1
|
Xu Y, Huang L, Qiu Z, Zhang J, Xue X, Lin J. Overexpressed miR-486 in bone marrow mesenchymal stem cells represses urethral fibrosis and targets Col13a1 in urethral stricture rats. J Cell Commun Signal 2024; 18:e12028. [PMID: 38946723 PMCID: PMC11208119 DOI: 10.1002/ccs3.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 07/02/2024] Open
Abstract
Urethral stricture (US) is a challenging problem in urology and its pathogenesis of US is closely related to the fibrotic process. Previous evidence has indicated the downregulation of microRNA (miR)-486 in injured urethral specimens of rats. This study aimed to explore the effects of miR-486-overexpressed bone marrow mesenchymal stem cells (BMSCs) on US. BMSCs were identified by detecting their multipotency and surface antigens. Lentivirus virus expressing miR-486 was transduced into rat BMSCs to overexpress miR-486. Transforming growth factor (TGF)-β1 induced fibrotic phenotypes in urethral fibroblasts (UFs) and rat models. Western blotting showed protein levels of collagen I/III and collagen type XIII alpha 1 chain (Col13a1). Real time quantitative polymerase chain reaction was utilized for messenger RNA level evaluation. Hematoxylin-eosin, Masson's trichrome, and Von Willebrand Factor staining were conducted for histopathological analysis. Immunofluorescence staining was employed for detecting alpha smooth muscle actin (α-SMA) expression. Luciferase reporter assay verified the interaction between miR-486 and Col13a1. The results showed that miR-486-overexpressed BMSCs suppressed collagen I/III and α-SMA expression in TGF-β1-stimulated UFs. miR-486-overexpressed BMSCs alleviated urethral fibrosis, collagen deposition, and epithelial injury in the urethral tissue of US rats. miR-486 targeted and negatively regulated Col13a1 in US rats. In conclusion, overexpression of miR-486 in BMSCs targets Col13a1 and attenuates urethral fibrosis in TGF-β1-triggered UFs and US rats.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Lihong Huang
- The First Clinical Medical School Fujian Medical University Fuzhou China
| | - Zhixin Qiu
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Jiaqi Zhang
- The First Clinical Medical School Fujian Medical University Fuzhou China
| | - Xueyi Xue
- Department of Urology The First Affiliated Hospital Fujian Medical University Fuzhou China
| | - Junshan Lin
- Department of Pediatric Surgery The First Affiliated Hospital Fujian Medical University Fuzhou China
| |
Collapse
|
2
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Bone Marrow Mesenchymal Stem Cell-Derived Exosomal microRNA-29b-3p Promotes Angiogenesis and Ventricular Remodeling in Rats with Myocardial Infarction by Targeting ADAMTS16. Cardiovasc Toxicol 2022; 22:689-700. [PMID: 35699870 DOI: 10.1007/s12012-022-09745-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
An increasing amount of evidence has suggested that microRNA (miR) plays a role in myocardial infarction (MI). Our study aimed to discuss the impact of exosomal miR-29b-3p in MI by regulating A Disintegrin and Metalloproteinase with Thrombospondin Motifs 16 (ADAMTS16). Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). In a rat model of MI, myocardial angiogenesis and ventricular remodeling-related factors, as well as myocardial fibrosis, collagen volume fraction (CVF), capillary density, level of vascular endothelial growth factor (VEGF), and apoptosis of cardiomyocytes, were tested. ADAMTS16 and miR-29b-3p levels in the myocardial tissue of MI rats were tested. miR-29b-3p expression was decreased and ADAMTS16 expression was increased in the myocardial tissue of MI rats. ADAMTS16 was a target gene of miR-29b-3p. Upregulated miR-29b-3p delivered by BMSC-derived exosomes improved myocardial angiogenesis and ventricular remodeling, reduced myocardial fibrosis and CVF, increased capillary density and VEGF expression, and suppressed apoptosis of cardiomyocytes in MI rats. ADAMTS16 overexpression accelerated MI in rats, and ADAMTS16 upregulation reversed the protective effects of miR-29b-3p upregulation on MI rats. Our study provides evidence that upregulated miR-29b-3p delivered by BMSC-secreted exosomes can improve myocardial angiogenesis and ventricular remodeling in rats with MI by targeting ADAMTS16.
Collapse
|
4
|
Zhang X, Liu L, Liu D, Li Y, He J, Shen L. 17β-Estradiol promotes angiogenesis of bone marrow mesenchymal stem cells by upregulating the PI3K-Akt signaling pathway. Comput Struct Biotechnol J 2022; 20:3864-3873. [PMID: 35891776 PMCID: PMC9309573 DOI: 10.1016/j.csbj.2022.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022] Open
Abstract
The role and mechanism of 17β -estradiol in the regulation of BMSC promoting angiogenesis were analyzed by bioinformatics techniques for the first time. Combined with FN1, MCM2, XPO1, NTRK1 and other proteins, 17β-estradiol is able to activate PI3K-Akt, MAPK and other signaling pathways to regulate BMSCs to promote or remodel angiogenesis. 17β-estradiol upregulates the PI3K-Akt signaling pathway to promote the BMSC angiogenesis process of differentiation.
Objective Estrogen is an important hormone affecting angiogenesis in women and is important for female physical development. Menopausal women are prone to serious cardiovascular and cerebrovascular diseases when estrogen is significantly reduced. Bone marrow mesenchymal stem cells (BMSC) have potential roles in processes such as angiogenesis and remodeling. This study is to investigate the effect of 17β-estradiol on BMSC angiogenic differentiation and its underlying molecular mechanism, and to provide a basis for the treatment of microvascular diseases. Methods Enrichment analysis of apoptosis, migration or angiogenesis processes and molecular mechanisms of BMSC treated with 17β-estradiol was performed to screen core proteins and perform molecular docking validation. Human MSCs were cultured in vitro to examine the effect of 17β-estradiol on BMSC migration or angiogenic differentiation. Results 17β-estradiol acted on 48 targets of BMSC and was involved in regulating 52 cell migration processes or 17 angiogenesis processes through 66 KEGG pathways such as PI3K-Akt, MAPK, etc. 17β-estradiol bound tightly to 10 core proteins including APP, NTRK1, EGFR, and HSP90AA1. 17β-estradiol promoted cell scratch area closure rate and CD31 expression in BMSCs, downregulated BMSC apoptosis rate, and promoted Akt and p-Akt protein expression in BMSC. Conclusion 17β-estradiol binds to FN1, MCM2, XPO1, NTRK1 and other proteins to initiate PI3K-Akt, MAPK and other signaling pathways, so as to regulate BMSC to promote or remodel angiogenesis, verifying that 17β-estradiol up-regulates PI3K-Akt signaling pathway to promote BMSC angiogenic differentiation.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Ligang Liu
- Department of Pharmacy, University of Nebraska Medical Center, Nebraska, USA
| | - Danyang Liu
- Department of Histology and Embryology, Qiqihar Medical College, Qiqihar, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
5
|
Liu J, Tang M, Tan S, Zhang H. Effect of miR-34a on the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (BMSCs) in Hyperlipidemia Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to explore miR-34a’s effect on BMSCs osteogenic differentiation of hyperlipidemia. 20 SD rats were equally assigned into control group (normal diet) and high-fat group (research diet). Cells were transfected with miR-34a mimic or negative control followed by
meausring miR-34a, Dvl2, PPAR-γ, ALP, Runx2, and sp7, and ALP activity. The number of mineralized nodules, adipocytes, miR-34a and PPAR-γ expression in high-fat group were significantly increased and Dvl2, ALP, Runx2, and sp7 mRNA showed opposite profiles. Meanwhile,
Runx2, ALP protein, cytoplasm and nuclear blue-black particles, Dvl2 protein and mRNA in miR-34a mimic group were significantly downregulated (P < 0.05). Additionally, the luciferase activity of wild-type plasmid+miR-34a mimic group was significantly lower than mutant group, indicating
that miR-34a targets Dvl2. In conclusion, miR-34a inhibits the osteogenic differentiation of hyperlipidemia BMSCs by inhibiting the expression of Dvl2, Runx2 and ALP activity, indicating that it might be target in the hyperlipidemia treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meiling Tang
- Department of Pediatrics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuai Tan
- Department of Oncology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Heng Zhang
- Department of Hematology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
6
|
Szewc M, Radzikowska-Bűchner E, Wdowiak P, Kozak J, Kuszta P, Niezabitowska E, Matysiak J, Kubiński K, Masłyk M. MSCs as Tumor-Specific Vectors for the Delivery of Anticancer Agents-A Potential Therapeutic Strategy in Cancer Diseases: Perspectives for Quinazoline Derivatives. Int J Mol Sci 2022; 23:2745. [PMID: 35269887 PMCID: PMC8911180 DOI: 10.3390/ijms23052745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be a powerful tool in the treatment of various diseases. Scientists are particularly interested in the possibility of using MSCs in cancer therapy. The research carried out so far has shown that MSCs possess both potential pro-oncogenic and anti-oncogenic properties. It has been confirmed that MSCs can regulate tumor cell growth through a paracrine mechanism, and molecules secreted by MSCs can promote or block a variety of signaling pathways. These findings may be crucial in the development of new MSC-based cell therapeutic strategies. The abilities of MSCs such as tumor tropism, deep migration and immune evasion have evoked considerable interest in their use as tumor-specific vectors for small-molecule anticancer agents. Studies have shown that MSCs can be successfully loaded with chemotherapeutic drugs such as gemcitabine and paclitaxel, and can release them at the site of primary and metastatic neoplasms. The inhibitory effect of MSCs loaded with anti-cancer agents on the proliferation of cancer cells has also been observed. However, not all known chemotherapeutic agents can be used in this approach, mainly due to their cytotoxicity towards MSCs and insufficient loading and release capacity. Quinazoline derivatives appear to be an attractive choice for this therapeutic solution due to their biological and pharmacological properties. There are several quinazolines that have been approved for clinical use as anticancer drugs by the US Food and Drug Administration (FDA). It gives hope that the synthesis of new quinazoline derivatives and the development of methods of their application may contribute to the establishment of highly effective therapies for oncological patients. However, a deeper understanding of interactions between MSCs and tumor cells, and the exploration of the possibilities of using quinazoline derivatives in MSC-based therapy is necessary to achieve this goal. The aim of this review is to discuss the prospects for using MSC-based cell therapy in cancer treatment and the potential use of quinazolines in this procedure.
Collapse
Affiliation(s)
- Monika Szewc
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Elżbieta Radzikowska-Bűchner
- Department of Plastic, Reconstructive and Maxillary Surgery, Central Clinical Hospital MSWiA, 02-507 Warsaw, Poland;
| | - Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Piotr Kuszta
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, 20-400 Lublin, Poland;
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
7
|
Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. Int Immunopharmacol 2021; 101:107592. [PMID: 34715573 DOI: 10.1016/j.intimp.2021.107592] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are essential biomarkers during development of human diseases. We aimed to explore the role of hypoxia-induced bone marrow mesenchymal stem cells (BMSCs)-derived exosomal miR-98-5p in myocardial ischemia-reperfusion injury (MI/RI). METHODS BMSCs were isolated, cultured, stimulated by hypoxia and transfected with adenovirus expressing miR-98-5p. The exosomes were extracted from BMSCs and named as BMSC-exos. The rat MI/RI models were established by ligation of left anterior descending artery and were respectively injected. Then, hemodynamic indices, myocardial enzymes, oxidative stress factors, inflammatory factors, macrophage infiltration and infarct size in these rats were determined. Expression of miR-98-5p, toll-like receptor 4 (TLR4) and the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway-related proteins was assessed. The target relation between miR-98-5p and TLR4 was confirmed by bioinformatic method and dual luciferase report gene assay. RESULTS MiR-98-5p was downregulated, TLR4 was upregulated and the PI3K/Akt signaling pathway was inactivated in MI/RI rat myocardial tissues. Exosomal miR-98-5p from hypoxic BMSCs promoted cardiac function and suppressed myocardial enzyme levels, oxidative stress, inflammation response, macrophage infiltration and infarct size in I/R myocardial tissues. Moreover, TRL4 was targeted by miR-98-5p and miR-98-5p activated PI3K/Akt signaling pathway. CONCLUSION Hypoxia-induced BMSC-exos elevated miR-98-5p to protect against MI/RI. This study may be helpful for treatment of MI/RI.
Collapse
|
8
|
Zhang L, Khadka B, Wu J, Feng Y, Long B, Xiao R, Liu J. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal miR-425-5p Inhibits Acute Myeloid Leukemia Cell Proliferation, Apoptosis, Invasion and Migration by Targeting WTAP. Onco Targets Ther 2021; 14:4901-4914. [PMID: 34594112 PMCID: PMC8478487 DOI: 10.2147/ott.s286326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a predominant blood malignancy with high mortality and severe morbidity. AML is affected by microRNAs (miRNAs) loaded in exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs). MiR-425-5p has been reported to participate in different cancer models. However, the function of BM-MSCs-derived exosomal miR-425-5p in AML is unclear. Methods The expression of miR-425-5p was measured by qRT-PCR in clinical AML samples. The immunophenotype of BM-MSCs was analyzed using antibodies against CD44, CD90, and CD105. The exosome was isolated from BM-MSCs. The effect of BM-MSCs-derived exosomal miR-425-5p on AML was analyzed by CCK-8 assay, Edu assay, transwell assay, flow cytometry in AML cells. qRT-PCR, luciferase reporter gene assay and Western blot analysis were also conducted in AML cells. Results The expression levels of miR-425-5p were decreased in CD34 + CD38-AML cells from primary AML patients compared to that from the bone marrow of healthy cases, and were reduced in exosomes from AML patients compared that from healthy cases. Similarly, miR-425-5p was also down-regulated in AML cell lines compared with BM-MSCs. MiR-425-5p was able to express in exosomes from BM-MSCs. CCK-8, Edu, transwell assay and flow cytometry analysis revealed that BM-MSCs-derived exosomal miR-425-5p significantly inhibited cell viability, Edu positive cells, invasion and migration, and induced apoptosis of AML cells. Meanwhile, the expression levels of cleaved PARP and cleaved caspase3 were increased by BM-MSCs-derived exosomal miR-425-5p in cells. MiR-425-5p inhibited the expression of Wilms tumor 1-associated protein (WTAP). Moreover, overexpression of WTAP could reverse the miR-425-5p-induced inhibition effect on AML cell proliferation, apoptosis, migration and invasion. Conclusion BM-MSCs-derived exosomal miR-425-5p inhibits proliferation, invasion and migration of AML cells and induced apoptosis of AML cells by targeting WTAP. Therapeutically, BM-MSCs-derived exosomal miR-425-5p may serve as a potential target for AML therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bijay Khadka
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jieying Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Yashu Feng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Bing Long
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Ruozhi Xiao
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou City, Guangdong Province, 510630, People's Republic of China
| |
Collapse
|
9
|
Cruz-Samperio R, Jordan M, Perriman A. Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Transl Med 2021; 10:855-866. [PMID: 33660953 PMCID: PMC8133336 DOI: 10.1002/sctm.20-0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post‐MI. Unfortunately, the efficacy of CTs is somewhat limited by their poor long‐term viability, homing, and engraftment to the myocardium. In response, a range of novel SC‐based technologies are in development to provide additional cellular modalities, bringing CTs a step closer to the clinic. In this review, the current landscape of emerging CTs and their augmentation strategies for the treatment post‐MI are discussed. In doing so, we highlight recent advances in cell membrane reengineering via genetic modifications, recombinant protein immobilization, and the utilization of soft biomimetic scaffold interfaces.
Collapse
Affiliation(s)
| | - Millie Jordan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med 2020; 47:677-687. [PMID: 33416139 PMCID: PMC7797467 DOI: 10.3892/ijmm.2020.4830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are accepted as a form of cellular therapy to improve cardiac function following acute myocardial infarction (AMI). The present study was performed to investigate the synergistic effect of ultrasound-targeted microbubble destruction (UTMD)-mediated Galectin-7-small interfering (si)RNA with the homing of BMSCs for AMI. The rat model of AMI was established, followed by identification of BMSCs. Rats with AMI received BMSC transplantation, BMSC transplantation + UTMD + siRNA negative control, or BMSC transplantation + UTMD + Galectin-7-siRNA. The cardiac function, hemodynamics indexes, degree of myocardial fiber injury and expression of apoptosis-related proteins in myocardial tissues of rats were detected. The homing of BMSCs was observed, and the indexes of myocardial microenvironment and the TGF-β/Smads pathway-related proteins in myocardial tissues were determined. AMI rats treated with UTMD-mediated Galectin-7-siRNA exhibited improved cardiac function and hemodynamics-related indices, decreased myocardial fiber injury and apoptotic cells, as well as enhanced homing ability of BMSCs, improved myocardial microenvironment, and suppressed TGF-β1/Smads pathway activation. In conclusion, the present study demonstrated that UTMD-mediated Galectin-7-siRNA treatment could enhance the homing ability of BMSCs, thus alleviating AMI in rats.
Collapse
Affiliation(s)
- Xin Wei
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Yan Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Weilin Zhang
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Jing Tan
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hong Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
11
|
Deng J, Zhong L, Zhou Z, Gu C, Huang X, Shen L, Cao S, Ren Z, Zuo Z, Deng J, Yu S. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions. Mol Cell Biochem 2020; 476:1135-1149. [PMID: 33196943 DOI: 10.1007/s11010-020-03978-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to be a promising therapeutic material due to their capacities for self-renewal, multilineage differentiation, and immunomodulation and have attracted great attention in regenerative medicine. However, MSCs may lose their biological functions because of donor age or disease and environmental pressure before and after transplantation, which hinders the application of MSC-based therapy. As a major intracellular lysosome-dependent degradative process, autophagy plays a pivotal role in maintaining cellular homeostasis and withstanding environmental pressure and may become a potential therapeutic target for improving MSC functions. Recent studies have demonstrated that the regulation of autophagy is a promising approach for improving the biological properties of MSCs. More in-depth investigations about the role of autophagy in MSC biology are required to contribute to the clinical application of MSCs. In this review, we focus on the role of autophagy regulation by various physical and chemical factors on the biological functions of MSCs in vitro and in vivo, and provide some strategies for enhancing the therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zihan Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Congwei Gu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Xiaoya Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
12
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|