1
|
Li F, Xie Z, Wen J, Tang T, Jiang L, Hu G, Li M. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Int J Mol Sci 2023; 24:ijms24108922. [PMID: 37240268 DOI: 10.3390/ijms24108922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, sugarcane bagasse (SCB) was treated with sodium hydroxide and bleached to separate the non-cellulose components to obtain cellulose (CE) fibres. Cross-linked cellulose-poly(sodium acrylic acid) hydrogel (CE-PAANa) was successfully synthesised via simple free-radical graft-polymerisation to remove heavy metal ions. The structure and morphology of the hydrogel display an open interconnected porous structure on the surface of the hydrogel. Various factors influencing batch adsorption capacity, including pH, contact time, and solution concentration, were investigated. The results showed that the adsorption kinetics were in good agreement with the pseudo-second-order kinetic model and that the adsorption isotherms followed the Langmuir model. The maximum adsorption capacities calculated by the Langmuir model are 106.3, 333.3, and 163.9 mg/g for Cu(II), Pb(II), and Cd(II), respectively. Furthermore, X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometry (EDS) results demonstrated that cationic exchange and electrostatic interaction were the main heavy metal ions adsorption mechanisms. These results demonstrate that CE-PAANa graft copolymer sorbents from cellulose-rich SCB can potentially be used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Fuchao Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Zhemin Xie
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Jianfeng Wen
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Tao Tang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Li Jiang
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Guanghui Hu
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| | - Ming Li
- College of Science & Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
2
|
Singh R, Datta B. Banana Peel Powder as an Effective Multilayer Adsorbent of Ammonium Ions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rinki Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382355, Gujarat, India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382355, Gujarat, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar382355, Gujarat, India
| |
Collapse
|
3
|
Kemik ÖF, Yildiz U. Synthesis, characterization and evaluation of novel HIPE hydrogels: Application for treatment of hazardous waste incineration plant effluent. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ömer Ferkan Kemik
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
- İzmit Waste and Waste Treatment, Incineration and Evaluation Incorporated Company (İZAYDAŞ), Kocaeli, Turkey
| | - Ufuk Yildiz
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
4
|
Abstract
The human-made pollution of surface and ground waters is becoming an inevitable and persistently urgent problem for humankind and life in general, as these pollutants are also distributed by their natural circulation. For example, from mining activities and metallurgy, toxic heavy metals pollute the environment and present material risk for human health and the environment. Bioadsorbers are an intriguing way to efficiently capture and eliminate these hazards, as they are environmentally friendly, cheap, abundant, and efficient. In this study, we present brewers’ spent grain (BSG) as an efficient adsorber for toxic heavy metal ions, based on the examples of iron, manganese, cadmium, and nickel ions. We uncover the adsorption properties of two different BSGs and investigate thoroughly their chemical and physical properties as well as their efficiency as adsorbers for simulated and real surface waters. As a result, we found that the adsorption behavior of BSG types differs despite almost identical chemistry. Elemental mapping reveals that all components of BSG contribute to the adsorption. Further, both types are not only able to purify water to reach acceptable levels of cleanness, but also yield outstanding adsorption performance for iron ions of 0.2 mmol/g and for manganese, cadmium, and nickel ions of 0.1 mmol/g.
Collapse
|
5
|
Dinu MV, Humelnicu I, Ghiorghita CA, Humelnicu D. Aminopolycarboxylic Acids-Functionalized Chitosan-Based Composite Cryogels as Valuable Heavy Metal Ions Sorbents: Fixed-Bed Column Studies and Theoretical Analysis. Gels 2022; 8:gels8040221. [PMID: 35448122 PMCID: PMC9030056 DOI: 10.3390/gels8040221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Over the years, a large number of sorption experiments using the aminopolycarboxylic acid (APCA)-functionalized adsorbents were carried out in batch conditions, but prospective research should also be directed towards column studies to check their industrial/commercial feasibility. In this context, sorption studies of five-component heavy metal ion (HMI) solutions containing Zn2+, Pb2+, Cd2+, Ni2+, and Co2+ in equimolar concentrations were assessed in fixed-bed columns using some APCA-functionalized chitosan-clinoptilolite (CS-CPL) cryogel sorbents in comparison to unmodified composite materials. The overall sorption tendency of the APCA-functionalized composite sorbents followed the sequence Co2+ < Zn2+ < Cd2+ ≤ Pb2+ < Ni2+, meaning that Co2+ ions had the lowest affinity for the sorbent’s functional groups, whereas the Ni2+ ions were strongly and preferentially adsorbed. To get more insights into the application of the composite microbeads into continuous flow set-up, the kinetic data were described by Thomas and Yoon−Nelson models. A maximum theoretical HMI sorption capacity of 145.55 mg/g and a 50% breakthrough time of 121.5 min were estimated for the column containing CSEDTA-CPL cryogel sorbents; both values were much higher than those obtained for the column filled with pristine CS-CPL sorbents. In addition, desorption of HMIs from the composite microbeads in dynamic conditions was successfully achieved using 0.1 M HCl aqueous solution. Moreover, a theoretical analysis of APCA structures attached to composite adsorbents and their spatial structures within the complex combinations with transition metals was systematically performed. Starting from the most stable conformer of EDTA, coordinative combinations with HMIs can be obtained with an energy consumption of only 1 kcal/mole, which is enough to shift the spatial structure into a favorable conformation for HMI chelation.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- “Mihai Dima” Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
- Correspondence:
| | - Ionel Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania; (I.H.); (D.H.)
| | - Claudiu Augustin Ghiorghita
- “Mihai Dima” Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania; (I.H.); (D.H.)
| |
Collapse
|
6
|
Singh R, Munya V, Are VN, Nayak D, Chattopadhyay S. A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS OMEGA 2021; 6:23139-23154. [PMID: 34549115 PMCID: PMC8444210 DOI: 10.1021/acsomega.1c02720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A series of environment-friendly cationic dye adsorbents, namely, pH-sensitive superparamagnetic hydrogel nanocomposite AA-VSA-P/SPIONs systems with different concentrations of superparamagnetic iron oxide nanoparticles (SPIONs; 1.2, 3.2, and 5.2 wt %), was synthesized by free-radical polymerization reaction using two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA), in an optimum ratio, in the presence of presynthesized SPIONs. The structural properties, thermal stability, and chemical configuration of AA-VSA-P/SPIONs systems with different weight percentages of SPIONs were characterized by XRD, TGA, Raman spectroscopy, and FTIR spectroscopy. The systems show substantial efficiency as dye adsorbents for removing cationic dyes (MB dye) from aqueous solution in neutral to alkaline medium. Further, these systems exhibit easy magnetic separation capabilities from aqueous solutions after dye adsorption, even for a very low weight percentage of SPIONs. The adsorption kinetics, mechanism, and isotherms of these systems were evaluated. The study suggests consistency with the pseudo-second-order kinetic model, following an intraparticle diffusion mechanism, where the heterogeneous surface of the system having different activation energies for adsorption plays the crucial role in dye adsorption via chemisorption for higher pH medium, which was further substantiated by excellent data fit with the Freundlich isotherm model. Biocompatibility and regeneration-ability studies establish the environment-friendliness and cost effectivity of the system.
Collapse
Affiliation(s)
- Rinki Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Munya
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
| | - Venkata Narayana Are
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
- Department
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
7
|
Singh J, Mishra V. Development of sustainable and ecofriendly metal ion scavenger for adsorbing Cu2+, Ni2+ and Zn2+ ions from the aqueous phase. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1913421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jyoti Singh
- School of Biochemical Engineering, School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vishal Mishra
- School of Biochemical Engineering, School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Gorbunova MN, Batueva TD. Copolymers of N-Vinylpyrrolidone with N-(p-Acetoxy)phenylmaleimide and Its Oxime: Synthesis and Sorption Properties. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
An efficient pH sensitive hydrogel, with biocompatibility and high reusability for removal of methylene blue dye from aqueous solution. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104346] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|