1
|
Roffel AF, van Hoogdalem EJ. The application of Phase 0 and microtracer approaches in early clinical development: past, present, and future. Front Pharmacol 2024; 15:1369079. [PMID: 38562464 PMCID: PMC10982362 DOI: 10.3389/fphar.2024.1369079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Phase 0 microdosing studies were introduced to the drug development community approximately 20 years ago. A microdose is defined as less than 1/100th of the dose calculated based on animal data to yield a pharmacological effect in humans, with a maximum of 100 μg, or 30 nmoles for protein products. In our experience, Phase 0 microdose studies have not been fully embraced by the pharmaceutical industry. This notion is based on the number of Phase 0 studies that we have been involved in. Thus, we conducted at least 17 Phase 0 microdose studies in the Zero's (on average, two per year), but in the years beyond this, it was only 15 studies (1.4 per year); in these latter years, we did conduct a total of 23 studies which employed an intravenous (i.v.) microdose for absolute bioavailability (ABA) assessments (two per year on average), which are the most used and potentially informative type of clinical study using a microdose, albeit they are formally not microdose studies. In the current review, we summarize the past use of and experience with Phase 0 microdose designs in early clinical development, including intravenous 14C microdose ABA studies, and assess what is needed to increase the adoption of useful applications of Phase 0/microdose studies in the near future.
Collapse
|
2
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Burt T, Roffel AF, Langer O, Anderson K, DiMasi J. Strategic, feasibility, economic, and cultural aspects of phase 0 approaches: Is it time to change the drug development process in order to increase productivity? Clin Transl Sci 2022; 15:1355-1379. [PMID: 35278281 PMCID: PMC9199889 DOI: 10.1111/cts.13269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Research conducted over the past 2 decades has enhanced the validity and expanded the applications of microdosing and other phase 0 approaches in drug development. Phase 0 approaches can accelerate drug development timelines and reduce attrition in clinical development by increasing the quality of candidates entering clinical development and by reducing the time to "go-no-go" decisions. This can be done by adding clinical trial data (both healthy volunteers and patients) to preclinical candidate selection, and by applying methodological and operational advantages that phase 0 have over traditional approaches. The main feature of phase 0 approaches is the limited, subtherapeutic exposure to the test article. This means a reduced risk to research volunteers, and reduced regulatory requirements, timelines, and costs of first-in-human (FIH) testing. Whereas many operational aspects of phase 0 approaches are similar to those of other early phase clinical development programs, they have some unique strategic, regulatory, ethical, feasibility, economic, and cultural aspects. Here, we provide a guidance to these operational aspects and include case studies to highlight their potential impact in a range of clinical development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Phase-0/Microdosing Network, New York, New York, USA
- Burt Consultancy, LLC, New York, New York, USA
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Joseph DiMasi
- Tufts Center for the Study of Drug Development, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Ahsan H. Monoplex and multiplex immunoassays: approval, advancements, and alternatives. COMPARATIVE CLINICAL PATHOLOGY 2021; 31:333-345. [PMID: 34840549 PMCID: PMC8605475 DOI: 10.1007/s00580-021-03302-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Immunoassays are a powerful diagnostic tool and are widely used for the quantification of proteins and biomolecules in medical diagnosis and research. Enzyme-linked immunosorbent assay (ELISA) is the most commonly used immunoassay format and allows the detection of biomarkers at a very low concentration. The diagnostic platforms such as enzyme immunoassay (EIA), chemiluminescence (CL) assay, polymerase chain reaction (PCR), flow cytometry (FC), and mass spectrometry (MS) have been used to identify molecular biomarkers. However, these diagnostic tools requiring expensive equipment, long testing time, and qualified personnel that is not always available in small local hospitals with limited resources. The lateral flow immunoassay (LFIA) platform was developed for rapidly obtaining laboratory results and to make urgent decisions in emergency medicine, as well as the recently introduced concept of testing at the site of care (point-of-care, POC). The simultaneous measurement of different substances from a single sample called multiplex assays have become increasingly significant for in vitro quantification of multiple analytes in a single sample, thereby minimising cost, time, and volume. In multiplex immunoassays, the ligands are immobilized either in planar format (flat surface) or on microspheres in suspension that binds to target analytes in sample. The multiplex technology has established itself in proteomic networks and pathways, validation of genomic discoveries, and in the development of clinical biomarkers. In the present review article, various types of monoplex/simplex and complex/multiplex immunoassays have been analysed that are increasingly being applied in laboratory medicine. Also, some advantages and disadvantages of these multiplex assays have also been included such as experimental animals, in vitro tests using cell lines and tissue samples, 3-dimensional modelling and bioprinting, in silico tests, organ-on-chip, and computer modelling.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi - 110025, India
| |
Collapse
|
5
|
Xue R, Li R, Wang J, Tong W, Hao J. Horizons on the Therapy of Biliary Tract Cancers: A State-of-the-art Review. J Clin Transl Hepatol 2021; 9:559-567. [PMID: 34447686 PMCID: PMC8369023 DOI: 10.14218/jcth.2021.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Biliary tract cancers (BTCs) comprise a group of heterogeneous poor prognosis cancers with increasing incidence recent years. The combination chemotherapy with cisplatin and gemcitabine is the first-line therapy for advanced BTC. There remains no accepted standard treatment in the second-line setting. Nowadays, more and more novel treatment strategies have entered development, with some encouraging results being seen. Here, we review the current treatment status and clinical characteristics of BTC, the role of immunotherapy in BTC as well as the design of clinical trials for oncology drugs for BTC which aim to focus on the future profiles of clinical care and resolution of BTC.
Collapse
Affiliation(s)
- Ran Xue
- Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rong Li
- Department of Gastroenterology, Beijing Shuang-Qiao Hospital, Beijing, China
| | - Jianxin Wang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiping Tong
- Department of Gastroenterology, Beijing Shuang-Qiao Hospital, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Correspondence to: Jianyu Hao, Department of Gastroenterology, Beijing Chao-yang Hospital, Capital Medical University, Chao yang Area, Beijing 100020, China. Tel: +86-10-85231000, E-mail:
| |
Collapse
|
6
|
Schreiber CL, Li DH, Smith BD. High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence. Anal Chem 2021; 93:3643-3651. [PMID: 33566567 PMCID: PMC8779000 DOI: 10.1021/acs.analchem.1c00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A broad array of imaging and diagnostic technologies employs fluorophore-labeled antibodies for biomarker visualization, an experimental technique known as immunofluorescence. Significant performance advantages, such as higher signal-to-noise ratio, are gained if the appended fluorophore emits near-infrared (NIR) light with a wavelength >700 nm. However, the currently available NIR fluorophore antibody conjugates are known to exhibit significant limitations, including low chemical stability and photostability, weakened target specificity, and low fluorescence brightness. These fluorophore limitations are resolved by employing a NIR heptamethine cyanine dye named s775z whose chemical structure is very stable, charge-balanced, and sterically shielded. Using indirect immunofluorescence for imaging and visualization, a secondary IgG antibody labeled with s775z outperformed IgG analogues labeled with the commercially available NIR fluorophores, IRDye 800CW and DyLight800. Comparison experiments include three common techniques: immunocytochemistry, immunohistochemistry, and western blotting. Specifically, the secondary IgG labeled with s775z was 3-8 times brighter, 3-6 times more photostable, and still retained excellent target specificity when the degree of antibody labeling was high. The results demonstrate that antibodies labeled with s775z can emit total photon counts that are 1-2 orders of magnitude higher than those currently possible, and thus enable unsurpassed performance for NIR fluorescence imaging and diagnostics. They are especially well suited for analytical applications that require sensitive NIR fluorescence detection or use modern photon-intense methods that require high photostability.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
8
|
van Groen BD, van Duijn E, de Vries A, Mooij MG, Tibboel D, Vaes WHJ, de Wildt SN. Proof of Concept: First Pediatric [ 14 C]microtracer Study to Create Metabolite Profiles of Midazolam. Clin Pharmacol Ther 2020; 108:1003-1009. [PMID: 32386327 PMCID: PMC7689753 DOI: 10.1002/cpt.1884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
Abstract
Growth and development affect drug-metabolizing enzyme activity thus could alter the metabolic profile of a drug. Traditional studies to create metabolite profiles and study the routes of excretion are unethical in children due to the high radioactive burden. To overcome this challenge, we aimed to show the feasibility of an absorption, distribution, metabolism, and excretion (ADME) study using a [14 C]midazolam microtracer as proof of concept in children. Twelve stable, critically ill children received an oral [14 C]midazolam microtracer (20 ng/kg; 60 Bq/kg) while receiving intravenous therapeutic midazolam. Blood was sampled up to 24 hours after dosing. A time-averaged plasma pool per patient was prepared reflecting the mean area under the curve plasma level, and subsequently one pool for each age group (0-1 month, 1-6 months, 0.5-2 years, and 2-6 years). For each pool [14 C]levels were quantified by accelerator mass spectrometry, and metabolites identified by high resolution mass spectrometry. Urine and feces (n = 4) were collected up to 72 hours. The approach resulted in sufficient sensitivity to quantify individual metabolites in chromatograms. [14 C]1-OH-midazolam-glucuronide was most abundant in all but one age group, followed by unchanged [14 C]midazolam and [14 C]1-OH-midazolam. The small proportion of unspecified metabolites most probably includes [14 C]midazolam-glucuronide and [14 C]4-OH-midazolam. Excretion was mainly in urine; the total recovery in urine and feces was 77-94%. This first pediatric pilot study makes clear that using a [14 C]midazolam microtracer is feasible and safe to generate metabolite profiles and study recovery in children. This approach is promising for first-in-child studies to delineate age-related variation in drug metabolite profiles.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | | | | | - Miriam G. Mooij
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
- Department of PediatricsLeiden University Medical CenterLeidenThe Netherlands
- Department of Pharmacology and ToxicologyRadboud UniversityNijmegenThe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
| | | | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus Medical Center – Sophia Children’s HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
9
|
Eke AC, Olagunju A, Best BM, Mirochnick M, Momper JD, Abrams E, Penazzato M, Cressey TR, Colbers A. Innovative Approaches for Pharmacology Studies in Pregnant and Lactating Women: A Viewpoint and Lessons from HIV. Clin Pharmacokinet 2020; 59:1185-1194. [PMID: 32757103 PMCID: PMC7550310 DOI: 10.1007/s40262-020-00915-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medication use during pregnancy in the absence of pharmacokinetic and safety data is common, particularly for antiretrovirals, as pregnant women are not usually included in clinical trials leading to drug licensure. To date, data are typically generated through opportunistic pregnancy studies performed in the postmarketing setting, leading to a substantial time-lag between initial regulatory approval of a drug and availability of essential pregnancy-specific pharmacokinetic and safety data. During this period, health care providers lack key information on human placental transfer, fetal exposure, optimal maternal dosing in pregnancy, and maternal and fetal drug toxicity, including teratogenicity risk. We discuss new approaches that could facilitate the acquisition of these critical data earlier in the drug development process, aiding clinicians and patients in making informed decisions on drug selection and dosing during pregnancy. An integrated approach utilizing multiple novel methodologies (in vitro, ex vivo, in silico and in vivo) is needed to accelerate the availability of pharmacology data in pregnancy and lactation.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, 600N Wolfe Street, Phipps 215, Baltimore, MD, 21287, USA
| | - Adeniyi Olagunju
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Brookie M Best
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
- Pediatrics Department, University of California San Diego School of Medicine-Rady Children's Hospital San Diego, San Diego, CA, USA
| | | | - Jeremiah D Momper
- University of California San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Elaine Abrams
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martina Penazzato
- HIV, Hepatitis and STI Department, World Health Organization, Geneva, Switzerland
| | - Tim R Cressey
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
- PHPT/IRD 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Immunology and Infectious Diseases, Harvard T.H Chan School of Public Health, Boston, MA, USA
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, Sugiyama Y. Phase 0/microdosing approaches: time for mainstream application in drug development? Nat Rev Drug Discov 2020; 19:801-818. [PMID: 32901140 DOI: 10.1038/s41573-020-0080-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Phase 0 approaches - which include microdosing - evaluate subtherapeutic exposures of new drugs in first-in-human studies known as exploratory clinical trials. Recent progress extends phase 0 benefits beyond assessment of pharmacokinetics to include understanding of mechanism of action and pharmacodynamics. Phase 0 approaches have the potential to improve preclinical candidate selection and enable safer, cheaper, quicker and more informed developmental decisions. Here, we discuss phase 0 methods and applications, highlight their advantages over traditional strategies and address concerns related to extrapolation and developmental timelines. Although challenges remain, we propose that phase 0 approaches be at least considered for application in most drug development scenarios.
Collapse
Affiliation(s)
- Tal Burt
- Burt Consultancy LLC. talburtmd.com, New York, NY, USA. .,Phase-0/Microdosing Network. Phase-0Microdosing.org, New York, NY, USA.
| | - Graeme Young
- GlaxoSmithKline Research and Development Ltd, Ware, UK
| | - Wooin Lee
- Seoul National University, Seoul, Republic of Korea
| | | | - Oliver Langer
- Medical University of Vienna, Vienna, Austria.,AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | | |
Collapse
|
11
|
Wang X, Chen J, Reyes J, Zhou S, Palmisano M, Li Y. A Phase 1, Open-Label Study in Healthy Subjects to Evaluate the Absolute Bioavailability of AG-221 by a Microtracer Approach. Oncol Ther 2020; 8:91-102. [PMID: 32700065 PMCID: PMC7360017 DOI: 10.1007/s40487-019-0097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction The purpose of this study was to evaluate the absolute bioavailability (BA) of AG-221 following a single oral dose of 100 mg AG-221 and an intravenous (IV) dose of ~ 100 μg AG-221 containing approximately 300 nCi of [14C]-AG-221. Methods This was a phase 1, open-label study. Six subjects who met all of the inclusion criteria and none of the exclusion criteria were enrolled in the study. After an overnight fast of at least 10 h, the subjects received an oral dose (coated tablet) of 100 mg of AG-221 at 0 h on dosing day. Four hours after the oral dose, the subjects received 100 μg AG-221 containing ~ 300 nCi of [14C]-AG-221 administered as an IV bolus. Blood samples were collected and analyzed for plasma concentrations of AG-221 and [14C]-AG-221 using a validated liquid chromatography with tandem mass spectrometry (LC–MS/MS) system and high-performance liquid chromatography (HPLC) fractionation followed by accelerator mass spectrometry analysis (AMS), respectively. Safety was evaluated throughout the study. Results The absolute BA after a 100-mg oral dose of AG-221 was measured as 57.2%. While the total clearance was 1.37 L/h, ~ 1/60 of the liver blood flow in a typical 70-kg human subject, the first-pass extraction was estimated to be less than 2%, assuming that the total clearance was entirely due to liver metabolism. Thus, the fraction of the AG-221 dose absorbed was at least 50%. AG-221 was safe and well tolerated when given under fasted conditions in a single 100-mg dose as a coated tablet with a microtracer [14C]-AG-221 solution, as few drug-related treatment-emergent adverse events (TEAEs) were reported. No clinically significant changes or findings were noted in the clinical laboratory evaluations, vital sign measurements, and electrocardiograms (ECGs) performed during this study. Conclusions In healthy subjects under fasting conditions, the absolute BA following oral administration of a 100-mg AG-221 tablet was 57.2%. AG-221 was safe and well tolerated in healthy male subjects when administered as a single 100-mg film-coated tablet plus 100 µg [14C]-AG-221 given intravenously. Trial Registration ClinicalTrials.gov identifier, NCT02443168. Funding Celgene Corporation.
Collapse
Affiliation(s)
- Xiaomin Wang
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Jian Chen
- Non-Clinical Development, Celgene Corporation, Summit, NJ, USA
| | - Josephine Reyes
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Celgene Corporation, Summit, NJ, USA.
| |
Collapse
|
12
|
Manuppello J, Sullivan K, Baker E. Acute toxicity “six-pack” studies supporting approved new drug applications in the U.S., 2015–2018. Regul Toxicol Pharmacol 2020; 114:104666. [DOI: 10.1016/j.yrtph.2020.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
|
13
|
Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl Sci 2019; 4:845-854. [PMID: 31998852 PMCID: PMC6978558 DOI: 10.1016/j.jacbts.2019.10.008] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
Abstract
Animal testing is used in pharmaceutical and industrial research to predict human toxicity, and yet analysis suggests that animal models are poor predictors of drug safety in humans. The cost of animal research is high-in dollars, delays in drug approval, and in the loss of potentially beneficial drugs for human use. Human subjects have been harmed in the clinical testing of drugs that were deemed safe by animal studies. Increasingly, investigators are questioning the scientific merit of animal research. This review discusses issues in using animals to predict human toxicity in pharmaceutical development. Part 1 focuses on scientific concerns over the validity of animal research. Part 2 will discuss alternatives to animal research and their validation and use in production of human pharmaceuticals.
Collapse
Affiliation(s)
- Gail A. Van Norman
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| |
Collapse
|