (MIC) against MRSA. Safety profiles were assessed on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cells. Mechanistic insights were obtained through fluorescence and transmission electron microscopy (FM and TEM). Synergistic effects with vancomycin were investigated using the Fractional Inhibitory Concentration Index (FICI). RESULTS Rheum palmatum L., Arctium lappa L. and Paeonia suffructicosaas Andr. have emerged as potential candidates with potent anti-MRSA properties, with an impressive low MIC of 7.8 µg/mL, comparable to the 2 µg/mL MIC of vancomycin served as the antibiotic control. Crucially, these candidates demonstrated significant safety profiles when evaluated on Caco-2 and HepG2 cells. Even at 16 times the MIC, the cell viability ranged from 83.3% to 95.7%, highlighting their potential safety. FM and TEM revealed a diverse array of actions against MRSA, such as disrupting the cell wall and membrane, interference with nucleoids, and inducing morphological alterations resembling pseudo-multicellular structures in MRSA. Additionally, the synergy between vancomycin and these three plant extracts was evident against MRSA (FICI < 0.5). Notably, aqueous extract of R. palmatum at 1/4 MIC significantly reduced the vancomycin MIC from 2 µg/mL to 0.03 µg/mL, making a remarkable 67-fold decrease. CONCLUSIONS This study unveil new insights into the mechanistic actions and pleiotropic antibacterial effectiveness of these medicinal plants against resistant bacteria, providing robust evidence for their potential use as standalone or in conjunction with antibiotics, to effectively combat antimicrobial resistance, particularly against MRSA.
Collapse
Affiliation(s)
- Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Julie Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Jason Chin
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Séamus Fanning
- University College Dublin Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Republic of Ireland
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK.
| |
Collapse
|
2
|
Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H, Jassoy C. A Review of the Toxicity and Phytochemistry of Medicinal Plant Species Used by Herbalists in Treating People Living With HIV/AIDS in Uganda. Front Pharmacol 2021; 12:615147. [PMID: 33935707 PMCID: PMC8082237 DOI: 10.3389/fphar.2021.615147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/18/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction: Despite concerns about toxicity, potentially harmful effects and herb-drug interactions, the use of herbal medicines remains widely practiced by people living with HIV/AIDS (PLHIV) in Uganda. Objective: The objective of the paper was to comprehensively review the literature on the toxicity and chemical composition of commonly used medicinal plant species in treating PLHIV in Uganda. Methods: We reviewed relevant articles and books published over the last sixty years on ethnobotany, antiviral/anti-HIV activity, toxicity, phytochemistry of Vachellia hockii, Albizia coriaria, Bridelia micrantha, Cryptolepis sanguinolenta, Erythrina abyssinica, Gardenia ternifolia, Gymnosporia senegalensis, Psorospermum febrifugium, Securidaca longipendunculata, Warburgia ugandensis and Zanthoxylum chalybeum and their synonyms. We searched PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Discussion: Most of the plant species reviewed apart from P. febrifugium, S. longipedunculata and C. sanguinolenta lacked detailed phytochemical analyses as well as the quantification and characterization of their constituents. Crude plant extracts were the most commonly used. However, purified/single component extracts from different plant parts were also used in some studies. The U87 human glioblastoma was the most commonly used cell line. Water, ethanol, methanol and DMSO were the commonest solvents used. In some instances, isolated purified compounds/extracts such as Cryptolepine and Psorospermin were used. Conclusion: Cytotoxicity varied with cell type, solvent and extract type used making it difficult for direct comparison of the plant species. Five of the eleven plant species namely, A. coriaria, C. sanguinolenta, G. ternifolia, P. febrifugium and Z. chalybeum had no cytotoxicity studies in animal models. For the remaining six plant species, the crude aqueous and ethanol extracts were mainly used in acute oral toxicity studies in mice. Herbalists reported only A. coriaria and W. ugandensis to cause toxic side effects in humans. However, selective cytotoxic plant extracts can potentially be beneficial as anticancer or anti-tumour drugs.
Collapse
Affiliation(s)
- G. Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Virology, University Clinics and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - E. Kakudidi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - R. Byamukama
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - J. Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - A. Schubert
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - H. Oryem-Origa
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - C. Jassoy
- Institute for Virology, University Clinics and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Johansson HK, Boberg J, Dybdahl M, Axelstad M, Vinggaard AM. Chemical risk assessment based on in vitro and human biomonitoring data: A case study on thyroid toxicants. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Riebeling C, Jungnickel H, Luch A, Haase A. Systems Biology to Support Nanomaterial Grouping. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:143-171. [PMID: 28168668 DOI: 10.1007/978-3-319-47754-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The assessment of potential health risks of engineered nanomaterials (ENMs) is a challenging task due to the high number and great variety of already existing and newly emerging ENMs. Reliable grouping or categorization of ENMs with respect to hazards could help to facilitate prioritization and decision making for regulatory purposes. The development of grouping criteria, however, requires a broad and comprehensive data basis. A promising platform addressing this challenge is the systems biology approach. The different areas of systems biology, most prominently transcriptomics, proteomics and metabolomics, each of which provide a wealth of data that can be used to reveal novel biomarkers and biological pathways involved in the mode-of-action of ENMs. Combining such data with classical toxicological data would enable a more comprehensive understanding and hence might lead to more powerful and reliable prediction models. Physico-chemical data provide crucial information on the ENMs and need to be integrated, too. Overall statistical analysis should reveal robust grouping and categorization criteria and may ultimately help to identify meaningful biomarkers and biological pathways that sufficiently characterize the corresponding ENM subgroups. This chapter aims to give an overview on the different systems biology technologies and their current applications in the field of nanotoxicology, as well as to identify the existing challenges.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany.
| |
Collapse
|
5
|
Blaauboer BJ, Boobis AR, Bradford B, Cockburn A, Constable A, Daneshian M, Edwards G, Garthoff JA, Jeffery B, Krul C, Schuermans J. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem Toxicol 2016; 91:19-35. [PMID: 26939913 DOI: 10.1016/j.fct.2016.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Utrecht University, Division of Toxicology, Institute for Risk Assessment Sciences, PO Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - Alan R Boobis
- Imperial College London, Department of Medicine, Centre for Pharmacology & Therapeutics, London, W12 0NN, United Kingdom
| | - Bobbie Bradford
- Unilever, Safety & Environmental Assurance Centre, London, EC4Y 0DY, United Kingdom
| | - Andrew Cockburn
- University of Newcastle, Toxico-Logical Consulting Ltd, The Old Boiler House, Moor Place Park, Kettle Green Lane, Much Hadham, Hertfordshire, SG10 6AA, United Kingdom
| | - Anne Constable
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Mardas Daneshian
- University of Konstanz, Center for Alternatives to Animal Testing-Europe CAAT-Europe, 78457, Konstanz, Germany
| | - Gareth Edwards
- Consultant, 63 Woodlands Road., Sonning Common, Reading, Berkshire, RG4 9TD, United Kingdom
| | | | - Brett Jeffery
- Mars, Global Chemical Food Safety Group, Slough, SL1 4JX, United Kingdom
| | - Cyrille Krul
- University of Applied Sciences, Research Centre Technology & Innovation, Dept. Innovative Testing in Life Sciences & Chemistry, PO Box 12011, 3501 AA, Utrecht, The Netherlands; TNO Healthy Living, PO box 360, 3700 AJ Zeist, The Netherlands
| | | |
Collapse
|
6
|
McNally K, Cotton R, Hogg A, Loizou G. PopGen: A virtual human population generator. Toxicology 2013; 315:70-85. [PMID: 23876857 DOI: 10.1016/j.tox.2013.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022]
Abstract
The risk assessment of environmental chemicals and drugs is moving towards a paradigm shift in approach which seeks the full replacement animal testing with high throughput, mechanistic, in vitro systems. This new vision will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated using in vitro, in silico and in chemico systems, can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level. Physiologically based pharmacokinetic (PBPK) models are ideally suited for this and are obligatory in order to translate in vitro concentration-response relationships to an exposure or dose, route and duration regime in people. In this report we describe PopGen, a virtual human population generator which is a user friendly, open access web-based application for the prediction of realistic anatomical, physiological and phase 1 metabolic variation in a wide range of healthy human populations. We demonstrate how PopGen can be used for QIVIVE by providing input to a PBPK model, at an appropriate level of detail, to reconstruct exposure from human biomonitoring data. We discuss how the process of exposure reconstruction from blood biomarkers, in general, is analogous to exposure or dose reconstruction from concentration-response measurements made in proposed in vitro cell based systems which are assumed to be surrogates for target organs.
Collapse
Affiliation(s)
| | | | - Alex Hogg
- Health & Safety Laboratory, Buxton, Derbyshire, UK
| | | |
Collapse
|
7
|
Wiesinger M, Mayer B, Jennings P, Lukas A. Comparative analysis of perturbed molecular pathways identified in in vitro and in vivo toxicology studies. Toxicol In Vitro 2012; 26:956-62. [DOI: 10.1016/j.tiv.2012.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/26/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
8
|
Coecke S, Pelkonen O, Leite SB, Bernauer U, Bessems JG, Bois FY, Gundert-Remy U, Loizou G, Testai E, Zaldívar JM. Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol In Vitro 2012; 27:1570-7. [PMID: 22771339 DOI: 10.1016/j.tiv.2012.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/09/2012] [Accepted: 06/22/2012] [Indexed: 02/02/2023]
Abstract
Toxicokinetics (TK) is the endpoint that informs about the penetration into and fate within the body of a toxic substance, including the possible emergence of metabolites. Traditionally, the data needed to understand those phenomena have been obtained in vivo. Currently, with a drive towards non-animal testing approaches, TK has been identified as a key element to integrate the results from in silico, in vitro and already available in vivo studies. TK is needed to estimate the range of target organ doses that can be expected from realistic human external exposure scenarios. This information is crucial for determining the dose/concentration range that should be used for in vitro testing. Vice versa, TK is necessary to convert the in vitro results, generated at tissue/cell or sub-cellular level, into dose response or potency information relating to the entire target organism, i.e. the human body (in vitro-in vivo extrapolation, IVIVE). Physiologically based toxicokinetic modelling (PBTK) is currently regarded as the most adequate approach to simulate human TK and extrapolate between in vitro and in vivo contexts. The fact that PBTK models are mechanism-based which allows them to be 'generic' to a certain extent (various extrapolations possible) has been critical for their success so far. The need for high-quality in vitro and in silico data on absorption, distribution, metabolism as well as excretion (ADME) as input for PBTK models to predict human dose-response curves is currently a bottleneck for integrative risk assessment.
Collapse
Affiliation(s)
- Sandra Coecke
- ECVAM, Institute for Health & Consumer Protection, European Commission Joint Research Centre, 21027 Ispra (VA), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yoon M, Campbell JL, Andersen ME, Clewell HJ. Quantitativein vitrotoin vivoextrapolation of cell-based toxicity assay results. Crit Rev Toxicol 2012; 42:633-52. [DOI: 10.3109/10408444.2012.692115] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Bouvier d'Yvoire M, Bremer S, Casati S, Ceridono M, Coecke S, Corvi R, Eskes C, Gribaldo L, Griesinger C, Knaut H, Linge JP, Roi A, Zuang V. ECVAM and new technologies for toxicity testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:154-80. [PMID: 22437818 DOI: 10.1007/978-1-4614-3055-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of alternative empirical (testing) and non-empirical (non-testing) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity ('pathways' of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.
Collapse
|
11
|
McNally K, Cotton R, Loizou GD. A Workflow for Global Sensitivity Analysis of PBPK Models. Front Pharmacol 2011; 2:31. [PMID: 21772819 PMCID: PMC3128931 DOI: 10.3389/fphar.2011.00031] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 06/07/2011] [Indexed: 11/13/2022] Open
Abstract
Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilized to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined the elements of a workflow for SA of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate for toxicologists, risk assessors, and regulators.
Collapse
Affiliation(s)
- Kevin McNally
- Mathematical Sciences Unit, Health and Safety Laboratory Derbyshire, UK
| | | | | |
Collapse
|
12
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dose Response. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Hallier-Vanuxeem D, Prieto P, Culot M, Diallo H, Landry C, Tähti H, Cecchelli R. New strategy for alerting central nervous system toxicity: Integration of blood–brain barrier toxicity and permeability in neurotoxicity assessment. Toxicol In Vitro 2009; 23:447-53. [DOI: 10.1016/j.tiv.2008.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/07/2008] [Accepted: 12/11/2008] [Indexed: 11/16/2022]
|
15
|
Lilienblum W. Alternativmethoden zum Tierversuch. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 51:1434-43. [DOI: 10.1007/s00103-008-0717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler JG, Kahl R, Kramer PJ, Schweinfurth H, Wollin KM. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol 2008; 82:211-36. [DOI: 10.1007/s00204-008-0279-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
17
|
Gubbels-van Hal WMLG, Blaauboer BJ, Barentsen HM, Hoitink MA, Meerts IATM, van der Hoeven JCM. An alternative approach for the safety evaluation of new and existing chemicals, an exercise in integrated testing. Regul Toxicol Pharmacol 2005; 42:284-95. [PMID: 15979772 DOI: 10.1016/j.yrtph.2005.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Various in vitro and in silico methods without animals were applied to 10 substances listed on ELINCS with a complete VIIA base-set available at NOTOX. The hazard assessment for these substances was performed on basis of available non-animal data, QSAR, PBBK-modelling and additional, new in vitro testing was applied. Based on these data predictions on fish toxicity, acute toxicity, skin- and eye-irritation, sensitisation, and toxicity after repeated dosing were made. The predictions were compared with the outcome of the in vivo tests. Nine out of ten predictions on fish LC(50) proved to be correct. For skin- and eye-irritation 70% was predicted correctly. Sensitisation was predicted correctly for 7 out of 10 substances, but three false negatives were found. Acute oral toxicity (LD(50)) and repeated dose toxicity were less successful (5 out of 10 and 2 out of 10 correct predictions, respectively); application of the PBBK model proved successful. Acute dermal toxicity was predicted correctly in 9 out of 10 cases. In general an over-estimation of systemic toxicity was found, which can be explained by an over-prediction of cytotoxicity and worst case assumptions on absorption and binding to (plasma) proteins. This integrated approach leads to a 38% reduction of laboratory animals.
Collapse
|