1
|
Panariello BHD, Klein MI, Dias LM, Bellini A, Costa VB, Barbugli PA, Pavarina AC. Lactobacillus casei reduces the extracellular matrix components of fluconazole-susceptible Candida albicans biofilms. BIOFOULING 2021; 37:1006-1021. [PMID: 34789040 DOI: 10.1080/08927014.2021.2001645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fluconazole-sensitive (CaS) and -resistant (CaR) C. albicans were grown as single-species and dual-species biofilms with Lactobacillus casei (Lc) and Lactobacillus rhamnosus (Lr). Single-species Lc and Lr were also evaluated. Biofilm analysis included viable plate counts, the extracellular matrix components, biomass, and structural organization. Lc reduced the viability of CaS, water-soluble polysaccharides, and eDNA in CaS + Lc biofilm. Lc biofilm presented more eDNA than CaS. The total biomass of CaS + Lc biofilm was higher than the single-species biofilms. The viability of Lc and Lr was reduced by CaR dual-species biofilms. The total and insoluble biomass in CaS + Lr was higher than in single-species CaS biofilms. Lc hindered the growth of CaS, and their association hampered matrix components linked to the structural integrity of the biofilm. These findings allow understanding of how the implementation of probiotics influences the growth of C. albicans biofilms and thereby helps with the development of novel approaches to control these biofilms.
Collapse
Affiliation(s)
- Beatriz H D Panariello
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
- Department of Cariology, Operative Dentistry & Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Marlise Inez Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Amanda Bellini
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Vitoria Bonan Costa
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
- Department of Surgery and Diagnosis, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| |
Collapse
|
2
|
The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules 2021; 11:biom11081165. [PMID: 34439831 PMCID: PMC8394648 DOI: 10.3390/biom11081165] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an essential process to restore tissue integrity after trauma. Large skin wounds such as burns often heal with hypertrophic scarring and contractures, resulting in disfigurements and reduced joint mobility. Such adverse healing outcomes are less common in the oral mucosa, which generally heals faster compared to skin. Several studies have identified differences between oral and skin wound healing. Most of these studies however focus only on a single stage of wound healing or a single cell type. The aim of this review is to provide an extensive overview of wound healing in skin versus oral mucosa during all stages of wound healing and including all cell types and molecules involved in the process and also taking into account environmental specific factors such as exposure to saliva and the microbiome. Next to intrinsic properties of resident cells and differential expression of cytokines and growth factors, multiple external factors have been identified that contribute to oral wound healing. It can be concluded that faster wound closure, the presence of saliva, a more rapid immune response, and increased extracellular matrix remodeling all contribute to the superior wound healing and reduced scar formation in oral mucosa, compared to skin.
Collapse
|
3
|
Roy S, Prakash S, Mathew-Steiner SS, Das Ghatak P, Lochab V, Jones TH, Mohana Sundaram P, Gordillo GM, Subramaniam VV, Sen CK. Disposable Patterned Electroceutical Dressing (PED-10) Is Safe for Treatment of Open Clinical Chronic Wounds. Adv Wound Care (New Rochelle) 2019; 8:149-159. [PMID: 31016066 DOI: 10.1089/wound.2018.0915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/03/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: To evaluate if patterned electroceutical dressing (PED) is safe for human chronic wounds treatment as reported by wound care providers. Approach: This work reports a pilot feasibility study with the primary objective to determine physically observable effects of PED application on host tissue response from a safety evaluation point of view. For this pilot study, patients receiving a lower extremity amputation with at least one open wound on the part to be amputated were enrolled. Patients were identified through the Ohio State University Wexner Medical Center (OSUWMC) based on inclusion and exclusion criteria through prescreening through the Comprehensive Wound Center's (CWC) Limb Preservation Program and wound physicians and/or providers at OSUWMC. Wounds were treated with the PED before amputation surgery. Results: The intent of the study was to identify if PED was safe for clinical application based on visual observations of adverse or lack of adverse events on skin and wound tissue. The pilot testing performed on a small cohort (N = 8) of patients showed that with engineered voltage regulation of current flow to the open wound, the PED can be used with little to no visually observable adverse effects on chronic human skin wounds. Innovation: The PED was developed as a second-generation tunable electroceutical wound care dressing, which could potentially be used to treat wounds with deeper infections compared with current state of the art that treats wounds with treatment zone limited to the surface near topical application. Conclusion: Technology advances in design and fabrication of electroceutical dressings were leveraged to develop a tunable laboratory prototype that could be used as a disposable low-cost electroceutical wound care dressing on chronic wounds. Design revisions of PED-1 (1 kΩ ballast resistor) circumvented previously observed adverse effects on the skin in the vicinity of an open wound. PED-10 (including a 10 kΩ ballast resistor) was well tolerated in the small cohort of patients (N = 8) on whom it was tested, and the observations reported here warrant a larger study to determine the clinical impact on human wound healing and infection control.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Shomita S. Mathew-Steiner
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Piya Das Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Varun Lochab
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Travis H. Jones
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | | | - Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Vish V. Subramaniam
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Candida albicans in Multispecies Oral Communities; A Keystone Commensal? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:13-20. [DOI: 10.1007/5584_2016_5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Kruse CR, Nuutila K, Lee CCY, Kiwanuka E, Singh M, Caterson EJ, Eriksson E, Sørensen JA. The external microenvironment of healing skin wounds. Wound Repair Regen 2015; 23:456-64. [PMID: 25857996 DOI: 10.1111/wrr.12303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cameron C Y Lee
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mansher Singh
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward J Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
7
|
Percival SL, Vuotto C, Donelli G, Lipsky BA. Biofilms and Wounds: An Identification Algorithm and Potential Treatment Options. Adv Wound Care (New Rochelle) 2015; 4:389-397. [PMID: 26155381 DOI: 10.1089/wound.2014.0574] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/04/2014] [Indexed: 01/22/2023] Open
Abstract
Significance: The presence of a "pathogenic" or "highly virulent" biofilm is a fundamental risk factor that prevents a chronic wound from healing and increases the risk of the wound becoming clinically infected. There is presently no unequivocal gold standard method available for clinicians to confirm the presence of biofilms in a wound. Thus, to help support clinician practice, we devised an algorithm intended to demonstrate evidence of the presence of a biofilm in a wound to assist with wound management. Recent Advances: A variety of histological and microscopic methods applied to tissue biopsies are currently the most informative techniques available for demonstrating the presence of generic (not classified as pathogenic or commensal) biofilms and the effect they are having in promoting inflammation and downregulating cellular functions. Critical Issues: Even as we rely on microscopic techniques to visualize biofilms, they are entities which are patchy and dispersed rather than confluent, particularly on biotic surfaces. Consequently, detection of biofilms by microscopic techniques alone can lead to frequent false-negative results. Furthermore, visual identification using the naked eye of a pathogenic biofilm on a macroscopic level on the wound will not be possible, unlike with biofilms on abiotic surfaces. Future Direction: Lacking specific biomarkers to demonstrate microscopic, nonconfluent, virulent biofilms in wounds, the present focus on biofilm research should be placed on changing clinical practice. This is best done by utilizing an anti-biofilm toolbox approach, rather than speculating on unscientific approaches to identifying biofilms, with or without staining, in wounds with the naked eye. The approach to controlling biofilm should include initial wound cleansing, periodic debridement, followed by the application of appropriate antimicrobial wound dressings. This approach appears to be effective in removing pathogenic biofilms.
Collapse
Affiliation(s)
- Steven L. Percival
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- Surface Science Research Centre, University of Liverpool, Liverpool, United Kingdom
- Scapa Healthcare, Manchester, United Kingdom
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Benjamin A. Lipsky
- Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
- Department of Medicine (Infectious Diseases) University of Geneva, Geneva, Switzerland
| |
Collapse
|