1
|
Chatla A, Almanassra IW, Jaber L, Kochkodan V, Laoui T, Alawadhi H, Atieh MA. Influence of calcination atmosphere on Fe doped activated carbon for the application of lead removal from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Al-Jadir T, Alardhi SM, Al-Sheikh F, Jaber AA, Kadhim WA, Rahim MHA. Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2129622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thaer Al-Jadir
- Environment Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Farooq Al-Sheikh
- Department of Chemical Engineering, University of Technology- Iraq, Baghdad, Iraq
| | - Alaa Abdulhady Jaber
- Mechanical Engineering Department, University of Technology- Iraq, Baghdad, Iraq
| | - Wafaa A Kadhim
- Nanotechnology and Advanced Materials Research Center, University of Technology- Iraq, Baghdad, Iraq
| | - Mohd Hasbi Ab. Rahim
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Pahang, Malaysia
| |
Collapse
|
3
|
Flexible self-supporting electrode for high removal performance of arsenic by capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Nasiri H, Yazdani F, Zeinali J, Reza Mortaheb H. Removal of lead ions from aqueous solution using new magnetic metal-organic framework. ENVIRONMENTAL TECHNOLOGY 2022; 43:3570-3579. [PMID: 33939597 DOI: 10.1080/09593330.2021.1925747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
In this research, new magnetic nanocomposites that consist of NH2-MIL53 (Al) and Fe3O4 nanoparticles functionalized with cysteine were synthesized and characterized. The application of these nanocomposites was investigated to remove lead ions from the wastewater model. The concentration of metal ions was measured by the utilization of flame atomic absorption spectroscopy (FAAS). Also, XRD, SEM, EDX, and FTIR instruments were used to identification and characterization of the synthesized nanocomposites. The effect of operating parameters such as; pH, contact time and adsorbent dosage were investigated on lead removal. The synthesized nanocomposite showed great potential for lead removal. The maximum adsorption capacity of the nanocomposite was about 361.53 mg/g. Adsorption kinetic parameters well fitted with the pseudo-second order kinetic model. The reusability test of the synthesized magnetic absorbent showed good adsorption efficiency for at least three consecutive cycles.
Collapse
Affiliation(s)
- Homeira Nasiri
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Farshad Yazdani
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Jalal Zeinali
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | | |
Collapse
|
5
|
Ali A, Siddique M, Chen W, Han Z, Khan R, Bilal M, Waheed U, Shahzadi I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116396. [PMID: 35681981 PMCID: PMC9180375 DOI: 10.3390/ijerph19116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Phenol is the most common organic pollutant in many industrial wastewaters that may pose a health risk to humans due to its widespread application as industrial ingredients and additives. In this study, waste green tea leaves (WGTLs) were modified through chemical activation/carbonization and used as an adsorbent in the presence of ultrasound (cavitation) to eliminate phenol in the aqueous solution. Different treatments, such as cavitation, adsorption, and sono-adsorption were investigated to remove the phenol. The scanning electron microscope (SEM) morphology of the adsorbent revealed that the structure of WGTLs was porous before phenol was adsorbed. A Fourier Transform Infrared (FTIR) analysis showed an open chain of carboxylic acids after the sono-adsorption process. The results revealed that the sono-adsorption process is more efficient with enhanced removal percentages than individual processes. A maximum phenol removal of 92% was obtained using the sono-adsorption process under an optimal set of operating parameters, such as pH 3.5, 25 mg L−1 phenol concentration, 800 mg L−1 adsorbent dosage, 60 min time interval, 30 ± 2 °C temperature, and 80 W cavitation power. Removal of chemical oxygen demand (COD) and total organic carbon (TOC) reached 85% and 53%. The Freundlich isotherm model with a larger correlation coefficient (R2, 0.972) was better fitted for nonlinear regression than the Langmuir model, and the sono-adsorption process confirmed the pseudo-second-order reaction kinetics. The findings indicated that WGTLs in the presence of a cavitation effect prove to be a promising candidate for reducing phenol from the aqueous environment.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Zhixin Han
- Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Tai’an 271000, China;
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 59300, Pakistan;
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| |
Collapse
|
6
|
Darwish ER, Kalil H, Alqahtani W, Moalla SMN, Hosny NM, Amin AS, Martin HB, Bayachou M. Fast and Reliable Synthesis of Melanin Nanoparticles with Fine-Tuned Metal Adsorption Capacities for Studying Heavy Metal Ions Uptake. Nanotechnol Sci Appl 2021; 14:101-111. [PMID: 34079238 PMCID: PMC8163724 DOI: 10.2147/nsa.s296722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose Adsorption and uptake of heavy metals by polymeric nanoparticles is driven by a variety of physicochemical processes. In this work, we examined heavy metal uptake by synthetic melanin nanoparticles and analyzed physicochemical properties that affect the extent of metal uptake by the nanoparticles. Methods Eumelanin nanoparticles were synthesized in a one-pot fast process from a 5,6-diacetoxy indole precursor that is hydrolyzed in situ into dihydroxy indole (DHI). The method allows the possibility of changing the level of sodium ions that ends up in the nanoparticles. Two variants of synthetic DHI–melanin (low-sodium and high sodium variants) were evaluated and demonstrated different relative adsorption efficiencies for heavy metal cations. Results and Discussion For the low-sodium DHI–melanin and in terms of percentages of metal ion removal, the relative order of extraction from 50 ppm solutions was Zn2+ > Cd2+ > Ni2+ > Co2+ > Cu2+ > Pb2+, with the extraction percentages ranging from 90% down to 76%, for a 30-minute adsorption time before equilibrium. The lower-sodium DHI–melanin consistently removed more Zn2+ than the higher-sodium variant. Electron microscopy (SEM) showed an increase in melanin particle size after metal ions uptake. In addition, X-ray photoelectron spectroscopy (XPS) of DHI–melanin particles with depth profiling after Zn ions uptake supported particle swelling and ion transport within the particles. Conclusion These initial studies showed the potential of this straightforward synthesis to obtain synthetic DHI–melanin nanoparticles similar to those from biological sources with the possibility to fine-tune their metal adsorption capacity. These synthetic nanoparticles can be used either for the removal of a variety of metal ions or to mimic and study mechanisms of metal uptake by melanin deriving from biological sources, with the potential to understand, for instance, differential heavy metal uptake by various melanic pigments.
Collapse
Affiliation(s)
- Eman R Darwish
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Haitham Kalil
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Wafa Alqahtani
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sayed M N Moalla
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Nasser M Hosny
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Heidi B Martin
- Department of Chemical & Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
7
|
Li Q, Zheng Y, Xiao D, Or T, Gao R, Li Z, Feng M, Shui L, Zhou G, Wang X, Chen Z. Faradaic Electrodes Open a New Era for Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002213. [PMID: 33240769 PMCID: PMC7675053 DOI: 10.1002/advs.202002213] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Indexed: 05/02/2023]
Abstract
Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.
Collapse
Affiliation(s)
- Qian Li
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yun Zheng
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Dengji Xiao
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Tyler Or
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Zhaoqiang Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Lingling Shui
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Zhongwei Chen
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
8
|
Sun J, Liu L, Yang F. A WO 3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu 2+ and organic acid. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122534. [PMID: 32203714 DOI: 10.1016/j.jhazmat.2020.122534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal ions and organic acids are common pollutants in electroplating wastewater. Effective and economic treatment of such wastewater needs novel technologies. In this study, WO3/PPy-1/ACF electrode was prepared using a hydrothermal modification method and it has large specific area (788.27 m2 g-1), high areal capacitance (2.58 F cm-2 under 5 mA cm-2 charge and discharge) and excellent conductivity. The modified electrode was used in an electrochemical system with activated carbon fiber felt (ACF) as counter electrode. The system simultaneously and successfully removed 97.8 % Cu2+ and 80.1 % citric acid (CA) from a simulated electroplating wastewater (typically 100 mg L-1 Cu2+ and 800 mg L-1 CA) in five- hour optimized operation. The influence of operating parameters (circulating inflow rate, applied voltage and influent pH) on the treatment performance was compared. There is interplay between Cu2+ reductive deposition and CA oxidation. The synergetic electrochemical treatment mechanism involves formation of hydrogen peroxide, free radicals, and catalytic effect of Cu species was proposed. This electrochemical system which is low-cost, easy to operate and highly efficient, may be applicable in treating acid-wash or electroplating wastewater, containing heavy-metal ions and organic acids.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin, China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Kyaw HH, Myint MTZ, Al-Harthi S, Al-Abri M. Removal of heavy metal ions by capacitive deionization: Effect of surface modification on ions adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121565. [PMID: 31732340 DOI: 10.1016/j.jhazmat.2019.121565] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 05/17/2023]
Abstract
Activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanoparticles (NPs) have been used as electrodes in flow-by capacitive deionization (CDI) system. Aqueous solution of individual Pb2+ and Cd2+ ions and mixed Pb2+ and Cd2+ ions were used as test contaminant in CDI system to study the effect of surface modification upon ions removal efficiency. Due to the aggregated structure of ZnO NPs on ACC surface, the modified ACC electrodes develop the additional surface area as well as dielectric barrier therefore resulting in higher specific capacitance. In addition, coating with ZnO NPs effectively reduced physical adsorption whereby enhanced the ions adsorption rate and capacity during electrosorption process. Upon incorporating with ZnO NPs, the electrosorption efficiency was enhanced from 17% to 33% for Pb2+, from 21% to 29% for Cd2+ and from 21% to 35% for mixed Pb2+ and Cd2+ ions. The power consumption of individual ions and mixed ions removal process for ACC and ZnO NPs modified ACC were also discussed. Furthermore, used ACC electrodes surfaces were examined using photoelectron spectroscopy (XPS) and results were also conferred. The CDI ACC electrodes with ZnO NPs showed a promising and an effective way for heavy metal removal applications.
Collapse
Affiliation(s)
- Htet Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoudh, Muscat 123, Oman
| | - Salim Al-Harthi
- Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoudh, Muscat 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman; Petroleum and Chemical Engineering Department, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman.
| |
Collapse
|
10
|
Theoretical study of indigotine blue dye adsorption on CoFe2O4/chitosan magnetic composite via analytical model. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ali N, Khan A, Bilal M, Malik S, Badshah S, Iqbal HMN. Chitosan-Based Bio-Composite Modified with Thiocarbamate Moiety for Decontamination of Cations from the Aqueous Media. Molecules 2020; 25:E226. [PMID: 31935863 PMCID: PMC6982774 DOI: 10.3390/molecules25010226] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023] Open
Abstract
Herein, we report the development of chitosan (CH)-based bio-composite modified with acrylonitrile (AN) in the presence of carbon disulfide. The current work aimed to increase the Lewis basic centers on the polymeric backbone using single-step three-components (chitosan, carbon disulfide, and acrylonitrile) reaction. For a said purpose, the thiocarbamate moiety was attached to the pendant functional amine (NH2) of chitosan. Both the pristine CH and modified CH-AN bio-composites were first characterized using numerous analytical and imaging techniques, including 13C-NMR (solid-form), Fourier-transform infrared spectroscopy (FTIR), elemental investigation, thermogravimetric analysis, and scanning electron microscopy (SEM). Finally, the modified bio-composite (CH-AN) was deployed for the decontamination of cations from the aqueous media. The sorption ability of the CH-AN bio-composite was evaluated by applying it to lead and copper-containing aqueous solution. The chitosan-based CH-AN bio-composite exhibited greater sorption capacity for lead (2.54 mmol g-1) and copper (2.02 mmol g-1) than precursor chitosan from aqueous solution based on Langmuir sorption isotherm. The experimental findings fitted better to Langmuir model than Temkin and Freundlich isotherms using linear regression method. Different linearization of Langmuir model showed different error functions and isothermal parameters. The nonlinear regression analysis showed lower values of error functions as compared with linear regression analysis. The chitosan with thiocarbamate group is an outstanding material for the decontamination of toxic elements from the aqueous environment.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Adnan Khan
- Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13084-971, SP, Brazil
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan; (A.K.); (S.M.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan; (A.K.); (S.M.)
| | - Syed Badshah
- Department of Chemistry, Gomal University, D. I. Khan, Khyber Pakhtunkhwa 25120, Pakistan;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, Mexico
| |
Collapse
|
12
|
Jiang B, Fu L, Cao W, Zhang B, Li F, Liu Y. Microbial flocculant produced by a novel Paenibacillus sp., strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb(II) from aqueous solution. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419876850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to high production costs, the popularization and application of microbial flocculants in the field of water treatment have been limited. In this study, the capture of lead ions by the fermentation broth of a novel Paenibacillus sp. strain A9 and cultured with food wastewater was further investigated. The results revealed that the production of MBFA9 could be increased significantly by adding a small amount of carbon and nitrogen to food wastewater. Under the best experimental conditions (pH 8.5, culture temperature 30°C, 150 r/min), adding 1% (m/v) carbon and 0.1% (m/v) nitrogen to 1% (v/v) wastewater resulted in a yield of MBFA9 of 6.29 g/l. At a temperature of 30°C, pH of 5, contact time of 35 min, and FBA9 dosage of 5%, the removal rate and removal capacity of Pb(II) reached the highest values of 95.1% and 317 mg/g, respectively. Field emission scanning electron microscopy analysis indicated that bacterial cells, metabolite small molecule acids, and MBFA9 in FBA9 all contributed to the removal of Pb(II). Fourier-transform infrared spectrometry analysis indicated that functional groups such as –OH, –COOH, –CO, and –NH2 existed in MBFA9 and on the cell surface. Various mechanisms involved in Pb(II) removal can occur simultaneously, including cell surface adsorption, microcrystallization, and biological flocculation.
Collapse
Affiliation(s)
- Binhui Jiang
- College of Resource and Civil Engineering, Northeastern University, Shenyang, China
| | - Lili Fu
- College of Petroleum and Gas Engineering, Liaoning Shihua University, Fushun, China
| | | | | | - Fengda Li
- College of Resource and Civil Engineering, Northeastern University, Shenyang, China
| | - Yana Liu
- College of Foreign Languages Department, Shenyang Ligong University, Shenyang, China
| |
Collapse
|
13
|
Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. MATERIALS 2019; 12:ma12122020. [PMID: 31238508 PMCID: PMC6630235 DOI: 10.3390/ma12122020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/04/2022]
Abstract
In this study, polypyrrole-based activated carbon was prepared by the carbonization of polypyrrole at 650 °C for 2 h in the presence of four-times the mass of KOH as a chemical activator. The structural and morphological properties of the product (polypyrrole-based activated carbon (PPyAC4)), analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis, support its applicability as an adsorbent. The adsorption characteristics of PPyAC4 were examined through the adsorption of lead ions from aqueous solutions. The influence of various factors, including initial ion concentration, pH, contact time, and adsorbent dose, on the adsorption of Pb2+ was investigated to identify the optimum adsorption conditions. The experimental data fit well to the pseudo-second-order kinetic model (R2 = 0.9997) and the Freundlich isotherm equation (R2 = 0.9950), suggesting a chemisorption pathway. The adsorption capacity was found to increase with increases in time and initial concentration, while it decreased with an increase in adsorbent dose. Additionally, the highest adsorption was attained at pH 5.5. The calculated maximum capacity, qm, determined from the Langmuir model was 50 mg/g.
Collapse
|