1
|
Brooks BA, Sinha P, Staffa SJ, Jacobs MB, Freishtat RJ, Patregnani JT. Children with single ventricle heart disease have a greater increase in sRAGE after cardiopulmonary bypass. Perfusion 2024; 39:1314-1322. [PMID: 37465929 PMCID: PMC11451074 DOI: 10.1177/02676591231189357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Reducing cardiopulmonary bypass (CPB) induced inflammatory injury is a potentially important strategy for children undergoing multiple operations for single ventricle palliation. We sought to characterize the soluble receptor for advanced glycation end products (sRAGE), a protein involved in acute lung injury and inflammation, in pediatric patients with congenital heart disease and hypothesized that patients undergoing single ventricle palliation would have higher levels of sRAGE following bypass than those with biventricular physiologies. METHODS This was a prospective, observational study of children undergoing CPB. Plasma samples were obtained before and after bypass. sRAGE levels were measured and compared between those with biventricular and single ventricle heart disease using descriptive statistics and multivariate analysis for risk factors for lung injury. RESULTS sRAGE levels were measured in 40 patients: 19 with biventricular and 21 with single ventricle heart disease. Children undergoing single ventricle palliation had a higher factor and percent increase in sRAGE levels when compared to patients with biventricular circulations (4.6 vs. 2.4, p = 0.002) and (364% vs. 181%, p = 0.014). The factor increase in sRAGE inversely correlated with the patient's preoperative oxygen saturation (Pearson correlation (r) = -0.43, p = 0.005) and was positively associated with red blood cell transfusion (coefficient = 0.011; 95% CI: 0.004, 0.017; p = 0.001). CONCLUSIONS Children with single ventricle physiology have greater increase in sRAGE following CPB as compared to children undergoing biventricular repair. Larger studies delineating the role of sRAGE in children undergoing single ventricle palliation may be beneficial in understanding how to prevent complications in this high-risk population.
Collapse
Affiliation(s)
- Bonnie A Brooks
- Division of Pediatric Critical Care Medicine, Mattel Children’s Hospital, University of California Los Angeles, Los Angeles, CA, USA
- Division of Critical Care Medicine, Children’s National Hospital, Washington, DC, USA
| | - Pranava Sinha
- Department of Pediatric Cardiac Surgery, M Health Fairview University of Minnesota, Minneapolis MN, USA
- Division of Cardiovascular Surgery, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard University, Boston Children’s Hospital, Boston, MA, USA
| | - Marni B Jacobs
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, CA, USA
- Division of Biostatistics and Study Methodology, Children’s National Hospital, Washington, DC, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Departments of Pediatrics, Emergency Medicine, and Genomics & Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jason T Patregnani
- Division of Pediatric Critical Care Medicine, Maine Medical Center, Tufts University School of Medicine, Barbara Bush Children’s Hospital, Portland, ME, USA
- Division of Pediatric Cardiac Critical Care, Children’s National Hospital, George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
2
|
Alfatni A, Charles AL, Sauer F, Riou M, Goupilleau F, Talha S, Meyer A, Andres E, Kindo M, Mazzucotelli JP, Epailly E, Geny B. Peripheral Blood Mononuclear Cells Mitochondrial Respiration and Superoxide Anion after Heart Transplantation. J Clin Med 2022; 11:jcm11237247. [PMID: 36498821 PMCID: PMC9735976 DOI: 10.3390/jcm11237247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The mitochondrial function of circulating peripheral blood mononuclear cells (PBMCs) is an interesting new approach to cardiac diseases. Thus, PBMC's mitochondrial respiration decreases in relation to heart failure severity. However, no data are available on heart-transplanted patients (Htx). POPULATION AND METHODS We determined PBMCs mitochondrial respiration by high-resolution respirometry (Oroboros Instruments) and superoxide anion production using electron paramagnetic resonance (Bruker-Biospin) in 20 healthy subjects and 20 matched Htx and investigated clinical, biological, echocardiographic, coronarography and biopsy characteristics. RESULTS PBMCs mitochondrial respiratory chain complex II respiration was decreased in Htx (4.69 ± 0.84 vs. 7.69 ± 1.00 pmol/s/million cell in controls and Htx patients, respectively; p = 0.007) and complex IV respiration was increased (24.58 ± 2.57 vs. 15.68 ± 1.67 pmol/s/million cell; p = 0.0035). Superoxide anion production was also increased in Htx (1.47 ± 0.10 vs. 1.15 ± 0.10 µmol/min; p = 0.041). The leucocyte-to-lymphocyte ratio was increased in Htx, whom complex II correlated with leucocyte number (r = 0.51, p = 0.02) and with the left ventricular posterior wall peak early diastolic myocardial velocity (r = -0.62, p = 0.005). Complex IV was increased in the two patients with acute rejection and correlated negatively with Htx's isovolumetric relation time (r = -0.45, p = 0.045). DISCUSSION Although presenting with normal systolic function, Htx demonstrated abnormal PBMC's mitochondrial respiration. Unlike immunosuppressive therapies, subclinical diastolic dysfunction might be involved in these changes. Additionally, lymphopenia might reduce complex II, and acute rejection enhances complex IV respirations. CONCLUSION PBMC's mitochondrial respiration appears modified in Htx, potentially linked to cellular shift, mild diastolic dysfunction and/or acute rejection.
Collapse
Affiliation(s)
- Abrar Alfatni
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - François Sauer
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Marianne Riou
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Fabienne Goupilleau
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
| | - Samy Talha
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Alain Meyer
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Emmanuel Andres
- Department of Internal Medicine, University Hospital of Strasbourg, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Michel Kindo
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Jean-Philippe Mazzucotelli
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Eric Epailly
- Cardiovascular Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
| | - Bernard Geny
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 11 Rue Humann, 67000 Strasbourg, France
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, NHC, 1 Place de l’Hôpital, CEDEX, 67091 Strasbourg, France
- Correspondence:
| |
Collapse
|
4
|
Heydarpour M, Ejiofor J, Gilfeather M, Stone G, Gorham J, Seidman CE, Seidman JG, Yammine M, Body SC, Aranki SF, Muehlschlegel JD. Molecular Genetics of Lidocaine-Containing Cardioplegia in the Human Heart During Cardiac Surgery. Ann Thorac Surg 2018; 106:1379-1387. [PMID: 30028983 DOI: 10.1016/j.athoracsur.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND During cardiac surgery with cardiopulmonary bypass, delivery of cardioplegia solution to achieve electromechanical cardiac quiescence is obligatory. The addition of lidocaine to cardioplegia has advantages, although its consequences at a molecular level remain unclear. We performed whole-genome RNA sequencing of the human left ventricular (LV) myocardium to elucidate the differences between whole-blood (WB) cardioplegia with and without addition of lidocaine (LC) on gene expression. METHODS We prospectively enrolled 130 patients undergoing aortic valve replacement surgery. Patients received high-potassium blood cardioplegia either with (n = 37) or without (n = 93) lidocaine. The LV apex was biopsied at baseline, and after an average of 74 minutes of cold cardioplegic arrest. We performed differential gene expression analysis for 18,258 genes between these 2 groups. Clinical and demographic variables were adjusted in the model. Gene ontology (GO) and network enrichment analysis of the retained genes were performed using g:Profiler and Cytoscape. RESULTS A total of 1,298 genes were differentially expressed between cardioplegic treatments. Compared with the WB group, genes upregulated in the LC group were identified by network enrichment to play a protective role in ischemic injury by inhibiting apoptosis, increasing transferrin endocytosis, and increasing cell viability. Downregulated genes in the LC group were identified to play a role in inflammatory diseases, oxygen transport, and neutrophil aggregation. CONCLUSIONS The addition of lidocaine to cardioplegia had pronounced effects on a molecular level with genes responsible for decreased inflammation, reduced intracellular calcium binding, enhanced antiapoptotic protection, augmented oxygen accessibility through transferrins, and increased cell viability showing measurable differences.
Collapse
Affiliation(s)
- Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julius Ejiofor
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Gilfeather
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gregory Stone
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Josh Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Christine E Seidman
- Howard Hughes Medical Institute, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jon G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Maroun Yammine
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sary F Aranki
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|